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ABSTRACT: Chromium(III) complexes bearing bidentate
{NH2(CH2)2PPh2: PN, (S,S)-[NH2(CHPh)2PPh2]: P’N} and triden-
t a t e [Ph 2P(CH2) 2N(H)(CH2) 2PPh 2 : P -NH-P , (S , S ) -
(iPr)2PCH2CH2N(H)CH(Ph)CH(Ph)PPh2: P-NH-P′] ligands have
been synthesized using a mechanochemical approach. The complexes
{cis-[Cr(PN)Cl2]Cl (1), cis-[Cr(P’N)Cl2]Cl (2), mer-Cr(P-NH-P)Cl3
(3), and mer-Cr(P-NH-P′)Cl3 (4)} were obtained in high yield (95−
97%) via the grinding of the respective ligands andthe solid Cr(III) ion
precursor [CrCl3(THF)3] with the aid of a pestle and mortar, followed
by recrystallization in acetonitrile. The isolated complexes are high spin.
A single-crystal X-ray diffraction study of 2 revealed a cationic
chromium complex with two P’N ligands in a cis configuration with P′
trans to P′ with chloride as the counteranion. The X-ray study of 4
shows a neutral Cr(III) complex with the P-NH-P′ ligand in a mer configuration. The difference in molecular structures and
bulkiness of the ligands influence the electronic, magnetic, and electrochemical properties of the complexes as exhibited by the
bathochromic shifts in the electronic absorption peaks of the complexes and the relative increase in the magnetic moment of 3 (4.19
μβ) and 4 (4.15 μβ) above the spin only value (3.88 μβ) for a d3 electronic configuration. Complexes 1−4 were found to be inactive
in the hydrogenation of an aldimine [(E)-1-(4-fluorophenyl)-N-phenylmethanimine] under a variety of activating conditions. The
addition of magnesium and trimethylsilyl chloride in THF did cause hydrogenation at room temperature, but this occurred even in
the absence of the chromium complex. The hydrogen in the amine product came from the THF solvent in this novel reaction, as
determined by deuterium incorporation into the product when deuterated THF was used.

■ INTRODUCTION
The industrial demand for cheaper and less toxic alternative
metals in the design of catalysts with higher efficiency and
selectivity for essential fine chemicals in the flavor, perfumery,
agricultural, and pharmaceutical industries is on the
increase.1−7 This has led to tremendous interest in the
chemistry of first transition series elements which are more
abundant and cheaper than the second and third transition
series elements commonly given higher priority in catalytic
design.2,3,7−9 Among the first transition series elements,
chromium has shown great potential in catalysis, especially
when coordinated to aminophosphine (PN) and amino-
diphosphine (PNP) ligands for the production of hex-1-ene
and octa-1ene via trimerization and tetramerization of
ethene.10−15 The combination of hard (N) and soft (P)
donors of these ligands is suitable to form stable complexes
with Cr(III). The presence of hydrogen on the amino nitrogen,
the varying of the substituents on the phosphine(s), and the
introduction of asymmetric carbon provide endless possibilities
in the synthesis of such metal complexes.16−19 Complexes of
chromium in several oxidation states have been synthesized
including those of Cr(0) with a bidentate PPh2CH2CH2NH2
ligand,20 Cr(III) with bidentate Ph2PNR’PPh2,

21 2,6-R1-4-R2-

C 6 H 2 − N � C H − C 6 H 4 − 2 - P P h 2
1 3 o r

Ph2PNMeCH2CH2C5H4N
22 ligands, and Cr(II) with triden-

tate [tBu2PCHC5H3NCHPtBu2]
23 ligands, and their structures

and catalytic properties were investigated. However, there is
not a report on homochiral tridentate P-NH-P′ Cr complex
with asymmetric carbon groups. Similarly, there are few reports
of PN Cr complexes.13,20 It is therefore not surprising that
applications of such Cr complexes have not been given much
consideration. Unlike Cr, chiral PN and unsymmetrical P-NH-
P′ complexes of Ru,24 Fe,25−31 Mn,32,33 and Ir34 are known,
and they have been explored in diverse applications.

The general routes adopted in the synthesis of these
complexes often involve the use of solvents, which are often
toxic and expensive. However, environmental safety concerns
have given credence to the concept of green synthesis that
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minimizes or deliberately avoids the use of solvents.
Mechanochemical techniques (dry grinding and liquid assisted
grinding) are green routes to synthesize complexes without the
use of solvent or with a few drops of solvent especially when
the byproducts can be easily removed. This usually avoids the
multiple purification and drying processes and also eliminates
the generation of waste solvents.20 These methods have been
previously highlighted.35 No reports of such a synthesis route
have been adopted in the synthesis of metal complexes of
chiral PN, P-NH-P, and P-NH-P′ ligands.

There are several protocols for the synthesis of chiral PN.
However, the protocol developed by Guo et al.36 provides a
less complicated route with higher yield and purity. The
unsymmetrical P-NH-P′ ligand can be derived from the chiral
PN ligand via a condensation reaction with α-disubstituted
phosphine acetaldehyde, as previously described by our
group.37 The tridentate P-NH-P′ pincer ligands are known
to adopt different coordination modes around metal centers. In
an octahedral coordinate geometry, the P-NH-P′ ligand can
adopt a mer or fac coordination mode depending on the
bulkiness of the substituents on the phosphines. The mer mode
is thermodynamically more stable and more prevalent with
bulky substituents.30,32,38,39 Few examples of chromium
complexes are known to adopt fac mode on the coordination
of Cr(0) to tridentate PPh2CH2CH2N(C2H5)CH2CH2PPh2

40

and Cr(II) to PPh2CH2Si(CH3)2NCH2Si(CH3)2PPh2
41,42

ligand. There are several examples of chromium complexes
that adopt mer mode with tridentate P-NH-P ethylene spacer
groups,14,43 PNP with phenylene backbone,44,45 PNP disub-
stituted pyrrole backbone,46 PNP disubstituted pyridine
backbone,47−52 PNP methylene-dimethylsilane backbone,53,54

PNP disubstituted piperidine backbone,55 PNP disubstituted
triazine backbone,56 and PNP substituted carbazole back-
bone.57

In the past, we have studied different Fe and Mn complexes
of achiral and chiral PNNP58−65 and unsymmetrical P-NH-
P’33,38,39,66,67 ligands, which have been demonstrated as
efficient catalysts in asymmetric transfer hydrogenation and

asymmetric pressure hydrogenation for the synthesis of chiral
alcohols with high demand in the perfumery and pharmaceut-
ical industries (Figure 1). However, a dearth of reports on the
Cr complexes of these ligands prompted us to investigate the
possible interactions and coordination modes that may exist
between the Cr(III) ion and these ligands. Moreover, we also
explore the mechanochemical technique as a green route for
the synthesis of the complexes. Herein, we describe the
synthesis, characterization, electrochemical properties, and
crystal structures of Cr(III) complexes of chiral PN and
unsymmetrical P-NH-P′ ligands.

■ RESULTS AND DISCUSSION
The preparations of the ligands [2-(diphenylphosphino)-
ethylamine (PN), (1S,2S)-2-(diphenylphosphino)-1,2-diphe-
nylethylamine (P’N), Ph2P(CH2)2N(H)(CH2)2PPh2 (P-NH-
P), and (S,S)-(iPr)2PCH2CH2N(H)CH(Ph)CH(Ph)PPh2 (P-
NH-P′)] have been previously reported by our group38,39 and
others,14,43 and the details are provided in the Supporting
Information. These pincer ligands were coordinated to Cr(III)
using CrCl3(THF)3 as the Cr(III) precursor in an equimolar
stoichiometric ratio via a mechanochemical synthesis. The
synthesized complexes are listed in Figure 1. All attempts to
synthesize CrLCl3(THF) (L: PN or P’N) by varying the
stoichiometric ratios resulted in [CrL2Cl2]+ (1 and 2). This
reflects the strong affinity of the ligands for the Cr(III) ion.
The complexes were dissolved in acetonitrile and left to
crystallize at room temperature. Single crystals suitable for X-
ray crystallographic study were obtained for complexes 2 and
4. Complex 3 has been previously synthesized in THF, and the
crystal structure was reported by McGuinness et al.43 However,
the use of a solvent was avoided in the method of synthesis
adopted in this study. The similarity of the obtained product to
the previously reported complex43 shows that the same
mechanism of interaction occurs between the metal salt and
the ligands, with or without the use of solvent. This shows the
viability of the adopted mechanochemical synthesis.35,68,69 The
report of McGuinness et al.43 entails the crystal structure, mass

Figure 1. Representative of previously reported PNNP, P-NH-P′, and (PN)2 complexes by our group and the new P-NH-P′ and PN chromium
complexes in this work (see refs 17, 33, 38 and 39 for the structures shown).
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spectra, and elemental analyses of complex 3. We provide more
detailed characterization and electrochemical properties of
complex 3 in this study for comparative analysis with the newly
synthesized complexes 1, 2, and 4.

Crystal Structure Analysis. The single-crystal X-ray
diffraction study reveals that complex 2 crystallized in the
orthorhombic space group P212121 (Table S1). Two P’N
ligands are coordinated to the Cr(III) via the N (amino) and P
(phosphino) binding sites. The P binding sites occupy the axial
position in a trans-conformation, while the two N sites are in
the equatorial region in a cis-conformation (Figure 2).

Similarly, two chlorides also coordinate to Cr(III) in a cis-
conformation to complete the octahedral geometry. The
coordinated P’N ligands form two five-membered rings with
the Cr(III) center. The bond lengths around the Cr(III) center
follow the covalent radii [P (1.11 Å), Cl (0.99 Å), and N (0.71
Å)] of the coordinated atoms in the order Cr−P > Cr−Cl >
Cr−N. The bond angles 174.88° [N(2)−Cr−Cl(1)], 175.57°
[N(1)−Cr−Cl(2)], and 159.40° [P(1)−Cr−P(2)] are less
than 180 expected for an ideal octahedral complex, which
reflect the distortion in complex 2 along its linear planes and
also account for the twist of the P’N ligands as they coordinate
to the Cr(III) center. Similar angular deviations from 90° are
observed in the bond angles 79.52° [(N(1)−Cr−P(1)], 87.76°

[N(2)−Cr−P(1)], and 97.34° [Cl(1)−Cr−P(1)] of the
coordinated groups between the axial and equatorial planes,
which also reflects the observed distortion in the geometry of
the complex.

Unlike complex 2, complex 4 with a tridentate P-NH-P′
ligand crystallized in the triclinic space group P21 (Table S1).
The ligand coordinates via the P and N moieties of the
phosphine and amino moieties in a meridional mode. The
coordination of three Cl− ions to the Cr(III) center completed
the octahedral geometry. The Cl− ions are dispersed along the
Meridional plane transversely positioned to the P-NH-P′
ligand (Figure 3). This arrangement minimizes the geometric

constraints and enhances the thermodynamic stability of the
complex in comparison to the facial mode.70,71 The P-NH-P′
ligand forms two fused five-membered bicyclic rings with the
Cr(III) center, with the C(2) and C(3) occupying an endo
position to the N of the amino moiety.32 The bond lengths
Cr−Cl, Cr−N, and Cr−P are longer than those of complex 2
with the P’N ligand. This reflects the steric hindrance imposed
by the bulkiness of the P-NH-P′,33,38 which induces distortion
in the octahedral geometry with elongated axial bond lengths
2.5252(9) Å [Cr−P(1)] and 2.4734(9) Å [Cr−P(2)] in
comparison with the bond lengths along the equatorial plane.
The bond angles also deviate from 90 and 180°, which also
indicates distortion in the octahedral geometry of complex 4.
This can be attributed to the steric influence of the P-NH-P′

Figure 2. X-ray single-crystal structure of complex 2. The hydrogen
atoms of the phenyl groups have been omitted for the sake of clarity.
The atomic symbols and the corresponding numbering of the
elements in the structures are indicated for carbon (C), nitrogen (N),
phosphorus (P), and chromium (Cr). Selected bond lengths (Å) and
angles (deg) of complex 2: Cr(1)−N(1) 2.086(3), Cr(1)−N(2)
2.104(3), Cr(1)−Cl(1) 2.3012(9), Cr(1)−Cl(2) 2.3053(9), Cr(1)−
P(1) 2.4815(13), Cr(1)−P(2) 2.5030(13), N(1)−Cr(1)−N(2)
95.02(10), N(1)−Cr(1)−Cl(1) 86.32(8), N(2)−Cr(1)−Cl(1),
174.88(10), N(1)−Cr(1)−Cl(2) 175.57(10), N(2)−Cr(1)−Cl(2)
84.54(8), Cl(1)−Cr(1)−Cl(2) 94.50(3), P(1)−Cr(1)−P(2)
159.40(3), N(1)−Cr(1)−P(1) 79.52(10), N(2)−Cr(1)−P(1)
87.76(10), Cl(1)−Cr(1)−P(1) 97.34(5), Cl(2)−Cr(1)−P(1)
96.05(5), N(1)−Cr(1)−P(2) 85.96(10), N(2)−Cr(1)−P(2)
78.98(10), Cl(1)−Cr(1)−P(2) 96.21(5), and Cl(2)−Cr(1)−P(2)
98.27(5).

Figure 3. X-ray single-crystal structure of complex 4. The hydrogen
atoms of the phenyl and isopropyl groups have been omitted for the
sake of clarity. The atomic symbols and the corresponding numbering
of the elements in the structures are indicated for carbon (C),
nitrogen (N), phosphorus (P), and chromium (Cr). Selected bond
lengths (Å) and angles (deg) of complex 4: Cr(1A)−N(1A)
2.136(2), Cr(1A)−Cl(2A) 2.3032(8), Cr(1A)−Cl(3A) 2.3205(8),
Cr(1A)−Cl(1A) 2.3345(8), Cr(1A)−P(2A) 2.4734(9), Cr(1A)−
P(1A) 2.5252(9), N(1A)−Cr(1A)−Cl(2A) 177.00(7), N(1A)−
Cr(1A)−Cl(3A) 86.05(8), Cl(2A)−Cr(1A)−Cl(3A) 91.47(3), N-
(1A)−Cr(1A)−Cl(1A) 84.80(8), Cl(2A)−Cr(1A)−Cl(1A)
97.72(3), Cl(3A)−Cr(1A)−Cl(1A) 170.67(3), N(1A)−Cr(1A)−
P(2A) 82.18(7), Cl(2A)−Cr(1A)−P(2A) 99.49(3), Cl(3A)−Cr-
(1A)−P(2A) 89.22(3), Cl(1A)−Cr(1A)−P(2A) 87.70(3), N(1A)−
Cr(1A)−P(1A) 81.85(7), Cl(2A)−Cr(1A)−P(1A) 96.70(3), Cl-
(3A)−Cr(1A)−P(1A) 95.06(3), Cl(1A)−Cr(1A)−P(1A) 85.49(3),
and P(2A)−Cr(1A)−P(1A) 163.14(3).
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ligand due to its bulkiness. Complex 4 has a strong structural
similarity with previously reported complex 343 as indicated by
the closeness of the bond angles: P(1)−Cr−P(2) (3: 163.10°,
4: 163.14°), N−Cr−Cl(2) (3: 176.74°, 4: 177.00°), N−Cr−
P(1) (3: 81.08°, 4: 81.85°), and N−Cr−P(2) (3: 82.07°, 4:
82.18°).

Electronic Absorption Spectra. The spectra of the
complexes (1−4) in DMSO display an intense prominent
absorption in the UV region (304−354 nm) (Figure 4A). This
corresponds to intra-ligand transition which is strongly
influenced by the nature of the ligand.72 A considerable
redshift and broadening were observed in the peak absorption
wavelength on going from the cationic complexes 1 and 2 to
the neutral complexes 3 and 4. The order of the spin-allowed
ligand field transitions characteristic of a Cr(III) complex with
d3 electronic configurations is 4A2g → 4T2g (v1) < 4A2g → 4T1g
(F) (v2) < 4A2g → 4T1g (P) (v3).

73,74 We use these octahedral
field symmetry labels in our work for comparison with
assignments for literature complexes, even though our
complexes are distorted from this ideal geometry. The low
energy transition B in the region of 578−586 nm, the 4A2g →
4T2g (v1), has the energy of the ligand field splitting 10Dq
(Table 1). Complexes 1 and 2 are thought to have similar cis
geometries. However, the PN ligands in complex 1 have less
hindered, more flexible backbones than the P’N ligands in
complex 2, and this causes a slightly larger splitting and
stabilization of complex 1 (Dq = 1712 cm−1) compared to
complex 2 (Dq = 1701 cm−1). Similarly, the more flexible PNP
ligand causes the larger splitting in complex 3 (Dq = 1730
cm−1) compared to complex 4 (Dq = 1707 cm−1) with the
more rigid PNP’ ligand, even though the latter has a potentially
more basic PiPr2 donor group. These Dq values are
intermediate between those observed for [CrCl6]3− (1360)

and [Cr(en)3]3+ (2188)75,76 as might be expected. The
absorption peak B (Figure 4) in the region 439−468 nm can
be attributed to 4A2g → 4T1g (F) v2 transition.77,78 The spacing
between the v1 and v2 transitions of the neutral complexes
(4485 cm−1 for 3 and 4303 cm−1 for 4) is smaller than that for
the cationic complexes (5656 cm−1 for 1 and 5926 cm−1 for 2).
This spacing is even larger for [Cr(OH2)6]3+ and [Cr-
(NH3)6]3+ (>6000 cm−1) due to an increase d electron
repulsion as expressed by the Racah B parameter.75 The
transition of the highest energy [4A2g → 4T1g (P)] is obscured
by the more intense charge transfer transitions and would be
expected in this case at approximately 40,000 cm−1 (12Dq +
15B + 9349) assuming the Racah parameter B is 680 cm−1 and
the interaction energy between the two 4T1g states is 9349
cm−1 as determined from the position of v2.

79 The molar
extinction coefficients (ε) observed for v1 (60−301 M−1 cm−1)
and v2 (55−214 M−1 cm−1) (Table 1) are within the expected
range for spin-allowed transitions.74

FTIR Vibrational Spectroscopy. The vibrational bands
for v(N−H) stretching in the region 3171−3298 cm−1 of the
spectra of films of the complexes (1−4) indicate that the
amino protons were retained after the coordination of the
ligands to the Cr(III) center.14,74 Hence, the amino ligands
remained neutral, and the Cr(III) oxidation state was
preserved. The vibrational bands in the region 400−500
cm−1 are characteristics of v(Cr−Cl−), which accounts for the
chlorides in the coordination sphere.74,77 It is intriguing to
note that the influence of the difference in symmetric nature of
the ligands becomes obvious as the primary amino protons in
complex 2 display three vibrational bands (3201, 3242, and
3298 cm−1) in contrast to complex 1, where a single band
(3173 cm−1) is indicated for its primary amino protons. This
difference is, however, not observed in complexes 3 and 4 with

Figure 4. Electronic absorption spectra of complexes 1−4 in DMSO 1 mg/mL; [1.6 (1), 1.1 (2), 1.7 (3), and 1.5 (4) mM].

Table 1. Electronic Absorption Peak Wavelength (nm), the Corresponding Wavenumber (cm−1), Molar Extinction Coefficient
(ε; M−1 cm−1), and Crystal Field Splitting Energy [Dq (cm−1)] of 1−4

π−π* ε (π−π*) 4A2g → 4T1g (v2) ε (v2) 4A2g → 4T2g (v1) ε (v1) Dq

1 304 (32,895) 1415 439 (22,779) 60 584 (17,123) 55 1712
2 311 (32,154) 2022 436 (22,936) 90 588 (17,007) 111 1701
3 321 (31,153) 1316 459 (21,786) 72 578 (17,301) 78 1730
4 331 (30,211) 1496 468 (21,368) 301 586 (17,065) 214 1707

354 (28,249) sh 1362
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tridentate ligands, which contain secondary amino protons
with vibrational bands at 3171 and 3286 cm−1, respectively.

Magnetic Susceptibility and Electron Paramagnetic
Resonance Spectroscopy. The effective magnetic moments
(μeff) of complexes 1−4 were determined by the Evans’
method.80 The μeff for the complexes fall within the expected
range of spin only magnetic moment (μs.o = 3.88 μβ) for a d3

electronic configuration.80,81 The X-band electron para-
magnetic resonance (EPR) spectra of complexes 1−4 as
powders (see the Supporting Information) were obtained at
room temperature and display the broad band characteristics
of Cr(III) species with a d3 electronic configuration.82 The
broad peaks hide any hyperfine couplings to the 31P and 53Cr
nuclei.21,83

Electrochemical Study. The cyclic voltammogram (CV)
of complex 1 (Figure 5) shows a complex series of redox
events including CrIII/II and CrII/I reduction processes with
cathodic peak potentials (Epc) at −0.44 and −1.42 V, and
anodic peak potentials (Epa) at −0.32 and −0.77 V. Reduction
of substitution inert CrIII produces labile CrII, resulting in
irreversible electrochemical behavior. The Epa at −0.12 V
indicates an irreversible oxidation of Cl− with a surge in
current as the product of the oxidation (Cl2 gas) desorbed
from the surface of the electrode.84,85 The redox activity
associated with Cl− is equally observed by measuring the CV of
tetrabutyl ammonium chloride (TBA+ Cl−) in DMF and
MeCN, where a similar increase in current is indicated in the
CVs at −0.18 and −0.09 V in DMF and MeCN, respectively
(Figure S6). The high potential suggests the substitution of
dissociated Cl− with a solvent molecule (DMF) from reduced
chromium species (eqs 1, 2).

CrCl (PN) e CrCl (PN)2 2 2 2F[ ] + [ ]+ (1)

CrCl (PN) solvent CrCl(solvent)(PN) Cl2 2 2F[ ] + [ ] ++

(2)

Similarly, an irreversible reduction at Epc of −1.96 V can be
attributed to the substitution of the PN ligand with DMF.86,87

The CV of complex 2 also shows a two-step electron transfer

processes with Epc at −0.41 and −1.33 V and corresponding
Epa at −0.32 and −0.77 V. The rapid increase in current in the
region where E > −0.15 V again suggests the contribution of
the irreversible Cl− ion oxidation/substitution with DMF. The
CVs of the complexes with tridentate ligands (3 and 4) also
reveal a two-step electron transfer characteristic of Cr ion. The
influence of the Cl− ion oxidation significantly increased the
current in the region where E > −0.10 V (eq 3), and the
involvement/substitution of the PNP and PNP’ ligands can be
attributed to the Epc at −2.10 and −2.11 V in the CV of
complex 3 and 4, respectively.

CrCl (PNP) solvent

CrCl (solvent)(PNP) Cl
3

2F

[ ] +

[ ] + (3)

The likely substitution of the Cl− and the pincer ligands with
solvent molecules in the electrochemical process is further
investigated by replacing DMF with MeCN.73 MeCN
significantly shifts the redox potentials in the electrochemical
process, especially for the potentials associated with the
substitution of the Cl− and pincer ligands (Figure S7).

Lack of Catalytic Activity of Complexes 1−4 in
Hydrogenation Reactions. The catalytic activity of the
chromium complexes (1−4) was investigated in the hydro-
genation of the aldimine [(E)-1-(4-fluorophenyl)-N-phenyl-
methanimine] to the amine [N-(4-fluorobenzyl)aniline] using
molecular H2 under 25 bar in THF at 60 °C with a 5 mol %
catalytic loading. The reaction was monitored by 19F NMR
spectroscopy. Complexes 1−4 showed no observable activity.
Further catalytic investigations were carried out using
complexes 1−4 (1 mol %) in the asymmetric transfer
hydrogenation of diphenylphosphinoyl imines to their
respective amines analogues using KOtBu (8 mol %) as a
base and 2-PrOH as a solvent and as a reducing agent at 30
°C.62,88,89 After 24 h, no conversion was noted using 31P NMR
spectroscopy to monitor the reaction. We envisaged the
possible activation of the complexes by the generation of their
corresponding hydrides using LiHBEt3 in THF at −30 to 28
°C to induce their catalytic activity in transfer hydro-

Figure 5. CVs of complexes 1−4 in 0.1 M [nBu4N][BF4]/DMF.
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genation.38,90 The formation of hydrides was not successful.
We also attempted to aid the hydride formation of the
complexes by first generating the triflate analogues of the
complexes 1−4 but the complexes showed no reaction in the
presence of AgOTf in toluene. On the basis of these negative
results, we did not proceed further on investigating the
complexes as catalysts in transfer hydrogenation.

Following a recent report on the chromium complexes of
cyclic (alkyl)(amino) carbene (CAAC)-catalyzed hydrogena-
tion of alkynes for the selective generation of E- and Z- olefins
with high yield in the presence of Mg and trimethylsilyl
chloride (TMSCl),91 we further investigated the possibility
that our complexes 1−4 are catalysts for the conversion of
imine [(E)-1-(4-fluorophenyl)-N-phenylmethanimine] to
amine [N-(4-fluorobenzyl)aniline] using H2. However, our
preliminary investigation showed that the hydrogenation to the
amine proceeded in the presence of Mg and TMSCl with or
without our complexes as catalysts (Table 2, entries 1−5). We
wondered whether the hydrogenation proceeded via the in situ
generation of a Grignard-like reagent from Mg and TMSCl.
However, when only the Grignard reagent (PhCH2MgBr)
(entry 6) or activated Mg (entry 7) was used under H2 in the
absence of a chromium complex, lower conversion to the
amine was observed. Furthermore, when we excluded H2
(entry 8) and conducted the reaction under Ar at room
temperature (entry 9), the hydrogenation still proceeded. This
implicates the solvent (THF) as being the hydrogen source.
We confirmed this hypothesis by conducting two separate
experiments. In the first, the dideuterated amine
PhNDCDHC6H4F was generated by the reaction of the
imine with NaBD4 in CD3OD in order to obtain its 19F NMR
and mass spectrum. Then, deuterated THF-D8 (entry 10) was
used as the solvent in the Mg/TMSCl reaction under the same
conditions as in entry 9 but with a longer duration (48 h). The
mass spectrum of the isolated crude amine product was
consistent with partial conversion to the deuterated amine
PhNDCDHC6H4F. However, the conversion was less than that
of entry 9, presumably because of the significant kinetic isotope

effect of breaking the carbon-deuterium bond of the THF-D8
[BDE(C−H) 92 kcal/mol92. Thus, we suggest that the
hydrogenation proceeds by magnesium reduction of the
imine or TMS-iminium chloride with hydrogen atom
abstraction from the THF. This side reaction was not reported
for the Cr(CAAC) complexes that showed catalytic activity
and selectivity in the hydrogenation of alkynes in the presence
of Mg/TMSCl in THF.91

■ CONCLUSIONS
We have demonstrated the preparation of new Cr(III)
complexes in high-yield (95−97%) with a solventless
mechanochemical approach and studied the electronic,
magnetic, and electrochemical properties of these complexes.
The structural analysis revealed that the bidentate P’N ligands
form a cis complex with trans Cr−P bonds. The P-NH-P′
ligand coordinates in a mer arrangement about the Cr(III)
center with three mer Cl− ions. In the case of complex 1, no
suitable crystals were obtained for the X-ray diffraction study.
However, we envisage that it will adopt a structural
configuration similar to that of complex 2 based on similarity
in properties just as complex 4 shows strong structural
resemblance to the previously reported complex 3. The
structural differences in the ligands induce variations in the
electronic, magnetic, and electrochemical properties of the
complexes, which influence their stability. The only conditions
discovered for the hydrogenation of an aldimine did not
involve the chromium complexes but instead involved the
novel reduction of the imine by a Mg/TMSCl mixture under
Ar at room temperature with hydrogen abstraction from the
THF solvent.

■ EXPERIMENTAL SECTION
General Experimental Details. All the procedures and

modifications reported in this work were conducted under a
N2 of Ar atmosphere using standard Schlenk line and glovebox
facilities, unless otherwise stated. The reagents were used as
received from Sigma-Aldrich, Alfa Aesar, and ACROS

Table 2. Catalytic Study of Hydrogenation of an Imine (0.1 M) to an Amine

entry [Cr] Mg (equiv) TMSCl (equiv) yield (%)

1 1 2 0.5 98
2 2 2 0.5 100
3 3 2 0.5 96
4 4 2 0.5 97
5 2 0.5 99
6a 32
7b 33
8c 2 0.5 99
9c,d 2 0.5 90
10c,d,e 2 0.5 20

aGrignard reagent (PhCH2MgCl). bActivated Mg. cUnder Ar. d22 °C. eTHF-D8 was used as the solvent.
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Organics. All solvents were predegassed and dried based on
standard procedures before the commencement of each
experiment. The 1H (500 MHz) NMR spectra were recorded
on an Agilent DD2 500 MHz. The FTIR spectra were acquired
on a Bruker Alpha spectrometer equipped with an ATR
platinum-diamond attachment. X-ray crystallographic data for
2 and 4 were collected on a Bruker Kappa APEX-DUO
diffractometer equipped with a PHOTON II CMOS detector
and were measured using a combination of ϕ scans and ω
scans. The data were processed using APEX3 and SAINT.
Mass spectra were obtained with a JEOL AccuTOF Plus 4G
equipped with a direct analysis in real time ion source. The
absorption spectra were measured by using DMSO solutions of
the complexes (1−4). For the Evans’ method,80 the NMR
frequency was 500 MHz, and the reference solvent used for 1
was C4H8O/C4D8O, while CH3CN/CD3CN was used for 2−
4. The X-band EPR spectra were obtained by using a Bruker
CW X-band ECS-EMXplus EPR spectrometer at 9.5 GHz. The
electrochemical study was conducted using a three-electrode
setup with a platinum wire as a working electrode, a tungsten
auxiliary electrode, and a Ag/AgCl reference electrode. The
electrolyte was a DMF solution with 0.1 M [nBu4N][BF4]. All
potentials were referenced to the ferrocenium/ferrocene (Fc+/
Fc) couple (0.72 V versus the standard hydrogen electrode,
SHE).67 All characterizations were conducted using powder
products of the complexes, except for the X-ray diffraction
studies using crystals obtained from MeCN.

Mechanochemical Synthesis. [Cr(PN)2Cl2]Cl (1). Purple
CrCl3(THF)3 (0.24 g, 0.65 mmol) and white PN (0.30 g, 1.3
mmol) were ground with a pestle and mortar in a glovebox for
5 min to a dark blue powder and left overnight at room
temperature. A solid product was obtained. Yield: 97% (0.39 g,
0.63 mmol). HRMS: calcd for C28H35Cl3CrN2P2, 619.90
([M]+); found, (ESI+): 619.06. EA: % Anal. Calcd (found) for
C28H35Cl3CrN2P2: 619.90 g/mol: C, 54.25 (54.19); H, 5.69
(5.62); N, 4.52 (4.49). FT-IR (ATR, v/cm−1): 3173 (m,
NH2), 3053, (m, CH), 2949 (m, CH), 2924 (m, CH), 2870
(m, CH), 459 (s, Cr−Cl), 437 (s, Cr−Cl). μeff: 3.31 μβ.
[Cr(P’N)2Cl2]Cl (2). CrCl3(THF)3 (0.24 g, 0.65 mmol) and

white P’N (0.50 g, 1.3 mmol) were ground with a pestle and
mortar in a glovebox for 5 min to a dark blue powder and left
overnight at room temperature. A solid product was obtained,
which was dissolved in acetonitrile and left to recrystallize at
room temperature for use in the X-ray diffraction study. Yield:
95% (0.57 g, 0.62 mmol). HRMS: calcd for C52H51Cl3CrN2P2,
922.20 ([M]+); found, (ESI+): 922.01. EA: % Anal. Calcd
(found) for C52H51Cl3CrN2P2: 922.20 g/mol: C, 67.57
(67.54); H, 5.56 (5.57); N, 3.03 (3.07). FT-IR (ATR, v/
cm−1): 3298 (w, NH2), 3242 (w, NH2), 3201 (w, NH2), 3062,
(w, CH), 2980 (w, CH), 459 (m, Cr−Cl), 432 (m, Cr−Cl).
μeff: 3.23 μβ.
[Cr(P-NH-P)Cl3] (3). CrCl3(THF)3 (0.48 g, 1.3 mmol) and

white P-NH-P (0.57 g, 1.3 mmol) were ground with a pestle
and mortar in a glovebox for 5 min to a dark blue powder and
left overnight at room temperature. A solid product was
obtained. Yield: 96% (0.75 g, 1.25 mmol). HRMS: calcd for
C28H29Cl3CrNP2, 598.02 ([M]+); found, (ESI+): 598.04. EA:
% Anal. Calcd (found) for with Mol wt for C28H29Cl3CrNP2:
598.02 g/mol: C, 56.07 (56.12); H, 4.87 (4.9); N, 2.34 (2.36).
FT-IR (ATR, v/cm−1): 3171 (m, NH), 3053 (w, CH), 2950
(w, CH), 2924, (w, CH), 2870 (w, CH), 458 (m, Cr−Cl), 436
(m, Cr−Cl). μeff 4.19 μβ.

[Cr(P-NH-P′)Cl3] (4). CrCl3(THF)3 (0.48 g, 1.3 mmol) and
P-NH-P’ (0.77 g, 1.3 mmol) were mixed with a pestle and
mortar in a glovebox for 5 min and left overnight at room
temperature. A dark blue solid product was obtained. Crystals
suitable for X-ray diffraction were obtained by recrystallization
from acetonitrile at room temperature. Yield: 95% (0.85 g, 1.24
mmol). HRMS: calcd for C34H41Cl3CrNP2, 647.15 ([M −
Cl]+); found, (ESI+): 647.21. EA: % Anal. Calcd for
C34H41Cl3CrNP2: 683.97 g/mol: C, 59.41 (59.47); H, 6.26
(6.26); N, 1.96 (1.95). FT-IR (ATR, v/cm−1): 3286 (m, NH),
3056 (w, CH), 3030 (w, CH), 2918, 497 (m, Cr−Cl), 477 (m,
Cr−Cl), 456 (w, Cr−Cl), 433 (w, Cr−Cl). μeff: 4.15 μβ.

General Procedure for Catalytic Study. The catalytic
study was conducted based on a modified procedure.91 Briefly,
the imine (0.2 mmol, 40 mg), the synthesized complex (5 mol
%), Mg (10 mg), TMSCl (13 μL), and THF (2 mL) were
stirred continuously in a vial under an argon atmosphere. The
reaction mixture was transferred to a 50 mL stainless steel Parr
hydrogenation reactor at constant temperatures (aided with an
oil bath) and pressures (23 atm of H2(g)) with continuous
stirring. The crude product was extracted in ethyl acetate (3 ×
5 mL) after quenching the reaction with aqueous HCl (1 M, 2
mL). This was followed by drying the product in ethyl acetate
over anhydrous Na2SO4 before removing the solvent in vacuo.
The conversion was determined from the 19F NMR signal of
the crude product (−115.6 ppm, 400 MHz, CDCl3) relative to
that of the starting imine (−108.02 ppm, 400 MHz, CDCl3).
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