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Steroidogenic control of liver metabolism
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ABSTRACT

Objective: Coupling metabolic and reproductive pathways is essential for the survival of species. However, the functions of steroidogenic
enzymes expressed in metabolic tissues are largely unknown.
Methods and results: Here, we show that in the liver, the classical steroidogenic enzyme Cyp17a1 forms an essential nexus for glucose and
ketone metabolism during feed-fast cycles. Both gain- and loss-of-function approaches are used to show that hepatic Cyp17a1 is induced by
fasting, catalyzes the production of at least one hormone-ligand (DHEA) for the nuclear receptor PPARa, and is ultimately required for maintaining
euglycemia and ketogenesis during nutrient deprivation. The feedback-loop that terminates Cyp17a1-PPARa activity, and re-establishes anabolic
liver metabolism during re-feeding is mapped to postprandial bile acid-signaling, involving the receptors FXR, SHP and LRH-1.
Conclusions: Together, these findings represent a novel paradigm of homeostatic control in which nutritional cues feed-forward on to metabolic
pathways by influencing extragonadal steroidogenesis.

� 2019 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. INTRODUCTION

Metabolic and reproductive pathways are intimately linked. In mam-
mals, nutritional cues govern fertility, at least in part, by modulating the
activity of classical steroidogenic enzymes in the gonads [1]. However,
many of these enzymes are also expressed in metabolic tissues [2].
One example is the cytochrome P450 enzyme Cyp17a1, which has
both 17a-hydroxylase activity and 17,20-lyase activity. It catalyzes
intermediate reactions in the synthesis of all steroid hormones, via the
intermediate dehydroepiandrosterone (DHEA) [3]. Cyp17a1 is also
expressed in organs that are considered non-steroidogenic, including
the liver, where its function is largely unknown [4,5].
Metabolic regulation by the liver is under the control of extra-hepatic
hormones and nutrient-sensing members of the nuclear receptor
class of transcription factors. For example, the PPARa is activated by
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circulating free fatty acids and is considered a master regulator of the
adaptive starvation response [6e9]. By contrast, the FXR is activated
postprandially by bile acids returning to the liver from the intestine [6].
As such, FXR and PPARa can directly drive expression of genes
involved in anabolic and catabolic processes, respectively, in the liver.
However, FXR can also act as a trans-repressor of gene expression. In
the bile-acid synthesis pathway, for example, FXR induces the
expression of the small heterodimer partner (SHP), which represses
expression of Cyp7a1 by preventing binding of the liver receptor
homologue 1 (LRH1) to its promoter [10]. Intriguingly, FXR is also
expressed in steroidogenic cells of the gonads [11], many of its target-
genes are P450-enzymes, and bile acids themselves are steroid-like
molecules that provide feedback on its activity [12]. As such, FXR
may potentially represent a previously unexplored integrator of
metabolic and steroidogenic processes.
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Here, we have discovered that the steroidogenic enzyme Cyp17a1 is
repressed by FXR-action in the liver in the fed-state. However, during
starvation, Cyp17a1 is de-repressed and produces a hormone-ligand
(DHEA) for PPARa. We show that hepatic Cyp17a1-dependent
PPARa-activity is essential for the maintenance of fasting glucose
and ketone levels. As such, this axis represents an important new link
between extra-gonadal steroidogenic-pathways and a nutrient-
responsive nuclear receptor network in a metabolic tissue.

2. MATERIALS AND METHODS

2.1. Animal experiments
Experiments were approved by the ethics committee of the University
Medical Center Utrecht and were in accordance with European law 9e
12 or performed in accordance with the UK Animals (Scientific Pro-
cedures) Act 1986. All animals were housed in a room with controlled
temperature (20e24 �C), a 12 h light dark cycle, and free access to
food and water.

2.2. Plasmid constructs
Approximately 2.5 kb of the human CYP17A1 promoter was amplified
by PCR using the following primer pair: human, 50-gatcggtaccA-
TAGCACACCATATTCCTAC-3’ (sense); and human, 50-gatcgctagcG-
TAAGCAGCAAGAGAGCCACG-3’ (antisense). The resultant fragment
was inserted into the Kpn1 and Nhe1 site of pGL3-Basic, a promoter-
less luciferase reporter vector (Promega, Madison, WI). The pGL3-
ratCYP7A1 promoter construct and pCMX-hSHP [10] were provided
by Prof Steve Kliewer (UT Southwestern Medical Center, Dallas, TX).
The pBABE-hLRH1 plasmid was a gift from Dr Mark Christian (Imperial
College, London).

2.3. AAV injections
AAV8 particles (5x10e12gc/kg) produced according to standard pro-
tocols and quantified by qPCR were injected in to the tail-vein of mice.
The constructs shCyp17a1, shControl contained a short hairpin to-
wards Cyp17a1 or a scrambled control behind the H1 promoter. In
Cyp17a1, and GFP the transgene expression was driven off the liver-
specific LP1-promotor.

2.4. RNA isolation, cDNA synthesis and RT-qPCR
Total RNA of mouse tissue was isolated using TRIzol reagent (Invi-
trogen, Carlsbad, CA). RNA was reverse transcribed using the iScript
cDNA Synthesis Kit (Bio-Rad Laboratories, Hercules, CA). Real-time
PCR was carried out on a MyIQ real time PCR thermal cycler (Bio-
Rad). mRNA expression of genes of interest was normalized to
Cyclophillin. Primers sequences are as published [13], purchased from
Sigma Aldrich, or available on request.

2.5. Immunoblotting
Liver tissue extracts were extracted and protein concentration was
assessed (Thermo Scientific, Waltham, MA). Western blots were
probed with antibodies against Cyp17a1 (1:500, sc-46081, Santa Cruz
Biotechnology, Dallas, TX) and a-actin (1:5000, ab8224, Abcam,
Cambridge, UK). Immunoreactivity was detected with horseradish
peroxidase-conjugated antibodies and chemiluminescence (DAKO,
Agilent Technologies, Santa Carla, CA).

2.6. Electro mobility shift assays
LRH-1 protein was in vitro translated using the TNT Quick Coupled
Transcription/translation system (Promega). Binding reactions con-
tained 25 mM Hepes pH 7.9, 1 mM EDTA, 0,5 mM EGTA, 5% glycerol,
222
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1% NP-40 50 mM NaCl, 20mMDTT, 1 mg of poly (dI-dC), and 2 ml
in vitro translated LRH-1. Samples were pre-incubated at room tem-
perature for 5 min prior to the addition of 32P-labeled double-stranded
oligonucleotide probes as indicated. Where indicated, LRH-1 antibody
or cold specific or non-specific (CYP17a1 or Cyp17a1 RE) probes were
added to the pre-incubation mix at a 12-fold molar excess. Samples
were held at room temperature for further 30 min, and the protein-DNA
complexes were resolved on a pre-electrophoresed 5% polyacrylamide
gel in 0.5 � TBE. [32P]-labelled probes were detected by
autoradiography.

2.7. Chromatin immuno precipitation
30 mg of snap-frozen liver tissue from WT mice was cross-linked
using DSG and formaldehyde, as described [14]. The nuclei were
extracted and sonicated to yield 500e1,000 base-pair (bp) DNA
fragments. ChIP was performed like previously described [15], using
an anti-LRH1 antibody (PP-H2325-00, R&D Systems, Minneapolis,
MN) or IgG as control. Primer sequences are available on request.

2.8. Reporter assays
HEK293T cells were grown in 96-multiwell plates and co-transfected
with empty pGL3-IBABP, pGL3-Cyp17a1, CMV-Renilla and either
empty vector, pCMX-hSHP, or pBABE-hLRH-1 in presence or absence
of different amounts of pCMX-hSHP using calcium phosphate. After
24 h, cells were incubated with DMSO and GW4064 as indicated. Cells
were lysed after 24 h, and Firefly and Renilla luciferase activity were
measured according to manufacturer’s instructions (Promega) with a
Centro LB 960 luminometer (Berthold Technologies, Chollerstr,
Switzerland).

2.9. Plasma and liver extract analyses
Serum samples were assayed by the UVDL (University Veterinary
Diagnostic Laboratory, Utrecht University), or by ELISA (b-hydrox-
ybutyrate (Sigma)), or colorimetric assay (glucose (Sigma)). For liver
extracts, 100-mg piece were weighed and homogenized in a 3:2
mixture of ethyl acetate to hexane. The organic layer was removed
after over-night incubation and centrifugation, and evaporated. The
residue was resuspended in PBS containing 5 mg/ml BSA and assayed
for 17-OHP or DHEA by ELISA.

2.10. Mass spectrometry and Data Analysis
Liver protein extracts were generated by homogenizing 50 mg liver
tissue in PBS and subsequent lysis in Lysis Buffer (1% NP40, 150 mM
NaCl, 1 mM DTT, 50 mM Tris pH 8.0, Proteinase inhibitors (Roche,
Basel, Switzerland)). 100 mg protein extract from Wt or FXR�/- mice
(‘light’) were mixed 1:1 with a spike-in protein extract generated from
13C6-lysine metabolically labelled mouse liver (‘heavy’) (Silantes,
Munich, Germany). Proteins were denatured in urea, alkylated with
iodoacetamide (SigmaeAldrich, S Louis, MO), and digested with 1 mg
of trypsin (Promega) using a Filtered Aided Sample Purification Protocol
[16]. After trypsinization, peptides were fractionated based on their pH
using Strong Anionic Exchange Chromatography, desalted, and acid-
ified on a C-18 cartridge (3M, St. Paul, MN). C18-stagetips were
activated with methanol and washed with buffer containing 0.5%
formic acid in 80% ACN (buffer B) and then with 0.5% formic acid
(buffer A). After loading of the digested sample, stagetips were washed
with buffer A and peptides were eluted with buffer B, dried in a
SpeedVac, and dissolved in buffer A. Peptides were separated on a
30 cm column (75 mm ID fused silica capillary with emitter tip (New
Objective, Woburn, MA)) packed with 3 mm aquapur gold C-18 material
(Dr Maisch, Ammerbuch-Entringen, Germany) using a 4-hour gradient
MOLECULAR METABOLISM 30 (2019) 221e229
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Figure 1: Bile acid signaling regulates hepatic Cyp17a1 expression during feed-fast cycles. (A and B) Hepatic Cyp17a1 mRNA and protein expression in response to fasting
(16 h) and re-feeding (6 h). (C and D) Cyp17a1 mRNA and protein expression in mice fed a control diet or a diet supplemented with 0.5% cholic acid for the indicated number of
days. (E) Hepatic Cyp17a1 expression in wild-type and FXR�/- mice fed a control diet or a 0.5% cholic acid-supplemented diet for 7 days. (F) Hepatic Cyp7a1 and Cyp17a1 mRNA
expression in mice injected with vehicle or recombinant FGF19. N ¼ 5e6. *p < 0.05 compared to control. #p < 0.05 compared to WT.
(buffer A to buffer B), and delivered by an easy-nHPLC (Thermo Sci-
entific). Peptides were electro-sprayed directly into a LTQ-Verlos-
Orbitrap (Thermo Scientific) and analyzed in data-dependent mode
with the resolution of the full scan set at 60000, after which the top 10
peaks were selected for CID fragmentation in the ion trap with a target
setting of 5000 ions. Raw files were analyzed with Maxquant software
version 1.5.1.0 [17]. For identification, the mouse Uniprot 2012
database was searched with peptide and protein false discovery rates
set to 1%. The SILAC quantification algorithm was used in combination
with the ‘match between runs’ tool (option set at two minutes), the
IBAQ and the LFQ algorithms [18,19]. Proteins identified with two or
more unique peptides were filtered for reverse hits, decoy hits and
standard contaminants using Perseus software 1.3.0.4 [20]. Normal-
ized ratios were used to quantify protein expression and further pro-
cessed for comparative analysis of differential expression among the
experimental conditions. Pathway and ontology analyses were per-
formed by Ingenuity Pathway Analysis (IPA) (Qiagen, Hilden, Germany).
A fold change greater than 1.3 between groups was used to select
proteins as input for Ingenuity pathway analysis. Statistical significance
of pathway enrichment and upstream regulator analyses were
MOLECULAR METABOLISM 30 (2019) 221e229 � 2019 The Authors. Published by Elsevier GmbH. This i

www.molecularmetabolism.com
assessed by using IPA software. For the upstream regulator analysis,
p-value measures whether there is a statistically significant overlap
between the dataset genes and the genes that are regulated by a
transcription factor/hormone/compound, based on the published data
included in Ingenuity database. The mass spectrometry data have been
deposited to the PRIDE Archive - proteomics data repository.

2.11. Statistics
See Mass Spectrometry and Data Analysis for statistical methods
relating to proteomics. In all other cases a student’s t-test with multiple
test correction, as appropriate, was used to determine differences
between groups with a p-value <0.05 selected as statistically
significant.

3. RESULTS

3.1. Hepatic Cyp17a1 expression is regulated by feed-fast cycles
via bile-acid:FXR signaling
Expression of the steroidogenic enzyme, Cyp17a1, is dramatically
regulated by feed-fast cycles in the liver. Over-night fasting induced
s an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 223
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hepatic Cyp17a1 over 10-fold, while six-hours of re-feeding repressed
hepatic Cyp17a1 back to ad-libitum fed levels (Figure 1A and B). We
therefore aimed to investigate the transcriptional regulation, and
functional significance, of Cyp17a1 in the liver during feeding and
fasting.
Bile acids, which return to the liver postprandially, have been sug-
gested to represent the fed-state signal responsible for repressing
anabolic liver metabolism [21,22]. Therefore, we hypothesized that bile
acids may be responsible for repressing hepatic Cyp17a1 in the fed-
state. This was initially tested by conducting a time-course experi-
ment in mice fed a diet supplemented with the bile acid cholic acid. It
rapidly and dramatically decreased expression of Cyp17a1 mRNA and
protein expression in liver (Figure 1C and D).
Next, to investigate the role of this receptor in the physiological
regulation of hepatic Cyp17a1 by bile acids, mice lacking the bile acid
sensor FXR [23] were used. During ad-libitum feeding, Cyp17a1
expression was found to be significantly elevated in the livers of FXR�/-

mice compared to wild-type controls (Figure 1E). Thus, FXR physio-
logically suppresses hepatic Cyp17a1 during periods of nutrient
availability. We corroborated our findings by showing that FXR was also
required for the repressive effects of cholic-acid on Cyp17a1 expres-
sion (Figure 1E) This pattern of expression mirrors that of the proto-
typical indirect FXR target gene, Cyp7a1 (Supplementary Fig. 1A and
[10]). However, unlike Cyp7a1 [24], the expression of Cyp17a1 is not
224
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repressed by the gut-hormone FGF15/19 (Figure 1F). As such, hepatic
Cyp17a1 is likely to be regulated by a liver-autonomous FXR-signaling
axis. Indeed, we found that the regulation of Cyp17a1 by bile acids and
FXR is liver-specific, as we saw no changes in expression in the ad-
renal or the ovary (Supplementary Fig. 1B. Taken together, these data
demonstrate that bile acid signaling via FXR suppresses hepatic
Cyp17a1 expression, in a liver-autonomous manner, in the fed-state.

3.2. Nuclear receptors FXR, SHP, and LRH-1 regulate Cyp17A1
promoter activity
In the liver, FXR represses the rate-limiting enzyme in bile acid syn-
thesis, CYP7A1 through a nuclear receptor cascade. It induces the
expression of NR0B2 (SHP), which in turn inhibits LRH-1-mediated
transcription of CYP7A1 [10]. To begin to investigate whether
CYP17A1 expression is similarly regulated, we performed a search for
potential LRH-1 binding sites in the CYP17A1 promoter. A motif,
containing only one mismatch with the consensus LRH-1 site, was
identified at position �107 to �99bp upstream of the CYP17A1 start
codon (Figure 2A). LRH-1 was found to bind this site in mobility shift
assays using the CYP7A1 motif as a positive control (Figure 2B). The
binding was specific because cold-probe competition completely
prevented binding, co-incubation with LRH-1 antibodies super-shifted
the complex, and mutation of the motif also prevented binding
(Figure 2B). Finally, chromatin immunoprecipitation assays confirmed
MOLECULAR METABOLISM 30 (2019) 221e229
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Figure 3: Hepatic Cyp17a1 affects lipid handling by producing a ligand, DHEA, for PPARa. (A and B) Forced expression of Cyp17a1 directed specifically to the liver and
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that LRH-1 also binds to the CYP17a1 promoter in mouse liver
(Figure 2C).
To ascertain whether LRH-1 binding to the CYP17A1 promoter results
in transcriptional activation, a CYP17A1 reporter construct containing
the LRH-1 binding site was cloned and co-transfected with increasing
amounts of LRH-1 and/or SHP expression-plasmid. An identical
experiment was conducted using the CYP7a1-promoter as a positive-
control (Supplementary Fig. 2 and [10]). CYP17A1 reporter activity
increased in response to co-transfected LRH-1, and also decreased in
response to co-transfected SHP (Figure 2D). These data identify
CYP17A1 as a novel molecular target of the FXR-signaling axis in liver
in the post-prandial state.

3.3. Cyp17a1 catalyzes the formation of DHEA, which activates the
nutrient-sensor PPARa
In order to investigate the function of Cyp17a1-activity in the liver, an
AAV-mediated gain-of-function approach was undertaken to elevate
the levels of the enzyme in the liver using a tissue-specific promoter
(Figure 3A). Briefly, the mouse Cyp17a1 gene was cloned downstream
of the liver-specific LP1-promoter, packaged in to adeno-associated
virus particles (AAV) that were injected into the tail vein of mice. An-
imals were sacrificed six-weeks after injection, and we confirmed that
Cyp17a1 mRNA and protein expression was significantly increased in
liver following AAV-Cyp17a1 injection (Figure 3B and Supplemental
Fig. 3).
Subsequently, we conducted SILAC-based proteomics [25] on liver
tissue. Briefly, liver protein extracts (containing ‘light’ lysine) were
mixed 1:1 with a spike-in protein extract from 13C6-lysine metabol-
ically labeled mouse liver (containing ‘heavy’ lysine) and analysed by
LC-MS/MS. Significant expression differences between GFP-control
and Cyp17a1-overexpression are depicted in a Volcano Plot
(Figure 3C). As expected, Cyp17a1 represented the most significantly
induced protein (Figure 3C and Supplementary Table 1). We sub-
jected all proteins affected greater than 1.3-fold by Cyp17a1 over-
expression to Upstream Regulator Analysis of the Ingenuity
Pathway Analysis software package to predict upstream regulators of
the changed protein signatures. By comparing the obtained differ-
entially changed protein signatures and comparing them to the
Ingenuity Knowledge Base, p-values were assigned based on sig-
nificance of enrichment of the expression data for the proteins
downstream of an upstream regulator. We found that the fasting-
state nuclear receptor for fatty acids [7], PPARa, was the most
significantly enriched Upstream Regulator in the Cyp17a1-
overexpression group (Figure 3D).
In subsequent q-PCR analyses, we found that known lipid- and
PPARa-regulated gene-transcripts were significantly induced in the
livers of Cyp17a1 over-expressing animals. Indeed, we found sta-
tistically significant increases in the expression of a number of lipid-
regulatory genes including those for fatty acid synthesis (Fasn),
gluconeogenesis (Pepck), and metabolic regulation Pgc1a, Fgf21
(p ¼ 0.07)) (Supplementary Fig. 4A). These gene-expression
changes, induced by over-expression of Cyp17a1 in the liver, also
affected whole-body metabolic parameters. For example, plasma
triglycerides and free fatty acids were decreased, and a trend to-
wards elevated blood glucose levels was observed (Figure 3E).
Cyp17a1 expression also increased plasma cholesterol, HDL, and
LDL levels, but there was no effect on plasma insulin or circulating
bile acids (Supplementary Fig. 4B). In summary, these data show
that enhanced Cyp17a1-activity in the liver can drive changes in
hepatic gene-expression that affect whole-body metabolic
parameters.
226
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Because Cyp17a1 may drive PPARa-activation, we hypothesized that
its enzymatic activity catalyzed the production of a PPARa ligand.
Therefore, we measured putative products of the Cyp17a1-reaction in
liver extracts of AAV-Cyp17a1 mice. 17a-hydroxyprogesterone could
not be detected using a commercially available ELISA (Figure 3F).
However, Cyp17a1 is also known to generate dehydroepiandrosterone
(DHEA), which has been shown to activate PPARa [26], and is elevated
during fasting [13]. Indeed, DHEA was significantly increased in the
livers of mice over-expressing Cyp17a1 (Figure 3F). We subsequently
tested whether PPARa-activation specifically drives the metabolic ef-
fects of Cyp17a1-activity in the liver using PPARa�/- mice [27].
Interestingly, despite our proteomic analysis detecting elevated levels
of the PPARa protein, its mRNA expression was not changed
(Figure 3G). This suggests that the product of the Cyp17a1 reaction in
the liver may stabilize the PPARa protein, as has been described for
other PPARa ligands [26]. In addition, we found that the Cyp17a1-
mediated induction of multiple metabolic genes was indeed PPARa-
dependent. Specifically, the Cyp17a1-mediated induction of hepatic
Cpt1, Acc1, Fasn, and Pgc1a were all blunted in the absence of PPARa
(Figure 3G). Together, these data demonstrate that hepatic Cyp17a1
produces a bio-active ligand for PPARa, DHEA, and drives expression
of genes involved in glucose and lipid metabolic processes during
fasting.

3.4. Fasting-induced Cyp17a1 is essential for euglycemia and
ketogenesis
In order to investigate the physiological relevance of hepatic Cyp17a1
activity during fasting, an AAV-mediated loss-of-function approach
was undertaken to reduce the levels of the enzyme in the liver using a
tissue-specific promoter (Figure 4A). Briefly, an shRNA designed to
interfere with the Cyp17a1-transcript was cloned downstream of the
liver-targeted AAV8-shCyp17a1, packaged in to adeno-associated vi-
rus particles (AAV) and injected into the tail vein. Animals were
sacrificed six-weeks after injection, after 24 h fasting. The liver-
targeted siRNA-AAV knockdown was confirmed by western blot
(Figure 4A). Crucially, we found that mice fasted for 24 h with
knockdown of hepatic Cyp17a1 had lower fasting glucose and b-
hydroxybutyrate levels than control-injected mice (Figure 4B). As ex-
pected, plasma DHEA levels trended lower in the KD mice, although the
analysis did not reach statistical significance (Figure 4B). This was
accompanied by reduced expression of a number of PPARa target
genes, including Cpt1, Fasn, and Fgf21 (Figure 4C). Acc1 and Pgc1a
also trended lower (Figure 4C). This experiment demonstrates a critical
role for hepatic Cyp17a1 as part of the adaptive starvation response in
mice. Perturbing its activity blunts the induction of PPARa target-
genes, and decreases systemic energy availability in the form of
both glucose and ketones. These findings are consistent with an
interpretation that extra-gonadal steroidogenesis by Cyp17a1, which
becomes active during fasting due to reduced bile acid signaling, plays
a key role in survival during nutrient-shortage by driving PPARa
transcriptional-activity in the liver.

4. DISCUSSION

In summary, we have shown that the classical steroidogenic enzyme
Cyp17a1 is expressed in the liver and dramatically regulated by feed-
fast cycles. It is suppressed in the fed-state through a bile-acid
dependent nuclear receptor cascade involving repression of LRH-1
activity by FXR:SHP. Indeed, our promoter activity analyses are
consistent with recent findings that LRH1 itself can also affect liver lipid
levels [28] and that LRH-1 can transactivate steroidogenic enzymes in
MOLECULAR METABOLISM 30 (2019) 221e229
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Figure 4: Hepatic Cyp17a1 is essential for maintaining blood glucose ketone levels during fasting. (A) Knockdown of Cyp17a1 specifically in the liver. (B and C) Fasting liver
DHEA, blood-glucose, and b-hydroxybutyrate levels in mice fasted for 24 h with and without hepatic knockdown of Cyp17a1. (C) PPARa target-gene mRNA expression in fasted
mice in the presence or absence of hepatic Cyp17a1. (D) Schematic summary of findings. n ¼ 7e8, *p < 0.05.
prostate cancer cells [29,30]. During the transition to a fasted-state,
bile acid availability in the liver declines and hepatic Cyp17a1
expression is de-repressed. During fasting it catalyzes the formation of
at least one steroid-ligand, DHEA, which binds and activates the
metabolic regulator PPARa (Figure 4D). While we saw the induction of
some fatty acid synthesis genes in our overexpression experiment, and
this may seem counterintuitive, these results are consistent with the
finding that some SREBP target-genes are upregulated by PPARa-
specific ligands [31,32].
Our loss-of-function data show that Cyp17a1 is an essential
component of the adaptive starvation response. As such, these
findings identify it as a crucial actuator in a model of adaptive liver
MOLECULAR METABOLISM 30 (2019) 221e229 � 2019 The Authors. Published by Elsevier GmbH. This i
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physiology in which the nuclear receptors FXR and PPARa control
anabolic and catabolic processes, respectively [6,33]. Our findings
provide mechanistic and functional relevance to previous observations
that hepatic Cyp17a1 levels are higher in fasted animals [13], and
explain the mechanism by which Cyp17a1 was found to be elevated in
mice lacking both FXR and SHP [5]. Our findings also represent a
novel paradigm in which extra-gonadal steroidogenesis can feed-
forward on to metabolic pathways to drive adaption to nutritional
challenges. Finally, although governed physiologically by prandial
changes in bile acids levels, the ability of hepatic Cyp17a1 to modify
lipid and glucose-handling targets it for potential future intervention in
metabolic disease.
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