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The study of brain plasticity has tended to focus on the synapse, where well-described activity-dependent
mechanisms are known to play a key role in learning and memory. However, it is becoming increasingly clear
that plasticity occurs beyond the synapse. This review focuses on the emerging concept of white matter
plasticity. For example, there is growing evidence, both from animal studies and from human neuroimaging,
that activity-dependent regulation of myelin may play a role in learning. This previously overlooked phenom-
enon may provide a complementary but powerful route through which experience shapes the brain.
Introduction
White matter (WM), consisting of axons connecting different

brain regions, constitutes about half of the total human brain

volume. Axons can be myelinated or unmyelinated, and it is

myelin’s chemical composition of mainly lipids that gives the

WM its characteristic color. If the myelinated axons of an adult

human brain were laid out end to end, the total length would

reach approximately 160,000 km (Marner et al., 2003).

Besides axons, WM also contains myelin-producing oligoden-

drocytes, astrocytes, microglia, and oligodendrocyte precursor

cells (OPCs). In the CNS of the rat, each oligodendrocyte can

myelinate more than 20 axons, but this varies between brain

areas (Chong et al., 2012; Davison and Peters, 1970). Myelin is

formed in segments with the unmyelinated axonal areas be-

tween segments called nodes of Ranvier. The primary function

of myelination is to speed conduction of the electric impulse

along an axon, allowing the action potential to travel long

distances faster (reviewed in Freeman et al., 2016; Hartline and

Colman, 2007). Other features of WM such as axon diameter,

internode length, ion channel density, and myelin thickness

also affect conduction speed. In gray matter, myelin plays a

role in neurite growth inhibition (McKerracher et al., 1994), poten-

tially limiting plasticity once a circuit has been formed (McGee

et al., 2005). Complex cortical networks tend to be less myelin-

ated (McGee et al., 2005) and thus more prone to plasticity

mechanisms, suggesting that myelin might provide the finishing

touches in circuit formation.

Myelination is so important for the proper function of the

nervous system that it is thought to have evolved independently

in several distinct animal branches (Hartline and Colman, 2007).

Myelination is particularly important in larger brains, where finely

calibrated conduction speeds are necessary for signal coordina-

tion across long distances. Brain tracts like the corpus callosum

are not fully myelinated and there is great variation in myelination

from brain region to region (Sturrock, 1980; Young et al., 2013).

Furthermore, axons can exhibit long unmyelinated stretches

between myelinated segments (Tomassy et al., 2014) as well

as variation in internode length (Ford et al., 2015). This suggests

that faster is not always better; instead, myelination is finely and

locally tuned in order to coordinate the timing of action potentials

that may require both high and low conduction speeds
(Waxman, 1997). Recent simulations support this view

(Arancibia-Cárcamo et al., 2017; Etxeberria et al., 2016; Ford

et al., 2015).

The importance of WM to brain health has long been appreci-

ated due to devastating effects of WM diseases such as multiple

sclerosis. However,WMhas traditionally taken a backseat role in

our understanding of behavior and is typically considered to

simply provide a route for communication between neurons.

Similarly, conceptions of how brain connections change with

experience have naturally focused on the synapse, where

Hebbian plasticity mechanisms such as long-term potentiation

provide a powerful substrate for learning. However, it is

becoming increasingly clear that WM plasticity offers a comple-

mentary route through which experience can shape brain

connections. Recent evidence from both human (Scholz et al.,

2009) and rodent neuroimaging studies (Blumenfeld-Katzir

et al., 2011; Sampaio-Baptista et al., 2013), as well as knockout

mouse models (McKenzie et al., 2014), shows that WM

demonstrates dynamic, experience-dependent plasticity that

contributes to learning in the adult brain.

In the next sections, we will discuss possible cellular mecha-

nisms of WM plasticity, such as new myelin formation, changes

in myelin thickness, internode length modulation, and alterations

in the nodes of Ranvier. We will also summarize activity-depen-

dent myelination mechanisms that might underlie experience-

dependent changes in the adult brain. Finally, we will review

the current evidence from human and animal models that

provides support for WM plasticity in response to learning and

experience during adulthood.

Cellular Mechanisms of White Matter Plasticity
Experience-dependent WM plasticity requires mechanisms

through which activity along an axon can alter the structural

properties of that axon. For this process to be relevant to

learning, these alterations in structure would in turn be associ-

ated with changes in the functional properties of the axon, giving

rise to alterations in behavior. As discussed above, alterations in

the structural properties of the axon, such as myelin, axon diam-

eter, or internode length, give rise to changes in physiological

properties such as conduction speed, which will have relevance

to behavior (Fields, 2015).
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Figure 1. Schematic of Sequence of Events in Myelin Formation and Remodeling
(A–C) OPCs (A) proliferate then (B) differentiate into oligodendrocytes, which (C) establish axonal segments.
(D) The number of myelin segments is established within a few hours. Axon size and activity influence which axons are myelinated (active axons indicated
in light red).
(E) Occasional retractions can occur after this period.
(F) Myelin sheaths are wrapped around the selected axons.
(G) Axonal activity potentially modulates myelin thickness and length after this period (active axon in red and inactive in blue).
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To date, most work on WM plasticity has focused on activity-

dependent changes in myelination, though changes in other

properties, such as nodes of Ranvier or internode length, may

potentially play a role (Ford et al., 2015). Alterations in myelin

may occur through changes in myelin thickness by pre-existing

oligodendrocytes, or by newmyelin formation through differenti-

ation of OPCs into new oligodendrocytes.

Oligodendrocyte Precursor Cells in the Adult Brain

OPCs are a subtype of glial cells that have the capacity to

differentiate into myelin-forming oligodendrocytes (Figures 1

and 2A–2C). During the postnatal period, many OPCs differen-

tiate and develop into oligodendrocytes (Kessaris et al., 2008),

but a significant number remain as OPCs into adulthood. It is

estimated that around 5% of the total cells in the adult rat brain

are OPCs (Dawson et al., 2003). NG2-positive cells have also

been identified in the human brain (Chang et al., 2000), with

suggestions that OPCs might represent 10%–15% of total

human glial cells (Staugaitis and Trapp, 2009). These OPCs

have the potential to proliferate, differentiate, and form new

myelinating oligodendrocytes in adulthood (Hughes et al.,

2013; Young et al., 2013) (Figures 1 and 2A–2C). Indeed,

rodent studies show that more than 20% of myelinating

oligodendrocytes present in the adult brain are adult-born

(Rivers et al., 2008).

A subclass of OPCs can fire electric impulses. Although it is

not clear what function is served by these spikes, it has been

proposed that they provide a cell-wide signal that can be used

to detect active axons and guide myelination (Fields, 2008;

Káradóttir et al., 2008). It has also been demonstrated that

OPCs extend their cellular processes to synapses (Bergles

et al., 2000) in gray matter and to nodes of Ranvier in WM (Butt

et al., 1999; Serwanski et al., 2017), suggesting OPCs might

monitor action potentials at these sites.
1240 Neuron 96, December 20, 2017
Forming New Myelin during Adulthood

Recently matured oligodendrocytes establish all their myelin

segments within a few hours in in vitro and in vivo zebrafish

models (Czopka et al., 2013; Watkins et al., 2008). Although

this suggests a short time window for segment formation, there

is evidence that occasional segment retractions can occur after

this period (Czopka et al., 2013) and that myelin thickness within

each segment can be altered. For instance, in response to con-

ditional upregulation of a cellular signaling pathway, preexisting

oligodendrocytes of adult mice globally increased myelin thick-

ness, resulting in faster nerve conduction velocity and enhanced

hippocampal-dependent emotional learning (Jeffries et al.,

2016). Although it is unclear why a global myelin change should

be associated with such a specific behavioral improvement (no

changes in motor learning or object recognition were detected),

this finding provides evidence that preexisting oligodendrocytes

in the adult brain retain the ability to regulate myelin thickness

(Figure 2F). Additionally, mechanisms have been identified by

which myelin thickness changes can be achieved by preexisting

oligodendrocytes (Flores et al., 2008; Snaidero et al., 2014). In

fact, it has been suggested that the majority of myelin remodel-

ing occurring in the adult human brain is carried out by preexist-

ing oligodendrocytes: 14C analysis of human brain revealed only

a small number of new oligodendrocytes a few years after birth,

but on the other hand, new and contemporary myelin could be

detected. This finding could be related to renewal of myelin

sheaths or to protein exchange in stable myelin sheaths (Yeung

et al., 2014). This suggests that preexisting oligodendrocytes

continually form new myelin and that new adult-born oligoden-

drocytes are less common in the human brain in comparison to

the findings that 20% of the oligodendrocytes present in the

adult rodent brain are adult-born (Rivers et al., 2008). It is not

clear if the different conclusions of these two studies stem



Figure 2. Summary of Possible Activity or Learning-Dependent Structural Changes that May Occur in White Matter during Adulthood
(A) OPC proliferation.
(B) OPC differentiation.
(C) New myelination by adult-born oligodendrocytes.
(D) Vascular and glial changes.
(E) Changes in the internode length.
(F) Myelin remodeling (increases or decreases in thickness) by preexisting oligodendrocytes.
(G) Axonal branching or pruning (not yet demonstrated in WM in response to experience).
(H) Axon diameter increases or decreases.
(I) Changes in nodes of Ranvier length.

Neuron

Review
from a difference in species (humans versus nonhuman species)

or due to the cell labeling methods employed.

Overall, there is accumulating evidence that newly formed

oligodendrocytes and preexisting oligodendrocytes remodel

myelin in the adult brain. This can be potentially altered by expe-

rience, andmyelin thickness changes have been reported in rela-

tion to social isolation or neuronal stimulation studies (Gibson

et al., 2014; Liu et al., 2012) (Figure 1F). However, it is not known

if this is due to myelin remodeling by preexisting oligodendro-

cytes or if newly formed oligodendrocytes simply form thicker

myelin in response to experience.

Activity-Dependent Modulation of Myelination

Which signals guide myelin modulation, and do any of these

guiding signals support the idea of activity-dependent modula-

tion of myelin (Figure 1)? Oligodendrocytes do not wrap astro-

cytes or dendrites (Althaus et al., 1984; Zalc and Fields, 2000),

as dendrites inhibit myelin-guidance adhesion molecules, result-

ing in lack of myelination in these cell regions (Redmond et al.,

2016). Fiber caliber is one determinant of myelination: oligoden-

drocytes can wrap around carbon fibers larger than 0.4 mm in the

absence of electrical activity or axonal signaling, but myelination

in such cases has previously been found to be abnormal and

not well compacted (Althaus et al., 1984; Lubetzki et al., 1993).
However, recent evidence suggests that oligodendrocytes can

form compact myelin sheaths even in the absence of molecular

axonal cues, and furthermore that sheath length depends not

on properties of the fiber but on the regional origin of the

oligodendrocyte (brain versus spinal cord) (Bechler et al., 2015).

Still, it has been proposed that myelination is modulated at

least in part by axonal activity (Demerens et al., 1996; Ishibashi

et al., 2006; Mensch et al., 2015; Stevens et al., 1998, 2002;

Wake et al., 2011). Most evidence of activity-dependent

regulation of myelination comes from developmental studies.

For instance, in vitro studies demonstrated that increases in

neuronal activity, either by high-frequency stimulation or phar-

macological manipulation, result in increased myelin sheath

formation and myelin compaction within 2–14 days (Demerens

et al., 1996; Ishibashi et al., 2006; Stevens et al., 1998), while

low-frequency stimulation inhibits myelination compared to no

stimulation (Stevens et al., 1998). A recent in vivo developmental

study in zebrafish shed new light on mechanisms that direct

myelination to specific axons, establishing that neuronal activity

is important both for the appropriate selection of specific axons

for wrapping and for myelin stabilization (Hines et al., 2015)

(Figure 1). While oligodendrocytes initiated wrapping of large

caliber axons even in the absence of neuronal activity, resulting
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myelin sheaths were only maintained on active axons (Hines

et al., 2015) (Figures 1D–1G). In these studies, amodest increase

in OPC number was also seen with increased activity (Hines

et al., 2015). The above developmental studies suggest that

myelination can be bidirectionally altered by neuronal activity

during development.

To what extent may similar mechanisms persist into adult-

hood? A recent study reported that optogenetic stimulation of

secondary motor cortex of adult mice increases OPC prolifera-

tion within 3 hr and results in increased myelin thickness and

behavioral effects 4 weeks later (Gibson et al., 2014). These

effects were not seen in a control group that did not express

channelrhodopsin but received the same type of light stimula-

tion. Controlling for light stimulation is important, as it has been

demonstrated that stimulation alone, even in the absence of

the light-sensitive channels, results in increased blood flow

(Rungta et al., 2017). However, further evidence and replication

are needed to effectively demonstrate a direct relationship

between neuronal activity and myelination during adulthood.

The majority of studies in this area have assessed whether

increasing activity results in increased myelination. Whether

activity-dependent modulation of myelin can be bidirectional,

such that reductions in activity result in reductions in myelin,

remains an open question. The developmental zebrafish studies

discussed above demonstrate that, in the absence of activity,

newmyelin is notmaintained (Hines et al., 2015). During develop-

ment, sensory deprivation leads to shortened myelin sheathes,

resulting in reduced impulse conduction (Etxeberria et al.,

2016). There are a few rodent studies of social isolation, which

could theoretically be associated with lower neuronal activity,

that indirectly suggest that lower brain activity results in lower

myelination during both development (Makinodan et al., 2012)

and adulthood (Liu et al., 2012).

In conclusion, current evidence suggests that oligodendro-

cytes are intrinsically programmed to myelinate large-caliber

fibers (>0.4 mm) with inhibitory molecules preventing indiscrimi-

nate myelination of dendrites, while the regional origin of the

oligodendrocytes influences the length of the internodes. On

the other hand, external cues such as axon size and axonal

activity can additionally regulate sheath length, number, and

thickness, providing a mechanism by which the environment

and behavior can fine-tune myelination (Figures 1 and 2). While

most studies demonstrating neuronal activity-dependent regula-

tion of myelin have been carried out in developmental models, at

least one study has provided evidence of similar mechanisms

occurring during adulthood (Gibson et al., 2014).

Axonal Sprouting and Changes in Nodes of Ranvier

Plasticity of axonal branching offers another route by which WM

structure could be altered by experience, though this has not yet

been demonstrated in brain WM (Figure 2G). However, there are

reports of axonal branching in spinal cord WM in response to

injury (Bradbury and McMahon, 2006).

Given the lack of available data on this potential plasticity

mechanism in WM, it is of interest to consider the literature on

gray matter as a source of inspiration for future studies of WM

plasticity. Learning and experience have long been associated

with dendritic and synaptic changes in gray matter though

changes in axonal branching have been investigated far less
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extensively. In vivo chronic imaging of axons in the adult brain

shows that, without experimental perturbation, subtypes of

intracortical axonal branches can grow and retract several tens

of micrometers over a few days (De Paola et al., 2006). There

is some, albeit limited, evidence that cortical axons also extend

or retract in response to experience (Hihara et al., 2006). For

instance, a qualitative study suggested that axonal projections

increase within the intraparietal sulcus in monkeys that were

trained to use tools compared to controls (Hihara et al., 2006).

Spatial learning induces axonal branching in the hippocampal

formation (Ramı́rez-Amaya et al., 2001). Axonal boutons, the

terminals that contact dendritic spines and where synapses

are situated, can rapidly reorganize in response to experience

and neuronal activity (De Paola et al., 2006; Holtmaat et al.,

2008; Nikonenko et al., 2003). Future work should assess

whether the experimental manipulations suggested to evoke

axonal branching in gray matter produce any measurable

change in WM or plasticity of long-range axonal projections.

Nodes of Ranvier, internode length, and changes in ion chan-

nel density are other features of the myelinated axon that impact

conduction speed and can potentially be modulated by experi-

ence (Figures 2I and 2E). For instance, a recent study showed

that changes in internode length and node of Ranvier specializa-

tion can be used to tune the arrival of action potentials along

different length branches of the same axon (Ford et al., 2015).

Node length has recently been shown to be more consistent

within axons than between axons, and computational modeling

demonstrates that variations in node length can modulate con-

duction speed by 20%, a similar magnitude to changes in myelin

thickness or internode length (Arancibia-Cárcamo et al., 2017)

(Figures 2I and 2E). This suggests that modulation of node length

along the length of an axonmay offer a rapid and energy-efficient

means to fine-tune axon-specific conduction speed.

Examples of White Matter Plasticity: Evidence from
Human and Animal Studies
Non-invasive neuroimaging methods (Boxes 1 and 2) offer

powerful approaches to study WM microstructure in vivo, and

its changewith experience, in both humans and animals. Consis-

tent with studies in postmortem samples (Benes et al., 1994),

in vivo imaging investigations have revealed that WM develop-

ment continues well into adulthood (Giedd, 2004; Lebel and

Beaulieu, 2011; Sexton et al., 2014; Sowell et al., 1999) and

WM decline accelerates beyond middle age, around 50 years

old (Burzynska et al., 2010; Lebel et al., 2012; Sexton et al.,

2014). Beyond these age-related changes, there is growing

evidence that experience results in dynamic changes in WM

structure throughout the lifespan.

There is extensive evidence from both humans and animal

models that skill learning has an impact on WM. Environmental

and social factors have mostly been investigated in animal

models, and there is currently no clear evidence of their effects

on WM of humans. Although less well demonstrated, lifestyle

factors such as exercise and sleep have been found to correlate

with WM measures and are potentially important mediators of

WMplasticity during adulthood. In the following sections,we pro-

vide an overview of themain evidence for experience-dependent

WM plasticity during adulthood.
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Skilled Performance and Learning

Cross-sectional human neuroimaging studies have shown that

WM microstructure correlates with skilled performance, with

correlations typically localized in pathways that are functionally

relevant to the skill. For instance, fractional anisotropy (FA)

within a corpus callosum area that connects both motor

cortices was found to correlate positively with performance in

a novel bimanual task (Johansen-Berg et al., 2007). Such

relationships can also be found for long-standing skills, honed

after years of practice. For example, in pianists, FA within the

internal capsule, which includes corticospinal tract fibers, was

shown to correlate positively with the number of hours of

musical practice during childhood (Bengtsson et al., 2005).

Other motor activities such as dancing or typing (Cannonieri

et al., 2007) have also been shown to have effects on WM.

Although higher FA or WM volume has more often been

associated with greater skill, some studies have found the

opposite relationship. For instance, professional ballet dancers

compared to controls were found to have lower gray matter,

lower volume in the underlying WM, lower FA in WM areas un-

derlying bilateral premotor cortex, and lower brain activation,

which correlated with age of onset of dancing (H€anggi et al.,

2010). While the functional findings fit with previous demonstra-

tions that experts have reduced BOLD signal in brain areas

associated with their expertise (Haslinger et al., 2004; Meister

et al., 2005), the structural findings are more challenging to

interpret. Variables such as amount of training, learning stage,

or learning strategy might underlie some of the discrepancies

between studies. For example, we have previously reported

that amount of practice has differential effects on gray and

WM structure (Sampaio-Baptista et al., 2014). In the cognitive

domain, studies have demonstrated cross-sectional associa-

tions between WM microstructure and, for instance, memory

(Charlton et al., 2010; Rudebeck et al., 2009), reading ability

(Carreiras et al., 2009; Klingberg et al., 2000), grammar learning

(Flöel et al., 2009), and mental rotation (Wolbers et al., 2006).

These studies suggest that variation in WM structure may be

due in part to experience-dependent plasticity. However,

due to the nature of the design, cross-sectional studies are

unable to distinguish between experience-dependent structural

changes and pre-existing structural conditions that determine

behavior and performance.

Longitudinal studies, which are able to test directly for experi-

ence-driven changes in WM structure, have provided some

evidence that learning can induce structural plasticity in WM

in humans. For example, 6 weeks of juggling practice resulted

in increases in FA in WM tracts that co-localized with increases

in gray matter areas that are related to reaching and grasping

movements (Scholz et al., 2009) (Figure 3). Similarly, working-

memory training increased in FA in parietal fibers (Takeuchi

et al., 2010) while visual perception learning increased FA in

tracts underlying the visual cortex in older adults, but not

younger (Yotsumoto et al., 2014). Such changes can happen

remarkably quickly—for example, just 2 hr of training in a car

racing game that required navigational skills resulted in

immediate decreases in mean diffusivity (MD) in the fornix, a

WM pathway associated with the hippocampus (Hofstetter

et al., 2013) (Figure 3).
Most such studies have reported that training results in

increased FA or decreased MD, a pattern typically associated

with increased myelin or increased packing density of a fiber

bundle. However, changes in the opposite direction have also

been reported. For example, participants that trained in a

whole-body balancing task showed decreases in FA and a

negative correlation between FA changes and performance in

prefrontal areas (Taubert et al., 2010). This highlights a challenge

in interpreting measures such as FA, which do not show a

straightforward relationship to the underlying fiber architecture

or tissue properties. In this case, the decrease in FA was inter-

preted as being due to changes in areas of crossing fibers,

where, for example, selective strengthening of a minor fiber

population in a crossing fiber region could result in a decrease

in FA (Taubert et al., 2010).

As diffusion metrics such as FA are modulated by many

different WM features, such as myelin, axon diameter, and

axonal density, it is not possible to pinpoint the cellular events

that are changing the diffusion signal in these studies. Recently,

rodent studies have used a combination of magnetic resonance

imaging (MRI) techniques and histology to shed light on the

cellular mechanisms of WM plasticity in learning (Blumenfeld-

Katzir et al., 2011; Sampaio-Baptista et al., 2013). For example,

we recently reported higher FA and myelin expression in a rat

model of motor learning (Sampaio-Baptista et al., 2013)

(Figure 3). Additionally, greater myelination, as shown by immu-

nohistochemistry, was related to better performance in the task

(Sampaio-Baptista et al., 2013). The apparent importance of

myelin plasticity in this motor learning paradigm is consistent

with a recent study using a conditional transgenic mouse model

to provide causal evidence that new myelin is required for novel

motor learning (McKenzie et al., 2014). New evidence suggests

that oligodendrocyte plasticity might even play a role in the

very first hours of skill acquisition. Preventing the differentiation

of new oligodendrocytes resulted in a deficit in complex wheel

running within 3 hr (Xiao et al., 2016). Additionally, maturation

of new OL was found to be increased in WM within the same

time frame in response to experience in the complex wheel

(Xiao et al., 2016).

Beyond the motor domain, a role for myelin plasticity in

learning was also found in a prior neuroimaging study that

used a spatial navigation task (Blumenfeld-Katzir et al., 2011)

(Figure 3). However, a correlation between FA and immunohis-

tological measures of myelin expression could not be estab-

lished in any of the above neuroimaging studies. This might

be due to the complexity of the FA signal. A recent study using

composite hindered and restricted model of diffusion

(CLARITY) and whole-brain immunolabeling along with the

diffusion tensor model (DTI) demonstrated that myelin basic

protein (MBP) correlates with FA in WM regions with coherent

fiber orientations and low fiber dispersion, but not in areas of

crossing or complex fiber architecture (Chang et al., 2017). It

is possible that myelin is but one aspect of the WM that has

undergone plasticity and FA is capturing the sum of all changes

in WM microstructure. Further studies using other techniques,

such as electron microscopy, could potentially clarify if other

events such as axonal diameter changes (Figure 2H) are also

contributing to FA changes (see Box 3 for discussion).
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Figure 3. Neuroimaging Findings of White
Matter Plasticity in Humans andRodentswith
Spatial and Motor Skills
(A) Learning a spatial navigation task results in rapid
decreases in MD in the fornix (Hofstetter et al.,
2013).
(B) Morris water maze task acquisition results in
changes inWMand highermyelination (Blumenfeld-
Katzir et al., 2011).
(C) Learning a new motor skill results in increases in
FA (Scholz et al., 2009).
(D) Skill learning results in higher FA and higher
myelination (Sampaio-Baptista et al., 2013).
Error bars represent SE.
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Box 1. Imaging White Matter in the Human Brain

WM structure can be studied using non-invasive brain imaging techniques. The most commonly used approaches rely on mag-

netic resonance imaging (MRI). For example, diffusion-weighted imaging (DWI) is sensitive to self-diffusion of water molecules

in tissue and will therefore be affected by alterations in local tissue microstructure. Typically, multiple different brain images are

acquired using DWI, with each one sensitized to diffusion in a different direction in space. This provides, for each brain voxel, a

series of measurements describing the amount of water diffusion measured along a particular direction in space. Mathematical

models can be fit to those measurements, with the complexity of the possible models depending in part on the number of direc-

tions sampled. The most commonly usedmodel is the diffusion tensor model (DTI), in which diffusion at each voxel is described by

a tensor or ellipsoid. This allows for voxel-wise estimation of several useful model parameters, such as fractional anisotropy (FA),

which estimates the directional dependence of the water diffusion, or mean diffusivity (MD), which estimates the average diffusion

across all directions. In WM, water diffusion is highly directionally dependent as water diffuses more easily along the axis of a fiber

bundle than across it, due to physical barriers such as cell membranes or myelin. As such, FA is modulated by several features,

which we will collectively refer to as ‘‘white matter microstructure’’ (Box 2) (Zatorre et al., 2012). For instance, high axon packing

density and low axon diameter translate into high FA values in organized WM due to high membrane density perpendicular to the

axon (Takahashi et al., 2002; Zatorre et al., 2012). Although myelin is not necessary for anisotropy, FA is altered when myelin is

absent or damaged, with the absence of myelin decreasing FA values up to 20% in mouse models (Beaulieu and Allen, 1994;

Gulani et al., 2001).

DTI is very sensitive to changes in microstructure, but it has limitations. While the tensor model is useful in regions of highly

coherent fiber structure, it is more difficult to interpret in areas with fiber crossing or complexity, where there is more than one fiber

direction. In addition, DTI parameters are nonspecific since there is not a direct correspondence between a DTI-derived value and

a WM cellular component. Recently, more specific diffusion acquisition and analysis techniques have been developed to bypass

some of the traditional DTI limitations. For instance, onemethod, called ‘‘Axcaliber,’’ uses amodel of intra-axonal and extra-axonal

diffusion to estimate the average axon caliber and density in a particular voxel that typically would contain thousands of axons,

potentially of varying sizes (Assaf et al., 2008; Barazany et al., 2009). Other techniques, such as neurite orientation dispersion

and density (NODDI) (Zhang et al., 2012) and composite hindered and restrictedmodel of diffusion (CHARMED) (Assaf and Basser,

2005), allow for an estimation of fiber dispersion, orientation, and density.

There has been considerable effort put into developing MRI techniques that are sensitive to more specific cellular components,

particularly myelin. T1-weighted imaging is a non-quantitative type of structural image that has been traditionally used to extract

information about volume, density, or thickness of gray matter. Interestingly, most of the contrast in T1-weighted images is

provided by myelin and iron content (St€uber et al., 2014). T1 weighted/T2 weighted ratio images can be used to calculate ‘‘myelin

maps’’ and facilitate the identification of cortical areas based on regional differences in myelin (Glasser and Van Essen, 2011).

Moreover, high-resolution quantitative T1 or 1/T1 maps reflect myeloarchitecture in cortical areas (Eickhoff et al., 2005; Sereno

et al., 2013; Tardif et al., 2015). While T1 maps seem to reflect myelin content in the cortex in high-resolution images (St€uber

et al., 2014), this is yet to be validated in WM.

Magnetization transfer (MT) is another MRI technique that indirectly detects water bound to macromolecules such as lipids and

proteins and is thus sensitive to myelin (Kucharczyk et al., 1994). MT ratio (MTR) imaging is a semi-quantitative technique that

is calculated from an MT-saturated image and a non-MT-saturated image. MTR maps are found to correlate with myelin (Barkhof

et al., 2003; Schmierer et al., 2004) and have a short acquisition time at relatively high resolution. However, this method, as with any

non-quantitative or semi-quantitative method, has several disadvantages, including a lack of standardization across imaging

centers, making it hard to compare results (for review, see Alexander et al., 2011). Quantitative MT (qMT), on the other hand,

provides a better characterization of the underlying tissue than MTR and is more sensitive and specific to myelin (Schmierer

et al., 2007; Sled et al., 2004). For instance, it has been demonstrated that qMT is able to show regional differences in WM of

healthy participants that are related to tissue myelination (Sled et al., 2004) and that qMT measures reflect myelination in multiple

sclerosis (Schmierer et al., 2007). However, the higher specificity and sensitivity come at the expense of resolution, coverage, and

scan time (Henkelman et al., 2001; Schmierer et al., 2008, 2010).

In conclusion, structural MR measures are nonspecific and multimodal approaches can provide a more detailed picture of the

cellular mechanisms that underlie WM plasticity in humans. Recent developments in MRI acquisition and analysis techniques

are now allowing for a more specific characterization of the underlying tissue and higher sensitivity, but more work is needed

on validation and optimization of these methods. Such advances will greatly enhance our ability to interpret neuroimaging

measures of WM plasticity in cellular terms (Box 3).

Neuron

Review
Environmental and Social Factors

Social and physical environments affect WM structure not only

during development, but also in adulthood, though evidence of

exactly what properties of the WM are altered by these environ-

mental effects is mixed. For instance, 4-month-old rats (roughly
equivalent in age to human young adults) housed in an enriched

environment for 2 months were found to have a higher area of

unmyelinated axons and glial cells in the corpus callosum

(Markham et al., 2009). This study suggests that myelination

may be less sensitive to experience in adulthood. However, a
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Box 2. White Matter Microstructure and White Matter Integrity: What Do They Mean?

In neuroimaging, WMmicrostructure is often used as a shorthand to refer to the WM features present at the microscopic level that

canbe indirectlymeasuredbyMRmethods such as diffusion imaging. The specific features referred towill dependon the sensitivity

of the method in question. For diffusion imaging, this would include, for example, axon diameter and density, fiber organization,

myelin content, glial cells, and the condition or permeability of themembrane. As such, any change or group difference in ameasure

derived fromdiffusion imaging (e.g., FA,MD, radial diffusivity [RD], etc.)may reflect a change or difference in any of these underlying

microstructural features. WM integrity is another commonly used term, typically used interchangeably with WM microstructure.

However, as the term ‘‘integrity’’ (or rather its inverse) carries implications of pathology or degeneration, in this review we favor

the expression ‘‘white matter microstructure’’ as most of the examples we will discuss are not from a pathological context.
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different study reported an increase in volume of myelinated

fibers and myelin sheaths in the corpus callosum with 4 months

of environmental enrichment in 14-month-old rats (equivalent in

age to human older adults) (Zhao et al., 2012). The discrepancy

between the studies might be due to differences in the age of

the animals as well as to the duration of enrichment exposure.

Social experience seems to play a particularly important role in

myelination of the prefrontal cortex. For example, studies in mice

suggest there is a critical period for social experience to induce

normal prefrontal cortex myelination very early in life (Makinodan

et al., 2012). However, later experience can then alter prefrontal

myelin: 8 weeks of social isolation in adulthood was found to

decrease myelin thickness in the graymatter of mouse prefrontal

cortex but had no effects in the corpus callosum (Liu et al., 2012).

Lifestyle Factors: Exercise and Sleep

Our lifestyle choices are increasingly recognized to influence our

cognitive health throughout life (Peel et al., 2005). Consistent

with this, there is growing evidence of associations between

lifestyle factors and measures of brain structure and function

(Erickson et al., 2014; Jackson et al., 2016). Aerobic exercise

has been extensively reported to have an impact on gray matter

volume of the hippocampus as measured by neuroimaging

(Erickson et al., 2011; Thomas et al., 2016), but the underlying

cellular drivers for gross changes following exercise interven-

tions detected using neuroimaging remain unclear. Animal

studies provide consistent evidence that exercise increases

neurogenesis and angiogenesis within the hippocampus (van

Praag et al., 1999a, 1999b). One human study demonstrates

increased blood volume in the same region after an exercise

intervention (Pereira et al., 2007). But another study reported

that an increase in hippocampal volume was more consistent

with an increase in myelin than with an increase in vasculature

in an exercise study using a range of multi-modal imaging

metrics (Thomas et al., 2016).

There are also a few reports of associations between physical

activity and WM structure. For instance, cross-sectional studies

suggest a correlation between WM structure and amount of

physical activity in older adults (Burzynska et al., 2014; Tian

et al., 2015). A recent meta-analysis of 29 studies reported a

small but significant positive association between physical

activity and measures of WM structure (Sexton et al., 2016).

The potential relevance of this association is highlighted by a

recent study reporting that WM microstructure mediates the

relationship between fitness and cognitive performance in older

adults (Oberlin et al., 2016). In this study, a mediation analysis

showed that fitness levels were associated with higher FA in
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WM, which, in turn, may help to preserve spatial memory perfor-

mance in older adulthood (Oberlin et al., 2016). There is also

some longitudinal evidence that 6 months of exercise results in

increases in the volume of the anterior corpus callosum in elderly

adults (Colcombe et al., 2006), while a 1 year intervention didn’t

result in microstructural changes in WM (Voss et al., 2013).

Rodent studies suggest that running promotes OPC proliferation

and differentiation in gray andWM regions (Ehninger et al., 2011;

Matsumoto et al., 2011; McKenzie et al., 2014; Simon et al.,

2011), which might partially contribute to changes in WM or

myelin measures seen in humans.

Another lifestyle factor that may influence cognitive and brain

measures is sleep. Sleep is present across animal species and is

thought to be necessary for neural network homeostasis (Tononi

and Cirelli, 2003), learning, and memory consolidation (Maquet,

2001). It is well established that sleep is important for motor

consolidation in humans (Fischer et al., 2002; Walker et al.,

2002) and rodents (Gulati et al., 2014; Hanlon et al., 2009) and

that slow waves during sleep reflect the recent neuronal

activation and synaptic plasticity (Tononi and Cirelli, 2006). A

recent study has found a correlation between WM variation

and individual sleep oscillations in healthy individuals (Piantoni

et al., 2013), suggesting that the sleep oscillations could be

related not only to local cortical networks, but also to long-range

structural connectivity.

There is recent evidence that the awake-sleep cycle might

play a role in WM maintenance (Bellesi et al., 2013). Some

cross-sectional human studies have reported that insomnia is

associated with lower FA in WM regions (Li et al., 2016; Spiegel-

halder et al., 2014). Rodent studies show that OPC proliferation

increases during sleeping hours while differentiation is higher

during the awake period (Bellesi et al., 2013). It is possible that

abnormal sleeping patterns interrupt the proliferation phase of

the OPCs that might play a role inmyelin maintenance. However,

cross-sectional studies cannot clarify if lower FA is caused by

abnormal sleeping patterns or vice versa. Longitudinal studies

are necessary to investigate if an improvement in sleeping pat-

terns, for instance through pharmacological interventions, can

result in a positive change in WM structure.

Conclusions
These are exciting times for the field of WM plasticity, with

enormous opportunity for fundamental new discovery. There is

mounting evidence that WM change plays an important and

previously neglected role in learning and plasticity throughout

life. Recent years have seen particular advances in our



Box 3. What Cellular Changes Are Most Likely to Underlie Neuroimaging Findings of White Matter Plasticity?

When speculating about the cellular changes that are most likely to underlie neuroimaging findings of WM plasticity, a number of

questions need to be considered, including the following: What tissue properties are the neuroimaging metrics in question sensi-

tive to (Box 1)? What cellular changes are plausible consequences of the experimental manipulation being studied? What are the

likely cellular contents of our imaging voxels?

In response to this last question, a recent report attempted to estimate, using confocal imaging of immunofluorescent markers of

cell bodies and electronmicroscopy, the composition of such a volume (Walhovd et al., 2014). The authors estimated that a volume

of 100 3 100 3 100 mm of rodent WM contains between 1,000 and 13,000 axons, plus an average of 86 oligodendrocytes, 22

astrocytes, 6.5 OPCs, and 9.5 microglia; astrocytes’ processes and oligodendrocytes were found to each cover 48% of the

assessed area. The authors extrapolated that a 2 3 2 3 2 mm voxel, commonly used in human diffusion imaging studies, and

assuming similar axon density in humans and rodents, would contain between 0.5 and 5 million axons, 700,000 oligodendrocytes,

185,000 astrocytes, 52,000 OPCs, and 76,000 microglia. The authors acknowledge, however, that these estimates should be

considered with caution since there is not a linear relation to total brain volume and little is known about how these cell sizes

and densities scale across species. For instance, it has been reported that human astrocytes are two times bigger and occupy

a larger volume than those in rodents (Herculano-Houzel, 2014). Thus astrocytes (Figure 2D), along with myelin and oligodendro-

cytes, would be expected to make a large contribution to any voxel measurements in humans (Walhovd et al., 2014).

Considering the few studies that have combined WMMRI and histological measures in relation to learning and experience, myeli-

nation has been consistently been found to be involved (Blumenfeld-Katzir et al., 2011; Sampaio-Baptista et al., 2013), though few

alternative cellular changes have been quantified for comparison. These studies are unable to distinguish between de novomyeli-

nation and myelin remodeling by preexisting oligodendrocytes. Considering the small number of OPCs present in each voxel, it is

more likely that the main contribution to the FA changes is related to preexisting oligodendrocyte remodeling, such as change in

internode length and/or thickness. Although de novomyelination from recently differentiated OPCs has been found to be important

for motor acquisition (McKenzie et al., 2014; Xiao et al., 2016), it is likely to have a small contribution to the neuroimaging findings in

human studies. Future studies using the same transgenic strains have the potential to clarify and estimate the real contribution of

de novo myelination to the MRI measures. Timescale is a crucial factor in assessing the contributions of each myelin-related

mechanism. For instance, with long timescales, such as weeks or months, the potential contribution of de novo myelination to

the MRI signal is longer, as more time would be available for OPC proliferation, differentiation, and myelination. Additionally,

changes in nodes of Ranvier size are functionally important (Arancibia-Cárcamo et al., 2017), but studies estimating their impact

on neuroimaging measures are lacking.

As mentioned above, astrocytes’ contribution to the overall signal is likely to be significant given the large volume they occupy

(Walhovd et al., 2014). There are few neuroimaging studies that have assessed DTI changes in relation to changes in astrocytes,

and they are mainly in gray matter (Blumenfeld-Katzir et al., 2011; Johansen-Berg et al., 2012; Sagi et al., 2012). Future studies of

WM plasticity should consider assessing the contribution of astrocytes relative to axons and myelin, and assessing astrocyte

function in the context of learning and experience.
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understanding of activity-dependent myelination. Progress has

been accelerated in part through methodological advances.

These include methods for manipulating brain circuits, for

example through optogenetic stimulation; techniques for inter-

fering with key cellular processes, such as transgenic or pharma-

cological manipulation; and new approaches for monitoringWM,

like in vivo imaging in animal models as well as in living humans.

Such rapid advances in our understanding give rise to scores

of fundamental unanswered questions. For example, is activity

along an axon sufficient to drive myelin plasticity or do myelin

changes depend on ‘‘learning’’ (i.e., plasticity at the synapse)

occurring? If the latter, then what signals allow for synaptic

plasticity to be communicated to the oligodendrocytes? Do

particular types of activity preferentially drive myelin plasticity?

To what extent do changes in other features of the myelinated

axon, such as axon diameter or node length, alter with experi-

ence or learning? Are local changes in myelin used to regulate

signal timing across distributed circuits? If so, then what

signals communicate effective synchronization back to the

oligodendrocyte? Can activity-dependent process decrease,

as well as increase, myelination?
Addressing these questions requires investigations that span

across scales. Continued technological advances will help to

fuel these investigations. For example, advances in automated

methods for volumetric reconstruction of tissue at ultrastruc-

tural resolution (Briggman and Bock, 2012), alongside efforts

to build models to translate between MRI signals and micro-

scopy (Chen et al., 2013; St€uber et al., 2014), will help both to

push the boundaries of investigation and to relate evidence

across scale. Such cross-scale opportunities bring us closer

to bridging the gap between fine-grained molecular mecha-

nisms of WM plasticity and understanding the role it plays in

complex behavior and learning.
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Kempermann, G. (2011). Enriched environment and physical activity reduce
microglia and influence the fate of NG2 cells in the amygdala of adult mice.
Cell Tissue Res. 345, 69–86.

Eickhoff, S., Walters, N.B., Schleicher, A., Kril, J., Egan, G.F., Zilles, K.,
Watson, J.D., and Amunts, K. (2005). High-resolution MRI reflects myeloarch-
itecture and cytoarchitecture of human cerebral cortex. Hum. Brain Mapp. 24,
206–215.

Erickson, K.I., Voss, M.W., Prakash, R.S., Basak, C., Szabo, A., Chaddock, L.,
Kim, J.S., Heo, S., Alves, H., White, S.M., et al. (2011). Exercise training
increases size of hippocampus and improves memory. Proc. Natl. Acad.
Sci. USA 108, 3017–3022.

Erickson, K.I., Leckie, R.L., and Weinstein, A.M. (2014). Physical activity,
fitness, and gray matter volume. Neurobiol. Aging 35 (Suppl 2 ), S20–S28.

Etxeberria, A., Hokanson, K.C., Dao, D.Q., Mayoral, S.R., Mei, F., Redmond,
S.A., Ullian, E.M., and Chan, J.R. (2016). Dynamic modulation of myelination
in response to visual stimuli alters optic nerve conduction velocity.
J. Neurosci. 36, 6937–6948.

Fields, R.D. (2008). Oligodendrocytes changing the rules: action potentials in
glia and oligodendrocytes controlling action potentials. Neuroscientist 14,
540–543.

Fields, R.D. (2015). A new mechanism of nervous system plasticity: activity-
dependent myelination. Nat. Rev. Neurosci. 16, 756–767.

Fischer, S., Hallschmid, M., Elsner, A.L., and Born, J. (2002). Sleep forms
memory for finger skills. Proc. Natl. Acad. Sci. USA 99, 11987–11991.
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