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Abstract

Many psychological studies have shown that human-generated sequences are hardly ever random
in the strict mathematical sense. However, what remains an open question is the degree to which
this (in)ability varies between people and is affected by contextual factors. Herein, we investigated
this problem. In two studies, we used a modern, robust measure of randomness based on algorithmic
information theory to assess human-generated series. In Study 1 (N = 183), in a factorial design with
task description as a between-subjects variable, we tested the effects of context and mental fatigue
on human-generated randomness. In Study 2 (N = 266), in online research, in experimental design,
we further investigated the effect of mental fatigue on the randomness of human-generated series
and the relationship between the need for cognition (NFC) and the ability to produce random-like
series. Results of Study 1 show that the activation of the ability to produce random-like series depends
on the relevance of the contextual cues (x>(2) = 7.9828, p = .0192), whether they activate known
representations of a random series generator and consequently help to avoid the production of trivial
sequences. Our findings from both studies on the effect of mental fatigue (Study 1 —#(47, 529.5568) =
—18.62, p < .001; Study 2 — F(edf = 3.587, Ref.df = 3.587) = 11.863, p < .0001) and cognitive
motivation (z(180) = 2.66, p = .009) demonstrate that regardless of the context or task’s novelty peo-
ple quickly lose interest in the random series generation. Therefore, their performance decreases over
time. However, people high in the NFC can maintain the cognitive motivation for a longer period
and consequently on average generate more random series. In general, our results suggest that when
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contextual cues and intrinsic constraints are in optimal interaction people can temporarily escape the
structured and trivial patterns and produce more random-like sequences.

Keywords: Algorithmic complexity; Cognitive motivation; Individual differences; Random numbers
generation; Random series production; Working memory capacity

1. Introduction

With the development of tools and methods for tracking and predicting our actions the
question of whether people can behave truly unpredictably gains on popularity. Although
machine learning algorithms that try to foresee our behavior are already fairly accurate, it
is still an open problem whether people can escape these patterns. This is especially crucial
for the sake of security and cryptography because people might be an independent source of
entropy for encrypting connections (Halprin & Naor, 2009). Although it might seem to be an
issue for computers scientists, in fact, it is a question of the origins of human behavior that
have been studied since the early 1940s by experimental psychologists. Initially, researchers
operationalized unpredictability in terms of the ability to produce responses at random, that
is, ordered in a way that could not be predicted by experimenters (see Brugger, 1997; Nick-
erson, 2002; Oskarsson et al., 2009, for a review). The focus was on generative tasks asking
people to produce random n-element sequences. In the experiments, participants were usually
asked to reorder a given alphabet of symbols (e.g., Kahneman & Tversky, 1972), or simulate
a random process, for example, tossing of a fair coin (e.g., Bar-Hillel & Wagenaar, 1991).
The results of such tasks were usually compared against outcomes of the Bernoulli process
(see Tune, 1964, for a review). However, this line of research did not bring the expected
conclusions. Instead of proving that people can produce random-like series, it showed that
human-generated responses are rarely random in the strict mathematical sense (see Brugger,
1997; Nickerson, 2002; Oskarsson et al., 2009, for a review). This inability to generate per-
fectly random data is currently considered a well-established fact. Moreover, research on the
organized correlated nature of human behavior showed that human responses in a vast array of
domains are structured in non-trivial and non-pattern ways (Kello et al., 2007). Nonetheless,
what remains an open problem in the domain of research on the ability to produce random-like
series is the degree to which this (in)ability varies between different people and can be affected
by contextual factors. This approach is in line with the modern theories of cognitive control
that argue that signals guiding our behavior are organized into two main categories: the ones
related to past events and contextual cues. For example, the essence of the cascade model
is that these signals are represented and processed in a context- or experience-dependent
fashion. Therefore, both contextual and episodic control provide important information for
selecting appropriate actions (Koechlin et al., 2003; Koechlin & Summerfield, 2007). In this
paper, we investigate this issue and focus on between-subjects variability concerning the level
of randomness of generated sequences under different task descriptions (providing different
contextual cues). Moreover, we quantify the level of randomness using modern, objective
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methods grounded in algorithmic information theory (AIT) that provide better estimates than
standard methods based on probability theory.

The article is organized as follows. First, we review various methods to assess the ran-
domness/complexity of human-generated series. We compare measures used in psychological
studies with a modern approach grounded in the AIT. Second, we describe the current state of
the art in the topic of human-generated randomness. We review the most important effects and
formulate hypotheses regarding the effect of context (H1), the effect of fatigue (H2), and the
effect of the Need for Cognition (H3), on the complexity of human-generated series. Then,
in two studies, we test them using modern and objective methods for quantifying randomness
grounded in AIT and based on the notion of algorithmic (Kolmogorov) complexity.

1.1. Measures of randomness

Although in general research indicates that people cannot produce perfectly random series,
the methods used for assessing the randomness of human-generated series vary between dif-
ferent studies. Moreover, such studies often suffer from a lack of both a good definition of
randomness and an objective and robust measure applicable to human-generated series, which
are usually relatively short (Oskarsson et al., 2009). Some researchers tried to overcome this
problem by instructing participants that a random sequence is a result of a random process,
for example, tossing of a fair coin (e.g., Wagenaar, 1971). Such a comparison was meant to
make the task easier. Early works on the subject revealed that people usually consider the term
“random” vague, hence giving a more relatable process as an example was aimed to facilitate
the task (see Brugger, 1997; Nickerson, 2002; Oskarsson et al., 2009, for a review). On the
other hand, some researchers asked to maximize variability (Yavuz, 1963) or to attempt to
use all available symbols equally often (Wiegersma, 1982). However, such instructions were
criticized by Ayton et al. (1991). They noted that focusing on only one property of random
series makes the instruction biased. As an example, they used a study by Wagenaar’s (1971,
p. 80 in which “(...) it was checked carefully whether they [participants] understood that any
systematic trend would make the sequence too predictable.”

Ayton et al. (1991) argued that it lead to a contradiction as participants were asked to pro-
duce random series, while a rule excluding some types of sequences, and hence reducing
randomness, was hidden in the instruction. Moreover, they also criticized the assumption that
people share the same concept of randomness. Nonetheless, this assumption, as well as ran-
domness tests capturing only specific aspects of randomness, are rather common practices
in the literature. Moreover, it seems that there is no general agreement on one definition and
measure of randomness. Hence, it is not only hard to compare results from different stud-
ies but also decide whether they even measured the same ability. For example, Baddeley
(1966) and Rath (1966) based their evaluation on frequencies of the elements in a sequence;
Bakan (1960) and Ross (1955) on frequencies of alternations (or repetitions or runs); Badde-
ley (1966) and Chapanis (1953) on pair, triplet, or n-tuple frequencies; Chapanis (1953) on
autocorrelations; Slak and Hirsch (1974), Warren and Morin (1965) on information transmis-
sion rates; and Wagenaar (1970) and Neuringer (1986) on RUNS test based on counting the
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number of runs (sequences of identical responses), and assessing the probability of obtaining
the observed number by chance (cf. Table 1 for a review of the most popular measures).

All the above-mentioned measures including entropy (e.g., Sharifian, 2016), symbol redun-
dancy (e.g., Schulter et al., 2010), or hidden Markov chains methods (e.g., Budescu, 1987;
Baena-Mirabete et al., 2020) may only serve to describe how a given series differs from a
result of a specific kind of random process. For example, many information theory-based
measures such as entropy focus on comparisons with the uniform distribution and are sensi-
tive to problem representation, for example, whether one considers a distribution of symbols
or n-tuples of symbols of different lengths. In other words, they measure the degree to which
people tend to repeat the same subsequences of elements. Similarly, methods based on hidden
Markov chains provide information about the mental model of randomness people preserve,
not about a string itself.

Moreover, although traditional tools proved to be useful in detecting common biases, they
failed to discriminate sequences produced by simple rules. For example, Coperland—Erdos
sequence, arising from the concatenation of prime numbers (2, 3, 5, 7, 11, 13, 17, 19...), or
Champernowne sequence, which is simply a concatenation of all positive integers (1, 2, 3, 4,
5,6,7,8,9,10, 11, 12, 13, 14, 15, ...; or in base two, 1, 1,0, 1,1, 1,0,0, 1,0, 1, 1, 1, 0, 1,
1, 1, ...; Champernowne, 1933), they both pass any probabilistic test of randomness despite
being produced by simple rules. Therefore, although they are not random at all, they would
be considered random from the vantage point of most of the traditional methods based on
probability and information theory.

Gauvrit et al. (2014) argued that the remedy for these definitional and methodological
problems is AIT with the notion of Kolmogorov—Chaitin (algorithmic) complexity. It allows
for the identification of random-like sequences produced by simple rules. This mathemati-
cal framework links randomness directly to algorithmic complexity (Li & Vitanyi, 2008) and
defines a random string to be a string that cannot be generated with any simple rule. In other
words, the description length of the most succinct algorithm that generates a given string is
not shorter than the string itself (Gauvrit et al., 2014). From the perspective of AIT, a random
object is an object that cannot be efficiently compressed. This approach is consistent with the
current psychological view on randomness perception. Falk and Konold (1997) suggest that
the subjective perception of randomness relies on the perception of complexity. Nonetheless,
for years, the applicability of Kolmogorov—Chaitin complexity in psychological research has
been limited due to the lack of an algorithmic complexity index applicable to short strings
produced in random series generation tasks. However, the recent development of new meth-
ods based on coding theorem (Soler-Toscano et al., 2014) solved this problem and therefore
allowed overcoming the theoretical and computational problems present in studies on the
ability to produce random-like series. Algorithmic complexity appears to be a more sensi-
tive measure than entropy and has some other useful properties. First, unlike many classical
measures, it allows comparing any two strings of different lengths. Second, it detects any
deviation from randomness understood in the broadest possible sense as a lack of computable
regularity. In contrary to most randomness measures, it does not focus on specific mathe-
matical/statistical properties but is directly related to how likely it is that a given sequence
would be produced by an algorithm sampled uniformly at random from the set of all possible
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Table 1

Summary of popular methods to assess randomness

Name Examples of use

Description

Frequency of the Baddeley (1966);

elements Rath (1966)
Frequency of Bakan (1960);
alternations Ross (1955);
Wagenaar
(1970);
Neuringer
(1986)
Autocorrelation Chapanis (1953)
Entropy Sharifian (2016)
Symbol Schulter et al.
Redundancy (2010)
Hidden Markov Budescu (1987);
Chains Baena-Mirabete

et al. (2020)

These measures focused on the fact that in a random sequence, the

distribution of elements (or n-tuples) is uniform. Therefore,
researchers tested how close the human-generated series’
distribution was to a theoretical one. These types of measures did
not account for the order of elements, for example, such regular
sequences as 101010 and 111000 are both considered perfectly
random if one considers only zero-order frequencies — frequency
of elements. Therefore, assessment of randomness with measures
based on the frequency of the elements either require computing
multiple indexes for tuples of different length or selecting their
length arbitrary.

Measures like the RUNS test examined the frequency of non-empty

segments of a sequence that consisted of only one type of element
(subsequences of uninterrupted identical responses). These types
of measures assumed that the distribution of runs is normal.
Therefore, the random sequence has an equal number of runs, for
example, under this test 110011 is considered equally random as
100001 because both consist of three runs.

Measures based on autocorrelation assumed that the autocorrelation

in a perfectly random series for all lags is equal to 0. Therefore,
similarly to measures based on frequency of elements, they
required either computing multiple indexes to examine
autocorrelation with all lags or choosing the lag arbitrary. For
example, for a sequence 1110001, the autocorrelation varies
between lags. When one considers lag, 1 is cor(s;, s,—1) = 0.31;
cor(s;, s;_») = —0.131; cor(s;, s,_3) = —0.671;

cor(s;, s;—4) = —0.179; cor(s;, s,_s) = —0.036; and

cor(s;, s;_¢) = 0.107.

The average symbol information of the human-generated series s is

defined as H(s) = — ), pilog>(p;), where p; is the probability of
an item i in the sequence. It takes a maximal value when
probabilities of all items are equal, then entropy is Hyax = [0g2(n).
When one considers the probability of a single element in binary
series, regular sequences like 101010 and 111000 yield maximal
entropy. Therefore, similarly to other mentioned indexes measures
based on entropy require either computing multiple entropies for
different n-tuples length or choosing an arbitrary length scale.

Symbol Redundancy arises from entropy. It is defined as

SR(s)=1— HZ()S) . Therefore, it suffers from similar constrains.
S /max

Measures based on hidden Markov chains assumed that the next

element’s probability depends on the previous element(s) of a
sequence. In a simple case, the empirical probability of O after 1
might be different than after 1. Using this approach, it is possible
to test for cognitive biases (e.g., tendency to avoid repetitions) in
the random generation process. However, it does not allow for
comparing randomness itself of the human-generated series.
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algorithms. Third, it is based on a solid mathematical theory that provides a comprehen-
sive definition of randomness. Altogether, algorithmic complexity seems to be an objective
and universal randomness measure that is now easily applicable to experimental psychology
(Gauvrit et al., 2016).

1.2. The role of experimental instruction

The first objective of this paper is to use algorithmic complexity to verify the long-standing
assumption that less abstract and more relatable tasks facilitate random-like series production.
Many researchers made this claim arguing that although the mechanism behind generating
elements regardless of the task is the same, people often consider the notion of randomness
vague (see Brugger, 1997; Nickerson, 2002; Oskarsson et al., 2009, for a review). There-
fore, to make it more accessible in many studies, instructions additionally listed examples of
well-known random processes, for example, tossing of a fair coin (Wiegersma, 1982). It was
meant to illustrate an abstract and vague term with a relatable real-life example. Moreover,
Neuringer (1986) argued that one of the reasons why people fail when producing random-
like series is the fact that the task itself is uncommon. In day-to-day life, people rarely have
to generate random series of abstract elements. Therefore, asking them to do so is destined
to fail. However, even when a task description incorporates relatable examples, people still
tend to fail to produce truly random series (e.g., Brugger, 1997; Nickerson, 2002; Oskars-
son et al., 2009). Therefore, it can be concluded that regardless of the context people do not
perform well when asked to produce random series. But such results do not necessarily fal-
sify Neuringer’s (1986) hypothesis. That is because in the majority of classical studies on
the production of random-like series, researchers used different measures to assess the ran-
domness of generated strings/sequences and often used methods capturing only one or few
properties expected from random strings (cf. Table 1). Therefore, it is very difficult to decide
whether a task description affects the level of randomness of human-generated series. Here,
we approach this problem with a robust and universal measure of algorithmic complexity that
does not suffer from any of the above-mentioned drawbacks and examine whether there are
differences in the level of randomness in human-generated series depending on the cognitive
accessibility of a task description. Under hypothesis one (H1), we aim to test whether task
descriptions using easy-to-imagine processes such as a fair coin toss or price changes in a
stock market facilitate the production of more random-like series than a neutral instruction
with no additional hints in which subjects are simply asked to write down random sequences
of zeros and ones.

1.3. The effect of fatigue

Using algorithmic complexity as a measure of randomness of human-generated series
allows looking at the ability behind the series production from the perspective of between-
subjects variability or individual differences. Recently, in an online study on over 3,400 par-
ticipants, Gauvrit et al. (2017) showed that the developmental curve of the ability to produce
random-like series is similar to most cognitive abilities. It peaks at age of 25 and decreases
slowly afterward and more quickly after the age of 60. Therefore, the question should not be
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Fig. 1. Schematic model of random series generation. WMS—working memory storage component; G-random
series generator; WMP—working memory processing component; S—output sequence; NE—a new element of the
series. During the random series generation process, people maintain only the last few elements that have been
produced, active in their working memory. When a new element is generated, the subsequence is compared to the
random sequence’s prototype and based on the result, a next element is either selected or discarded (then another
one is generated). The new element is appended to the sequence in the working memory, while the first one is
removed. Therefore, the storage component of the working memory defines the length of the sliding window in
which the comparisons are being made.

what makes people unable to produce random-like series of elements or what are the cognitive
constraints that prevent people from doing so, but rather what drives the individual differences
concerning this ability.

Therefore, to further examine complex cognitive determinants of the ability to produce
random-like series, we investigated the working memory capacity, which is often said to
be between five and nine chunks of information. This limitation refers to a limited capac-
ity system responsible for maintenance in a highly accessible state, manipulation, and
retrieval of task-relevant information that is needed for ongoing cognition (Baddeley, 1986).
It is used for temporary storage and carrying out computational processes on mental repre-
sentations necessary for successful task performance. Kareev (1995) argued that producing
a random series is not a static process and people’s poor performance may be due to struc-
tural limitations of their working memory. During random series generation, people do not
consider subsequent elements as independent but store previous ones in the working memory.
Studies in which researchers used the hidden Markov chains approach to investigate the ran-
domness of human-generated series showed that each new element is determined based on
the previous values (Budescu, 1987; Baena-Mirabete et al., 2020). Therefore, it is argued that
sequence elements are not considered in isolation but rather jointly within a sliding window of
width equal to the working memory capacity (see Fig. 1 for the description of the mechanism
behind the random-like series production).

Moreover, Warren et al. (2018) reported that human-generated series, when the capac-
ity of working memory is taken into account, resembled sequences produced by a ran-
dom process. In their study, they compared frequencies of elements in a sliding window of
length four in both human-generated series and series produced by the Bernoulli process.
The results showed that there was not much difference in terms of frequencies of elements
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(Barbasz et al., 2008; Hahn & Warren, 2009). However, in their analysis, they only focused
on the frequencies in the whole series not investigating how this resemblance changed over
time. Here, we focus on the dynamical aspect of random-like series production and analyze
how it changes over the time of series generation. The mechanism behind random-like series
production requires constant attention and evaluation of whether the subsequence kept in the
working memory meets the criteria of random series (cf. Fig. 1). Therefore, it employs higher
level cognitive functions.

Research showed that prolonged execution of cognitively demanding tasks might induce
mental fatigue and consequently will lead to the decrease of the task performance (Lorist
et al., 2005). Moreover, tasks that require vigilance but do not convey much information or
are simply boring also have a similar effect on the performance (Lorist & Faber, 2011). That
is because mental fatigue depends not only on the availability of cognitive resources but also
on cognitive motivation. Hockey (2011) argues that the mechanism behind the performance
decrease is effort-controlled and is only mildly affected by the energy depletion over time.
Repetitive tasks do not become more difficult but rather they lose attractiveness. Therefore, to
maintain high performance over time, they require more effort and consequently a high level
of cognitive motivation. However, before testing the relationship of the ability to produce
random-like series with the cognitive motivation, first, under hypothesis two (H2), we expect
a decrease of the task performance over time. Similarly to Warren et al. (2018), we take into
account the capacity of working memory and examine the randomness of series in a rolling
window of a length corresponding to the working memory capacity. However, instead of
frequencies of elements, we use algorithmic complexity as a measure of randomness.

1.4. Cognitive motivation

As previously mentioned, according to a motivational control theory of cognitive fatigue,
the decrease of the performance in cognitively demanding tasks depends predominately on
cognitive motivation (Hockey, 2011). That is because having the potential to produce more
random-like series than others does not mean that it is fulfilled. Although it may be argued that
producing random-like series is a relatively easy task, it requires engaging cognitive resources
(Barbasz et al., 2008). Recognizing patterns and inhibiting simple repetitions require constant
attention. Hence, producing a random-like series does not only depend on what people are
intellectually able to do but also how they tend to invest their cognitive resources. In other
words, whether they are inclined to engage in challenging tasks and whether they can put
enough effort to maintain high performance. Therefore, the Need for Cognition (NFC) —
a stable tendency to engage in intellectually effortful tasks and enjoy them — should be
correlated with the ability to produce random-like series (Matusz et al., 2011). Much of the
research on this construct investigated the individual differences in processing information
in situations involving persuasion and argumentation (cf. Petty et al., 2009, for a review). In
general, people high on the NFC scale tend to think more intensively on a variety of things
and consider a wider range of possibilities than people with lower levels of NFC (Levin
et al., 2000). Therefore, their judgments and decision-making process tend to be affected
by larger and more diverse arrays of thoughts or ideas. Consequently, Cacioppo and Petty
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(1982) argued that people with high levels of NFC use different strategies for processing
information than people with lower levels. People with high NFC naturally use the central
path during information processing and search. Therefore, their judgment is based on a more
thoughtful analysis of available information, while people with low NFC base their decisions
more directly on the input (whether emotion, image, or intuition).

Regarding the relationship between the NFC and cognitive abilities, Dornic et al. (1991)
showed that the tolerance for mental effort is positively correlated with the performance on
challenging tasks. Therefore, people who rated themselves as needing mental stimulation
were more efficient in stimulating tasks. Similarly, Dai and Wang (2007) reported that indi-
viduals with high NFC performed better in such cognitive exercises as text comprehension.
Finally, Fleischhauer et al. (2010) showed that NFC is positively associated with intelligence
beyond verbal intelligence or a specific domain of reasoning. It is moderately related to fluid
intelligence in general. That is because, on the one hand, it is easier to enjoy intellectually
challenging tasks when there is a track record of successfully resolved ones. On the other
hand, people with a high NFC are more motivated to acquire complex cognitive skills and
consequently perform better in tasks requiring them (Day et al., 2007). Therefore, under
hypothesis three (H3), we expect that the NFC is positively associated with the ability to
produce random-like series. That is because for people with high NFC, cognitive motivation
to maintain high performance in effortful tasks lasts longer.

1.5. Hypotheses

Based on the literature review, in this paper, we investigated three hypotheses regarding the
effect of contextual cues on the random-like series generation and the relationship of mental
fatigue and cognitive motivation with performance in such tasks:

Hypothesis 1 (H1). Random generation tasks that refer to processes known from day-to-
day life allow for producing more random (algorithmically complex) series than under more
abstract instructions.

Hypothesis 2 (H2). Over time the performance (algorithmic complexity of the produced
series) in random generation tasks decreases.

Hypothesis 3 (H3). Randomness (algorithmic complexity) of human-generated series is pos-
itively associated with the tendency to engage in cognitively effortful tasks and enjoy them
(NFC).

2. Method

Our goal was to test the above-mentioned hypotheses in two studies. In Study 1,
we tested hypotheses regarding the effect of task description (H1) on the algorithmic
complexity of human-generated series. Additionally, in all experimental conditions, we
investigated the dynamics of the randomness of human-generated series to test the potential



10 of 26 M. Biesaga, S. Talaga, A. Nowak/ Cognitive Science 45 (2021)

Exposition Time
No Instructionr|-- -~
: 1.25s .75s 1.25s .75s 1.25s
I
Coin Tossingt - - - 1:-:—2 . . .
1
Stock Market} ---+
EXPERIMENTAL CONDITIONS DISPLAYED STIMULI

Fig. 2. Flow chart of Study 1 design. Both groups of participants were assigned at random to one of the three
experimental conditions: (a) No instruction (NI); (b) coin tossing instruction (CSI); and (c) stock market instruction
(SMI). In all three conditions, a custom software displayed every 1.25 s a red square for 0.75 s.

effect of mental fatigue (H2). In Study 2, we further examined the dynamics of randomness in
human-generated series (H2) and the relationship between algorithmic complexity of human-
generated series with the NFC (H3).

2.1. Study 1

In the first study, participants were tested individually in sessions that lasted about 15
min. They were simply asked to produce a binary series of 300 elements. We gathered the
responses from the participants using a custom software' that was written in processing (Reas
& Fry, 2006). The procedure was run on MacBook Pro 13,3-inch Early 2015 with OS X 10.11.
It collected signals with 16 ms delay. The stimuli were displayed on a built-in monitor with
2,560 x 1, 600 pixel resolution and 60 Hz refresh rate.

2.1.1. Procedure and design

The experiment followed a factorial design with one between-subjects variable — the task
description. Participants were two groups of students recruited either from the psychology or
chemistry faculties at the University of Warsaw. Participants from both groups were assigned
randomly to one of the three experimental conditions: (a) no instruction (NI); (b) coin tossing
instruction (CTI); and (c) stock market instruction (SMI). In all three conditions, we used
custom software to run the experiment. Every 1.25 s it displayed a red square for 0.75 s
(cf. Fig. 2). Furthermore, in the NI condition, participants were simply asked to select ran-
domly and press one of the two predefined keys every time they saw the red square. In the
CTI condition, participants were instructed to imagine a toss of a fair coin whenever they saw
the red square and press either key marked as tails or heads. In the SMI condition, partici-
pants were asked to imagine a stock market chart and to assume that price fluctuations were
random. They were instructed to try to predict whether the price in the next time step will go
up or down and to press either key marked “up” or “down.”
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2.1.2. Participants

The participants were students from the Faculty of Psychology and Faculty of Chemistry
at the University of Warsaw. A total of 183 subjects (129 females), aged from 18 to 30
(M = 21.54, SD = 2.12), were randomly assigned to one of the experimental conditions.
The procedure was approved by the ethics committee of Robert Zajonc Institute for Social
Studies at the University of Warsaw. All participants gave informed consent before taking
part in the study.

2.1.3. Data preprocessing

Although the participants were instructed to only press relevant keys when they saw the red
square, some pressed it more and some less than 300 times. Therefore, the length of the series
varied between subjects from 218 to 1016 elements (Median = 300). However, there were
only 13 people who produced significantly longer series than others. Therefore, in further
analysis, we removed observations exceeding the typical length of the series, that is, the last
10% of observations (those with more than 313 elements). This strategy did not affect the
results significantly because people who did not follow the task scrupulously were spread
almost uniformly between experimental conditions. After the data preprocessing, we had 56
participants in the NI condition; 54 in the SMI condition, and 55 in the CTI condition. The
analysis of the whole data set can be found in the Supporting Information.

We used “pybdm”™? library to estimate algorithmic complexity of series. All other analyses
were performed using R language (R Core Team, 2020) with “nlme” and “lme4” packages
for estimating linear mixed models (LMMs) (Bates et al., 2015; Pinheiro et al., 2020) and
“quantreg” package for fitting quantile regression (Koenker, 2020).

For each participant, we computed an overall algorithmic complexity of the entire sequence
as well as vectors of complexity estimates in rolling windows of different lengths. Both
were normalized (using the method described in Zenil et al., 2018) because, even though
we removed observations with too long series (longer than 313 elements), the lengths of
the remaining sequences still varied. Normalized algorithmic complexity ranges from O to 1
where O stands for the simplest possible object (a constant series filled with a single sym-
bol) and 1 for the most complex object of a given size. The rolling algorithmic complexity
was calculated for window lengths from 5 to 9. This corresponds to the estimated capacity
of the working memory that is usually said to be 7 =+ 2 elements (Baddeley, 1986). Herein,
we present the results only for the window of length 8. The rest can be found in the Support-
ing Information.

2.1.4. Results

Before testing our main hypotheses, we investigated whether there were differences
between the two groups of participants: students from the chemistry and psychology
faculties. We wanted to explore whether their knowledge and differences in the curriculum
may have affected the outcomes. We used a non-parametric test to assess whether the dis-
tributions of algorithmic complexity were systematically different between groups of obser-
vations. The Wilcoxon rank sum test revealed that the main difference was not significant,
W =3,422.5, p = .9506. The further analysis within experimental conditions also did not
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Fig. 3. Left panel: Distributions of normalized algorithmic complexity in the experimental groups. Right panel:
The distributions of the normalized algorithmic complexity of series across quantiles. In the first quartile,
the distribution of normalized algorithmic complexity of series in NI condition was different than in SMI
(95% C1I [0.0975 0.4677]) and CTI conditions (95% CI [0.086 0.46311]). Similarly, in the case of the second
quartile, significant differences were observed between NI and SMI (95% CI [0.0047 0.071]), and NI and CTI
(95% CI [0.0091 0.0875]). There were no significant differences between the distributions in the groups in the
case of the third quartile.

yield significant differences in distributions of algorithmic complexity between faculties (NI,
W =431.5.5, p=.5172; SMI, W = 395, 0.5975; CTL, W = 316, p = .3005). Therefore,
there was no reason to further explore these differences in later analyses.

To test the hypothesis regarding the effect of the task description (H1) on the overall algo-
rithmic complexity of human-generated series, we also used a non-parametric test to assess
whether the distributions of algorithmic complexity were systematically different between
groups of observations. The Kruskal-Wallis test revealed a significant difference between
distributions of algorithmic complexity in task description conditions, x>(2) = 7.9828, p =
.0192. The closer visual examination of the histograms revealed that the main difference
between distributions was in their left tails (see the left panel of Fig. 3). In the NI condition, the
frequency of the lowest results is relatively higher than in the CTI and SMI conditions. There-
fore, to better understand this effect, we used quantile regression (Koenker & Hallock, 2001)
to estimate the full quantile process in the three experimental groups as well as calculate 95%
confidence intervals for the first, second, and third quartiles. As Fig. 3 shows, there is a clear
gap between low quantiles (left tail) in the no instruction (NI) condition compared to other
conditions. Furthermore, confidence intervals showed that there are significant differences in
terms of first quartiles between the NI condition and both SMI, 95% CI [0.097 0.468], and
CTI conditions, 95% CI [0.086 0.463]. Similarly, in the case of the second quartile, signifi-
cant differences were observed between NI and SMI 95% CI [0.005 0.071], and NI and CTI
95% C1 [0.009 0.087]. We did not observe significant differences in the case of the third
quartile. These results confirm that the gap visible in Fig. 3 is statistically significant. This
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Table 2

Estimated parameters of the rolling window model

Predictors Estimates Std. Error df t-Value p-Value
(Intercept) 0.5482885832 0.03278906860 66.39290 16.7216883 .0000000
Time step —0.0002096913 0.00001126191 47,529.55680 —18.6195100 .0000000
Condition (Stock Market) 0.1156103370 0.03382503485 74.99477 3.4178926 .001023
Condition (Coin Tossing) 0.1062608990 0.03914455582 102.85681 2.7145767 .0077835
Faculty (Psychology) —0.0076733215 0.02208870126 105.83864 —.3473867 7289907

Marginal R“ = 4.01%, Conditional R* = 45.21%.
Degrees of freedom were adjusted with the Kenward—Roger method.

indicates that both the Stock Market and Coin Tossing conditions prevented participants from
producing series of low algorithmic complexity. The differences in the task description condi-
tions seem not to affect the upper parts of the distributions (roughly above median). Thus, the
results suggest that the task description does not enhance the ability to generate random-like
sequences, as many researchers believed (e.g., Ayton et al., 1991), but rather helps to activate
it whatsoever, resulting in significantly less trivially non-random sequences being produced.

In a more detailed analysis, we used the rolling algorithmic complexity. We estimated a lin-
ear mixed-effects model to test the second hypothesis that algorithmic complexity decreases
over time (i.e., the effect of mental fatigue). We present herein the analysis for a rolling win-
dow of length 8 only as this model attained the best goodness-of-fit. The specification of the
rest of the models is in the Supporting Information together with a reproducible R script.
The dependent variable in the models was (normalized) algorithmic complexity. All mod-
els included, as fixed effects, the following factors: time step and task description type (with
NI condition used as the reference level). Goodness-of-fit of the models was assessed with
marginal R? (variance retained by fixed effects only) and conditional R? (variance retained by
a model as such) as proposed by Nakagawa et al. (2017).

In the rolling window model, random intercepts and slopes for task description condi-
tions were included (clustered by subjects). The model indicated several significant effects.
There was a significant negative effect of the time step on the algorithmic complexity,
1(47,529.5568) = —18.62, p < .001. With each time step, the algorithmic complexity
decreased by 0.0002 = 0.00001. This result supports the second hypothesis regarding the
observed decline in the algorithmic complexity over time. Additionally, there were sig-
nificant differences between task description conditions (see Table 2). In SMI condition,
algorithmic complexity was higher, 0.1156 =+ 0.0338, than in NI condition, #(74.99) =
3.418, d =0.516, p =.001. Similarly, the algorithmic complexity in CTI condition was
0.1062 =£ 0.0391 higher than in NI condition, #(102.68) = 2.714, d = 0.479, p = .008.
Although most of the fixed effects were statistically significant, they explained only 4.01%
of the variation while after including the random effects the fraction was 45.21%. The closer
examination revealed that the model with subject-specific random intercepts and slopes (for
task description conditions) fitted the data better than the model with random intercepts
only, x2(1) = 33.075, p < .001. Therefore, the between-subjects variance was the function
of the task description conditions. The profiled confidence intervals of standard deviation in
all three experimental conditions (cf. Fig. 4) show that in NI condition, between-subjects
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Fig. 4. Estimated standard deviations (with 95% CI based on likelihood profiling) of the distributions of random
intercepts in the rolling window model (with length 8) in three experimental conditions. The standard deviation of
the residual distribution serves as a reference point. In NI condition, between-subjects variance of the algorithmic
complexity was higher than in SMI (p = .012) and CTI conditions (p = .001).

variance was significantly higher than in CTI (an analysis of deviance of the model that
included independent terms for the variance in all three task description conditions against
the model that included an independent term for variance CTI condition was significant,
x2(1) =35.537, p < .001) and SMI conditions (an analysis of deviance of the model that
included independent terms for the variance in all three task description conditions against
the model that included an independent term for variance in the stock market condition was
significant x2(1) = 4.1442, p = .0418). These outcomes are in line with the quantile regres-
sion results for the overall algorithmic complexity. The reason why people perform better in
CTI and SMI conditions than in NI condition is the fact that in the former they can usually
avoid trivial series with near-zero (normalized) complexity. Hence, on average, the difference
between average complexity produced by two different people in these conditions is lower
than in NI condition.

Altogether, the results of Study 1 support H1 and H2. The task description affected the
randomness of the human-generated series. Subjects produced more random sequences when
the instructions included examples of random processes (tossing a fair coin or random fluc-
tuations in a stock market chart) than when there was NI and participants were simply asked
to produce random series. The difference was mainly because in these conditions, unlike the
NI condition, subjects were usually able to avoid producing trivial series of low randomness
(e.g., composed of almost only of 1’s or 0’s); hence, the between-subjects variance of algo-
rithmic complexity was smaller in these groups. However, we argue that our results, based
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Fig. 5. Solid lines present trend curves for normalized algorithmic complexity and dashed lines depict the average
algorithmic complexity as a function of experimental conditions. For each participant, we computed vectors of
complexity estimates in a rolling window of length 8. Although the experimental task asked for the creation of 300-
long series, the length still varied. Therefore, the uncertainty of both the trend curve and the average algorithmic
complexity increased around the 292nd element. Regardless of the condition, with each time step, the algorithmic
complexity decreased by 0.0002 =+ 0.00001, 7(47,529.5568) = —18.62, p < .01. However, in SMI condition,
algorithmic complexity was higher, 0.1156 =+ 0.0338, that in NI condition, #(74.99) = 3.418,d = 0.516, p =
.001. Similarly, the algorithmic complexity in CTI condition was 0.1062 = 0.0391 higher than in NI condition,
1(102.68) = 2.714,d = 0.479, p = .008.

on a detailed analysis of quantiles of the distributions in all experimental groups, provide
more insight into the effects of task instruction in random sequence generation and show
that important effects occur not at the level of averages/central tendencies but rather in lower
tails of complexity distributions, meaning that the contextual cues have inherently nonlinear
effects. Additionally, the results of Study 1 support the second hypothesis that the randomness
of the series decreases over time (compare Fig. 5).

2.2. Study 2

The second study aimed to further investigate the observed effect of mental fatigue on the
random series production (H2) and to examine the relationship of algorithmic complexity with
the need for engaging cognitive resources in challenging tasks (H3). The results of Study 1
showed that the algorithmic complexity of human-generated series decreased over time (see
Fig. 5). We argue that this effect was caused by fatigue due to the task requiring constant atten-
tion and putting more effort to maintain the high performance over time. Participants in an
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almost 15 min-long procedure were asked to produce 300 elements series without any break.
However, our main interest in Study 1 was to investigate the effect of context. Therefore, we
used linear mixed models (LMMs) approach. It allowed for detailed examination of differ-
ences in variance of algorithmic complexity between experimental conditions and estimation
of the trend curve at the same time. In Study 2, we wanted to focus more on the shape of the
trend curve because the LMM approach did not account for the fact that normalized algorith-
mic complexity is bounded within [0, 1]. We investigated whether the effect of fatigue would
also be present between series of shorter independent tasks since many researchers argued
that the reason behind people’s inability to produce random-like series is the fact that sub-
jects do not perceive each element as independent (e.g., Kareev, 1995). Moreover, Hockey
(2011) showed that the mental fatigue-related decrease of the performance in cognitively
demanding tasks might be inhibited by novelty. That is because the new task does not require
additional motivation that maintains its attractiveness and consequently requires putting less
effort. Therefore, in this study, participants were asked to produce 10 independent binary
series and to complete the Polish version of the NFC scale (Matusz et al., 2011; Cacioppo
and Petty, 1982). To facilitate the notion of independence between produced series and to
allow for novelty between tasks, we introduced two experimental conditions. In the homoge-
neous instruction condition, participants produced 10 independent binary series. Before each
series, they were instructed using the CTI from Study 1. In the heterogeneous instruction
condition, the CTI and the SMI from Study 1 were alternated every second series. Therefore,
in this condition, each participant produced five series under CTI and five under SMI. We
expected that participants assigned to the heterogeneous condition would be able to maintain
a high level of algorithmic complexity between series for longer periods of time than partici-
pants in the homogeneous condition. Participants were recruited through a Polish nationwide
opinion poll Ariadna. It is an online poll often used to conduct political surveys or scientific
research. Depending on the declared length of a study, users are gratified with points which
they can exchange for prizes.

2.3. Procedure and design

We used an experimental design including one two-level between-subjects variable. First,
participants were assigned at random to either a homogeneous instruction condition or a
heterogeneous instruction condition. In both conditions, similarly to Study 1, they were
presented with a red square every 1.25 s for 0.75 s in ten 12 displays-long series (compare
Fig. 6). Thus, each subject was supposed to generate 10 sequences of 12 elements. In the
homogeneous condition, in all series, participants followed the coin tossing condition from
Study 1. In the heterogeneous condition, their task altered every second series. In the odd
series, they were asked to follow the coin tossing condition from Study 1. In the even series,
their task was identical as in the stock market condition in Study 1. Regardless of the con-
dition, there was 5 s break between each series during which a blank slide with information
on how many series were left was presented. After completing the procedure of generating
random series, participants in both conditions filled in the Polish version of the NFC scale
(Matusz et al., 2011; Cacioppo and Petty, 1982).
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Fig. 6. Flow chart of Study 2 design. Participants were assigned at random to either homogeneous or heterogeneous
instruction conditions. In both conditions, they were presented with a red square every 1.25 s for 0.75 s in ten 12
displays-long series. In the Homogeneous condition, in all series, participants were asked to follow the same
instruction as in the Study 1 Coin Tossing Condition. In the Heterogeneous condition, their task altered every
second series. In the odd series, they were asked to follow the instruction from the coin tossing condition from
Study 1. In the even series, participants followed the identical instruction as in the Stock Market Condition in
Study 1. Regardless of the condition, there was 5 s break between each series during which they were presented
with a blank slide with information on how many series remained. Afterward, in both conditions, participants were
asked to complete the Polish version of the NFC scale.

2.3.1. Participants

A total number of 266 subjects agreed to take part in the study. However, due to the unre-
alistic (too short or too long) time of completion and unfinished surveys, we excluded 80
participants. Therefore, finally, a sample of 186 participants (134 females), aged from 18 to
77 (M = 39.32, SD = 13.08), was used. They were assigned at random to one of the exper-
imental conditions. The procedure was approved by the ethics committee of Robert Zajonc
Institute for Social Studies at the University of Warsaw. All participants gave informed con-
sent before taking part in the study.

2.3.2. Data preprocessing

In online research, it is crucial to measure survey time and exclude participants who com-
plete tasks in a suspiciously short or long amount of time. Therefore, we removed observa-
tions with an unrealistic length of completion time of the whole study (both the random series
generation task and the NFC scale), that is, 15% of observations with the shortest response
times (below 11 min) and 15% with the longest response times (above 28 min). Although
the participants were instructed to only press relevant keys when they see a red square some
people pressed it less frequently than 120 times (10 sequences of 12 elements). Therefore,
the total number of produced elements in all series varied between subjects from 100 to 120
elements (Median = 114).

As in Study 1, we used “pybdm” library for Python to estimate the algorithmic complexity
of generated series.> The complexity of each sequence was estimated independently, so each
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participant was represented by 10 data points ordered as a time series. The algorithmic com-
plexity of each series was normalized because although the instruction asked to produce 12
elements binary series the lengths varied.

We measured the need for engaging cognitive resources in challenging tasks with the Pol-
ish version of the NFC scale developed by Matusz et al. (2011). It contained 36 statements.
Participants were asked to make a judgment on a five-point Likert scale on how much they
agree with the statement (with 1 — I strongly disagree and 5 — I strongly agree). The total
score was calculated as the sum of all answers. The psychometric quality of the Polish version
of the NFC (internal consistency, temporal stability, factor analysis, criterion, and experimen-
tal validity) was confirmed in several studies (Matusz et al., 2011). Similarly, to the original
scale by Cacioppo and Petty (1982), the Polish adaptation has one major factor and an average
reliability coefficient o« = 0.895.

2.3.3. Results

Unlike Study 1, in Study 2, we used a GAMM that can capture more complex nonlinear
trends than LMMs. Additionally, this family of models allowed for testing whether chang-
ing task descriptions between series production (heterogeneous condition) would diminish
the fatigue effect compared to the production of independent sequences of binary series
(homogeneous condition). The dependent variable was normalized algorithmic complexity
of a currently generated series (10 data points per subject). The mean difference between
experimental conditions was represented with a single fixed parametric effect with the homo-
geneous condition used as the reference group. The second fixed parametric effect was a
linear regression term corresponding to the effect of the NFC. For non-parametric effects,
we had a non-linear difference in trends of algorithmic complexity over time between the
homogenous and heterogeneous conditions (with the homogeneous condition being the ref-
erence level in dummy coding) and a non-linear trend of algorithmic complexity over time.
Additionally, we used subject-level random intercepts and slopes for the time trend to model
systematic between-subjects differences. The goodness-of-fit of the model was assessed with
marginal R? (variance retained by fixed effects only) and conditional R? (variance retained by
the model as such) as proposed by Nakagawa et al. (2017).

The fitted model explained 50.7% of the variance with fixed effects reproducing 10.67%.
The non-linear trend of algorithmic complexity over time was significant (cf. Fig. 7), F (edf =
3.587, Ref .df = 3.587) = 11.863, p < .0001. The negative effect of time was approximately
linear for the first five series and then the curve flattened and remained at approximately
the same level for the rest of the series. However, neither linear (¢(180) = —1.69, p = .091)
nor non-linear (F (edf = 1, Ref.df = 1) = 1.956, p = .162) differences between the homo-
geneous and heterogeneous conditions were significant (See Table 3). The alternation of
task description between series did not inhibit the effect of fatigue. Additionally, there
was a small significant parametric effect of the NFC, (¢#(180) = 2.66, p = .009). With an
average of 0.01 point increase on the NFC scale, there was 0.2 = 0.093 point change of the
algorithmic complexity of the series. This positive relationship between the randomness of
series and the NFC scale provided support for H3. People with a tendency to engage in
intellectually challenging tasks performed better in random-series generation tasks.
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Fig. 7. The trend curve for normalized algorithmic complexity for subsequent generated series with 95% confi-
dence interval. For each series produced by participants, we estimated its algorithmic complexity. Therefore, each
participant was represented by 10 data points ordered in time sequences. The algorithmic complexity of each series
was normalized because, even though the instruction asked to produce 12-elements binary sequences, the lengths

varied.

Table 3

The generalized additive mixed model specification

Parametric coefficients Estimates Std. Error t-Value df p-Value

(Intercept) 0.3299843 0.0860422 3.835 1,611 .00013

Need for Cognition 0.0024632 0.0009256 2.661 180 .00786

Linear difference between trend curves —0.0398899 0.0235888 —1.691 180 .091
(Homogeneous)

Smooth terms edf Ref.df. F p-Value

Non-parametric trend curve 3.587 3.587 11.863 <.0001

Non-parametric difference between trend 1.000 1.000 1.956 0.162

curves (Homogeneous)

Marginal R* = 10.67%, Conditional R*> = 50.7%.

3. Discussion

Based on the literature review, in this paper, we assumed that people are not able to pro-
duce perfectly random series (cf. Oskarsson et al., 2009; Brugger, 1997; Nickerson, 2002).
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Therefore, unlike most research on the topic, we focused on the effect of context on human-
generated randomness and individual differences in producing responses at random.

In Study 1, we investigated the effect of context and the effect of mental fatigue on human-
generated randomness. Participants produced a 300-elements long binary series under one
out of three experimental conditions (cf. Fig. 2): (a) random sequence generation with NI;
(b) instruction to imagine results of fair coin tosses and report the outcomes (CTI); and (c)
instruction to imagine a stock market chart with its “ups” and “downs” and report the out-
comes (SMI). Under hypothesis (H1), we expected that random generation tasks that refer
to processes known from day-to-day life would allow for producing more random (algorith-
mically complex) series than under more abstract instructions. The results showed that there
were differences between experimental conditions. Under NI condition, participants produced
series less random than under the other two conditions. A detailed analysis showed that the
observed effect was driven primarily by the fact that subjects in the CTI and SMI conditions
were more capable of avoiding trivially patterned, non-random series than those in the NI
group (see Fig. 3). It suggests that, contrary to popular belief (compare Ayton et al., 1991,
for a review), instructions incorporating examples of random processes do not facilitate pro-
ducing more random series in terms of an increase of the average performance but rather help
to activate the ability whatsoever and therefore avoid producing trivial series of low complex-
ity (e.g., containing mainly 1’s or 0’s). Such results might be explained in terms of the Rele-
vance Theory (Wilson & Sperber, 2004). In the NI condition, the task description did not yield
a positive cognitive effect for some participants and therefore did not activate the right mech-
anism — the ability to produce random-like series. That is, the situation did not resonate with
participants’ previous experience and knowledge about the random process, and as a result,
they produced series of low complexity. On the other hand, in the other two conditions, the
task descriptions yielded a positive cognitive effect for the majority of the participants.

Furthermore, these results are congruent with the modern theories of cognitive control that
argue that the behavior is guided by signals that might be categorized as the ones related
to past events or contextual cues. For example, the cascade model (Koechlin et al., 2003;
Koechlin & Summerfield, 2007) assumes that cognitive control is organized as multistage
hierarchical architecture in three nested processing levels: (a) sensory control responsible for
selecting motor responses to stimuli; (b) contextual control involved in premotor representa-
tions that are induced by external information accompanying the stimulus; and (c) episodic
control involved in premotor representations based on experience or ongoing internal goals.
Therefore, under CTI and SMI conditions, contextual cues might have activated known rep-
resentation of the random series generator. That lead to simulating known process and conse-
quently avoidance of trivial, non-random series. On the other hand, under the NI condition,
contextual cues (the instruction) were less likely to be associated with known representations.
Hence, on average, people in this condition were less likely to be able to produce non-trivial
random-like series than in the SMI and CTI conditions. However, this explanation requires
further examination that would indeed show that under more abstract — less likely to be
associated with known representations — contextual cues different regions of the prefrontal
cortex are activated (Koechlin et al., 2003).
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The results of Study 1 allowed also for testing the second hypothesis (H2) that over time
the performance (algorithmic complexity of produced series) in random generation tasks
decreases. As a consequence, we observed a simple negative effect of time on random-like
series production. The prolonged execution of such cognitively demanding tasks induced
mental fatigue and consequently resulted in a decrease in task performance. The failure to
maintain the same level of randomness of generated series was independent of the contex-
tual cues. We observed a similar negative effect of time under all experimental conditions.
That might suggest that tasks in all experimental conditions lost attractiveness at the same
rate. Therefore, to maintain the highest level of randomness, the cognitive motivation to per-
form in the task would have to increase inversely proportional to the rate of decrease of its
attractiveness. People either would have to find new levels of intrinsic cognitive motivation
to continue performing well in an effortful task or the task itself would have to continuously
become more attractive. We further investigated this effect of mental fatigue and cognitive
motivation on random series generation in Study 2.

In Study 2, we wanted to test whether the trend observed in Study 1, which showed that over
time the randomness of the series decreases, would be also present when people were asked
to produce shorter independent series. Therefore, participants generated ten 12-elements long
binary series in two experimental conditions (see Fig. 6): homogeneous and heterogeneous.
In the former, we used the same instruction (CTI condition from Study 1) over all series,
and in the latter, we altered two instructions (therefore each participant produced five series
under CTI and five under SMI conditions from Study 1). After completing generative tasks,
participants filled in the NFC scale. Although the results did not show differences between
experimental conditions, we observed a similar trend in randomness over time as in Study 1.
However, unlike Study 1, our analysis in Study 2 using the Generalized Additive Model cap-
tured a non-linear nature of the trend. The observed trend of algorithmic complexity over
time (cf. Fig. 7) was approximately linear in the beginning but then after the fifth series, the
curve flattened regardless of the experimental condition. It suggests that although the effect
of fatigue has a negative influence, it does not lead, on average, to series with normalized
algorithmic complexity lower than 0.5 (half of the maximum complexity). This indicates
that similar to the effect of mental fatigue observed in Study 1, people tend to lose inter-
est in the task very quickly after the first few attempts to generate the most random-like
series they can, and then they can generate only markedly more patterned, less random-like
sequences. This effect might be explained in terms of the Motivational Control Theory of
Cognitive Fatigue (Hockey, 2011) and the decrease of the task attractiveness. People very
quickly realize that it is a repetitive task and lose interest in it. However, the lack of differ-
ences between conditions and the fact that regardless of a series’ number people maintained
a certain level of randomness might be attributed to the fact that they were motivated by
the experiment itself. Therefore, we suspect that their baseline level of cognitive motiva-
tion is higher than it would be if they were meant to complete a similar task in more natural
conditions. That could explain why they were motivated enough to complete the study instead
of giving up. Additionally, in Study 2, we tested the third hypothesis (H3) that randomness
(algorithmic complexity) of human-generated series is positively associated with the tendency
to engage in cognitively effortful tasks and enjoy them (NFC). We observed a positive, but
weak, association between the randomness of the series and the need for engaging cognitive
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resources in challenging tasks. This result is also congruent with the Motivational Control
Theory (Hockey, 2011). People who found the effortful experimental task appealing were
able to maintain their interest in it for longer periods of time, and thus, the average level of
randomness in their series was higher. Hence, the variability of the randomness of human-
generated series is not only a function of contextual cues (cf. results of Study 1) but also of
intrinsic cognitive motivation to maintain engagement in an effortful task.

Finally, our results might be interpreted from the broader perspective of the correlated
nature of human behavior. Studies on this topic show that repeated human responses tend
to follow a specific neither highly structured nor random pattern. This pattern of responses
referenced in the literature as 1/f scaling (or 1/f noise) has been observed across multi-
ple domains of human behavior such as mental rotation and transition (Gilden, 1997), visual
search (Aks et al., 2002), simple classifications (Kelly et al., 2001) color and shape discrim-
ination (Gilden, 2001), speech (Kello et al., 2008), and even in reaction times and key-press
times during random series generation (Kello et al., 2007). Kello et al. (2007) argue that this is
a domain-independent phenomenon as it results from how systems’ components interact with
each other. Therefore, under this framework, cognitive functions emerge as metastable pat-
terns of neural and bodily activity operating flexibly between ordered and disordered phases,
that is, with strong or weak coupling between different components of the system. Crucially,
in this view, 1/ f scaling is indicative of an optimal level of synchronization and interactions
between different system’s components, which is neither too weak nor too strong. Unlike the
domain-specific approach that locates specific brain regions responsible for cognitive func-
tions, here the cognitive functions arise as a consequence of both internal and external con-
straints of the system (Bressler & Kelso, 2001). In more psychological terms, they are a func-
tion of contextual and intrinsic variability. Under this theoretical framework, the results of
our studies show that the dynamics of random series production might be explained in terms
of the interaction between contextual cues and internal constraints. Therefore, the contextual
cues (instructions in both studies) and internal constraints (cognitive resources and motivation
to perform well in effortful tasks) need to be in an optimal systemic interaction to allow the
production of non-trivial, random-like sequences. This would explain why in the shape of the
trend curve in Study 2, we observed flattening after the first few series (cf. Fig. 7). This effect
might be interpreted in terms of vanishing synchronization between interacting components.
At first, people can use their cognitive resources, task-related motivation, and contextual cues
provided by a task instruction to generate random-like data but after a while the fatigue kicks
in effectively pushing the system out of a parameter region optimal for the task at hand lead-
ing to much more regular and patterned series being produced. This interpretation could also
explain the non-linear effect (i.e., located in the lower tail of the distribution) of contextual
cues observed in Study 1. Without the cues, it is significantly harder for the system to even
reach the state optimal for random series generation due to the lack of appropriate external
constraints. Such a hypothesis is indirectly corroborated by results, indicating that contextual
cues can indeed affect the functioning of different functional components and brain regions
such as motor areas and prefrontal cortex (Koechlin et al., 2003; Mugruza-Vassallo et al.,
2021). In other words, patterned, non-random series are the typical results of internal dynam-
ics of the cognitive system without additional external constraints and it is such constraints
that help to push the system from the ordered to disordered phase. It remains an open question
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whether such a shift at the level of the organization of the output, that is, binary series, cor-
responds to a parallel change, perhaps in the opposite direction, at the level of some different
parameters of the cognitive system. Such hypotheses and intuitions need further examination,
preferably based on power spectrum methods typical for studies of 1/ f scaling, a task which
we defer to future work.

4. Conclusions

Taken together, our results indicate that by default, people tend to produce non-random
series. However, either intrinsic factors or contextual cues might improve the performance
in such tasks. Results of Study 2 showed that this effect is only temporal and very quickly
the randomness of human-generated series return to what seems to be a stable and typical
level of algorithmic complexity. Moreover, the results of Study 1 shed new light on the effect
of contextual cues on human-generated randomness. The activation of the ability to produce
random-like series depends on the relevance of the contextual cues, whether they activate
known representations of a random series generator, and consequently, help to avoid the pro-
duction of trivial sequences. Although in our approach, we refer to instruction manipulation
as contextual cues clearly elements selection (random-like series generation) was a top-down
process. It was not related to the physical characteristic of the environment or the stimuli
(participants were asked to imagine relevant processes when they saw a red square) but rather
to internalized goals or expectations based on the instruction manipulation. Therefore, for
future work, it would be interesting to address whether discrepancies in the physicality of the
stimulus would affect task performance. Rincon-Gonzalez et al. (2012) showed that integra-
tion of both proprioception and tactile apparatus diminished the magnitude of the error in hand
location tasks. Similarly, one could expect that adding the stimulus that is more relevant to the
random series generation tasks could also affect the variability of the randomness in the tasks.

Notes

1 It is available on GitHub under MIT License https://github.com/MikoBie/Survey.

2 Itis a Python package implementing Coding Theorem and Block Decomposition meth-
ods for estimating algorithmic complexity (Soler-Toscano et al., 2014; Zenil et al., 2018).
It is available as a standard package through PyPI https://pypi.org/project/pybdm/.

3 https://pypi.org/project/pybdm/
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