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Abstract: Knowing the material properties of individual layers of the corrugated plate structures
and the geometry of its cross-section, the effective material parameters of the equivalent plate can be
calculated. This can be problematic, especially if the transverse shear stiffness is also necessary for
the correct description of the equivalent plate performance. In this work, the method proposed by
Biancolini is extended to include the possibility of determining, apart from the tensile and flexural
stiffnesses, also the transverse shear stiffness of the homogenized corrugated board. The method
is based on the strain energy equivalence between the full numerical 3D model of the corrugated
board and its Reissner-Mindlin flat plate representation. Shell finite elements were used in this
study to accurately reflect the geometry of the corrugated board. In the method presented here,
the finite element method is only used to compose the initial global stiffness matrix, which is then
condensed and directly used in the homogenization procedure. The stability of the proposed method
was tested for different variants of the selected representative volume elements. The obtained results
are consistent with other technique already presented in the literature.

Keywords: corrugated board; numerical homogenization; strain energy equivalence; finite element
method; plate stiffness properties; shell structures; transverse shear

1. Introduction

Corrugated cardboard is widely used as packaging and protective material in almost
all industries. Whenever a product is displayed in shop windows, it is often packaged in
colorful and branded corrugated cardboard packaging. This becomes a required standard
all over the world. The packaging is not only to attract the eye of the customer, but is often
the main protection for the product that is transported to warehouses or directly delivered
to customers by courier companies. Along with the growth of e-commerce, the amount
of packaging that goes to the market also grows. Fortunately, corrugated cardboard is a
material that is not only environmentally friendly, but also easily recycled. These features
largely contributed to the noticeable growth of the corrugated board packaging market
in recent years. As a result of the growing awareness of producers and their customers,
ecological products are gaining in popularity and therefore require more attention.

As long as the corrugated board is made of paper and the paper is made of cellulose
fibers, which mainly come from trees, we must pay particular attention to the sustainable
use of virgin and recycled fibers. The only way to achieve savings in the material used
for the production of packaging is to focus the attention on the optimal selection of the
composition of raw materials and a thorough strength analysis of corrugated board prod-
ucts. Currently, not only simple transport packages need to be optimized, but also more
complex structures, e.g., SRP (shelf ready boxes) or displays. For typical box designs, it
is sufficient to estimate the strength of a corrugated cardboard box on the basis of any
analytical formula found in the literature; from the simplest and most popular [1] to the
more complex [2–7].
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McKee and coworkers developed the formula in which a compressive strength in
cross direction of corrugated cardboard, its thickness and base dimension of the box is
required to provide a simple estimation of the box strength. This approach is only valid for
very simple flap boxes and can be used for regular shaped packages without perforation
and holes. In the recent years many attempts were made to extend the applicability
of simple analytical methods and to improve their accuracy. Allerby and coworkers
modified constants and exponents in original McKee formulation which slightly improved
its accuracy [2]. Schrampfer et al. extended the applicability of the McKee formula for wider
range of boxes [8]. Batelka et al. included all box dimensions in their formula [3], while
Urbanik et al. included also inelastic buckling phenomenon [4]. Recently, the numerical-
analytical formula was proposed by Garbowski et al. to take into account also holes [6]
and perforation [7] in the estimation of the box strength.

The strength of a slender box depends on the compressive strength of the corrugated
board, but also on the critical load that its vertical walls must withstand. Therefore many
research has been devoted to the phenomenon of corrugated board buckling [9–13]. Since
corrugated board is a laminated material with a special fiber orientation, the buckling
analysis requires advances models. Both the orthotropic nature of the material and its
layered cross-section should be taken into account [14]. Therefore, the finite element
method is the most appropriate method to calculate the critical load capacity of panels
made of corrugated board. Especially in the case of complex shapes of such panels or in
the presence of holes and perforations [6,7] where analytical formulas are difficult to apply.

In recent years, to assess the strength of corrugated cardboard structures, both hybrid
methods [4,6,7,15] or purely numerical [16–19] have been increasingly used. A recent
review can be found here [20]. Since corrugated cardboard boxes, fruit trays, displays and
retail ready boxes are very often complex 3D structures loaded in various ways, the finite
element method [21] is most often used for calculations of such structures. Corrugated
board has a soft corrugated core, therefore the traditional Kirchhoff–Love plate theory is
usually replaced with the Mindlin–Reissner shell theory, which also takes into account the
transverse shear in the shell members. This require proper selection of the finite element
(FE), which is of key importance for obtaining the correct results of numerical simulation.
It is known that both triangular and quadrilateral shell FE suffer from a so-called shear
locking. To overcome such limitations, many improvements to the traditional FE have been
proposed in the literature, e.g., Bathe and Dvorkin [22,23], where auxiliary shear modes
were applied. These modes was first used by MacNeal [24,25] and later extended by Done
and Lamain [26] and Onate et al. [27]. This element has been successfully implemented and
used in the work by Garbowski et al. [13], in which the authors prove that the mechanical
behavior of this element in twisting tests is identical to the analytical predictions.

In case of structures made of corrugated boards very rarely the full multi-layered
structure of the cross-section is modeled. Typically, a complex multi-layer cross-section is
replaced with a single-layer model that has equivalent properties very similar to those of
the full model. Such converting process is called homogenization. The homogenization of
composite laminates has been the subject of interest of many researchers for several decades.
One of the recent method that uses a strain energy was proposed in 2003 by Hohe [28] for
homogenization of sandwich panels with hexagonal honeycomb core. The author uses a
strain energy based procedure with assumed mechanical equivalence between a representa-
tive volume element (RVE) of a periodic plate and the simplified model, provided that the
effective deformation in both models are equal in an average sense. Buanic et al. proposed
a periodic homogenization method in which both an equivalent membrane, bending and
shearing characteristics of periodic plates can be computed [29]. Biancolini obtained both
membrane and bending properties for plates with corrugated core using the strain energy
equivalence between the numerical model of RVE and single layered equivalent model [30].
The comparison of different approaches to homogenization of sandwich panels with corru-
gated boards can be found, e.g., in Garbowski and Jarmuszczak [31,32], and Marek and
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Garbowski [33]. The application of inverse analysis to homogenization of corrugated board
was presented in the work of Garbowski and Marek [34].

An extension of the homogenization method proposed by Biancolini is presented here.
The proposed generalization allows to take into account transverse shear in the process
of homogenization of the corrugated cardboard. As already mentioned, transverse shear
plays an important role in the mechanical behavior of the corrugated board, therefore
many researchers have proposed different methods to calculate the effective transverse
shear stiffness of the corrugated board [14,35–38]. This article presents the strain energy
equivalence between RVE-base method of the full multi-layer corrugated cardboard FE
model and the equivalent single-layer shell model. The proposed approach allows to
calculate all properties of tensile, bending and transverse shear stiffnesses, which are
extremely important if one would like to properly model the behavior of homogenized
sandwich with corrugated cores. The method presented here has promising applications,
not only to corrugated cardboards, but also for other types of sandwich or composite
structures, including dynamic analysis, e.g., [39,40]. The results obtained by our method
were compared with the results from the literature. A satisfactory agreement with the
literature data was obtained.

2. Materials and Methods

The homogenization method proposed here is based on the equivalent of the defor-
mation energy between a small part of a periodic multi-layer structure cut from corrugated
cardboard and its simplified single-layer counterpart. Given the representative volume
element (RVE) of the full detailed corrugated board model on the one hand and the simpli-
fied model on the other hand, the effective properties can be calculated, provided that the
effective strains in both models are equal in an average sense. For the correct representation
of the geometry of the cross-section a finite element models are used here.

Corrugated cardboard is a material made of several layers of paperboard. It consists
of alternating flat and corrugated layers. The cellulose fibers in each of these layers are
oriented along the waves, see Figure 1. This direction is called the machine direction (MD).
The second, in plane direction, perpendicular to the fibers orientation, is called the cross
direction (CD). The out of plane direction is the thickness direction.

Figure 1. Material orientations.

In order to compute all effective parameters of equivalent single-layered model, first
the RVE need to be constructed. Here the single-wall corrugated cardboard is investigated
therefore a selected RVE consists of singe period (see Figure 2) of the wavey layer. This
selection was made to test the effect of the RVE type on the quality and stability of the
calculated effective membrane, bending and transverse shear stiffnesses of the equivalent
plate. The most problematic and least stable parameters identified by the homogenization
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method proposed here turned out to be both transverse shear stiffness in plane 13 (MD-
TD) and 23 (CD-TD). Therefore, other RVE types and boundary conditions were also
investigated in this study to check the robustness of the proposed approach.

Figure 2. Representative volume element (RVE).

In the traditional displacement based linear formulation of finite element we have:

Ke ue = Fe, (1)

where Ke is a statically condensed (through elimination of internal nodes) the global
stiffness matrix of the RVE, ue is a displacement vector of the external nodes and Fe is a
vector of the nodal force applied to the external nodes. The FE mesh and external nodes
are visualized in Figure 3.

Figure 3. External (in red color) and internal nodes of RVE.

The stiffness matrix condensed to external nodes can be computed by the following
equation:

K = Kee −Kei K−1
ii Kie (2)

where overall stiffness matrix is partitioned into external (subscript e) and internal (sub-
script i) nodes into four submatrices in the following way:[

Kee Kei
Kie Kii

][
ue
ui

]
=

[
Fe
0

]
(3)

After static condensation (Equation (2)), the strain energy stored in the system is:

E =
1
2

uT
e Fe (4)
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The energetic equivalence between the FE model of the RVE and the simplified shell
model can be established by a proper definition of the displacements and rotations in the
external nodes. These general displacements at each boundary node are related to the
generalized strains, which for membrane behavior reads: ε0

x
ε0

y
γ0

xy

 =

 ∂u0/∂x
∂v0/∂y

∂u0/∂y + ∂v0/∂x

. (5)

Displacements are related with rotations in the following way:
u(x, y, z)
v(x, y, z)
w(x, y, z)

 =


−z θx(x, y)
−z θy(x, y)

w0(x, y)

, (6)

while rotations according to Kirchhoff–Love assumption are considered as:{
θx
θy

}
=

{
∂w/∂x
∂w/∂y

}
. (7)

Since in Kirchhoff–Love plate theory the normal remains orthogonal to the middle
plane after deformation, we have:{

∂u/∂z
∂v/∂z

}
=

{
−∂w/∂x
−∂w/∂y

}
. (8)

The normal strains can be than computed from Equations (6) and (7): εx
εy

γxy

 =

 ∂u/∂x
∂v/∂y

∂u/∂y + ∂v/∂x

 = −z

 ∂θx/∂x
∂θy/∂y

∂θx/∂y + ∂θy/∂x

 = −z

 ∂2w/∂x2

∂2w/∂y2

2∂2w/∂x∂y

, (9)

while transverse shear can be computed from:[
γxz
γyz

]
=

[
∂w/∂x + ∂u/∂z
∂w/∂y + ∂v/∂z

]
=

[
0
0

]
. (10)

This assumption does not allow to calculate the transverse shear. Therefore, the
Mindlin–Reissner theory should be applied, where the rotation is described by the formula:{

θx
θy

}
=

{
∂w/∂x + φx
∂w/∂y + φy

}
, (11)

where the normal rotation is obtained as the sum of two rotations: (i) The corresponding
slope of the middle plane of the plate and (ii) the additional rotation φ, which results from
the lack of orthogonality of the normal to the middle plane after deformation. Consequently
we have: {

∂u/∂z
∂v/∂z

}
=

{
−(∂w/∂x + φx)
−
(
∂w/∂y + φy

) }. (12)

Now the transverse shear reads:[
γxz
γyz

]
=

[
∂w/∂x + ∂u/∂z
∂w/∂y + ∂v/∂z

]
=

[
∂w/∂x− θx
∂w/∂y− θy

]
=

[
−φx
−φy

]
, (13)
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while the curvatures are:  κx
κy
κxy

 = −

 ∂θx/∂x
∂θy/∂y

∂θx/∂y + ∂θy/∂x

. (14)

Using the Mindlin–Reissner theory the normal strains consists of membrane and
bending behaviors as follow: εx

εy
γxy

 =

 ∂u/∂x
∂v/∂y

∂v/∂x + ∂u/∂y

 =

 ε0
x

ε0
y

γ0
xy

+ z

 κx
κy
κxy

, (15)

that permit to calculate (from Equations (13)–(15)) by integration the in plane displacement
fields along x-axis as follows:

u(x, y, z) = x
(

ε0
x + zκx

)
+

y
2

(
γ0

xy + zκxy

)
− z

2
γxz, (16)

and along y-axis as follows:

v(x, y, z) = y
(

ε0
y + zκy

)
+

x
2

(
γ0

xy + zκxy

)
− z

2
γyz, (17)

while out of plane displacements are:

w(x, y) = − x2

2
κx −

xy
2

κxy −
y2

2
κy −

x
2

γxz −
y
2

γyz. (18)

Recalling the definition of curvatures in Equation (14) and after a first integration
of angular rotation with respect to x-axis, the following rotation with respect to y-axis
is obtained:

θx(x, y) = φx +
∂w
∂x

= −yκy −
x
2

κxy, (19)

while the rotation with respect to x-axis is:

θy(x, y) = xκx +
y
2

κxy. (20)

The originally proposed by Biancolini [30] and here extended (by taking into account
also both transverse shear) relationship between generalized constant strains and the
position of the external nodes can be expressed by the following transform:

ui = Ai εi, (21)

where for single node (xi = x, yi = y, zi = z) we have:


ux
uy
uz
θx
θy


i

=


x 0 y/2 z/2 0 xz 0 yz/2
0 y x/2 0 z/2 0 yz xz/2
0 0 0 x/2 y/2 −x2/2 −y2/2 −xy/2
0 0 0 0 0 0 −y −x/2
0 0 0 0 0 x 0 y/2


i



εx
εy

γxy
γxz
γyz
κx
κy
κxy


i

. (22)

Recalling the definition of the strain energy for the discrete model:

E =
1
2

uT
e K ue =

1
2
εT

e AT
e K Ae εe, (23)
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and considering that for a shell subjected to bending, traction and transverse shear the
internal energy is:

E =
1
2
εT

e Ak εe{area}, (24)

overall stiffness matrix for the laminate could be easily extracted from the discrete matrix as:

Ak =
AT

e K Ae

area
. (25)

3. Results

The numerical examples presented in the study are referring to the material and
geometrical data used in the work of Biancolini [30]. In the Table 1, the material properties
used in this paper for liners and fluting are shown, namely, E1, E2, v12, G12, G13, and G23,
i.e., Young moduli in both directions, Poisson’s ratio and shear moduli, respectively. Also,
the paper thicknesses, t, are shown in Table 1. The fluting period used here equals 8 mm.
Apart Section 3.1, the axial spacing between internal and externa liners equals 3.51 mm. In
Section 3.1, the axial spacing between liners itself was analyzed.

Table 1. Thicknesses and material properties of liners and fluting used in this study.

Layers t
(mm)

E1
(MPa)

E2
(MPa)

ν12
(-)

G12
(MPa)

G13
(MPa)

G23
(MPa)

liners 0.29 3326 1694 0.34 859 429.5 429.5
fluting 0.30 2614 1532 0.32 724 362 362

3.1. Stiffnesses Variation Due to Different Approach for Modelling Cross-Direction Section

In the first step of numerical part of the study, the examples presented by Biancol-
ini [30] were used as reference and recreated. The saw tooth type geometry was considered
here, see Figure 4. In the referred paper only the overall data regarding the geometry
were explicitly given, there was a lack of detailed information about the modelling of the
cross-section geometry. For instance, if the height of 3.8 mm used, was the overall outer
thickness of the cardboard or the axial distance between the liners. Thus, in this study, we
have utilized different approaches to model the cross-section geometry, see Figure 5, to
verify which approach was used by the author. In Figure 5a, the axial spacing between
shell liners equals 3.51 mm; the outer thickness equals 3.8 mm. In Figure 5b, the shells with
offset technique were adopted; in this case the outer thickness was also 3.8 mm. In Figure
5c, the axial spacing between the shell liners equals 3.8 mm; the outer thickness equals
4.09 mm. In numerical examples of this section, the 4-node quadrilateral element with full
integration scheme (labelled in Abaqus FEA as S4) was used.

Figure 4. Representative shell elements of saw tooth geometry with quadrilateral mesh (single period).
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Figure 5. The different approach of modelling the cardboard cross-direction section of the saw tooth geometry: (a) 3.80 mm
as the outer cardboard dimension, (b) 3.80 mm as the outer cardboard dimension with offset technique used and (c) 3.80 mm
as axial spacing between liners.

Our computational results for saw tooth geometry are presented in Table 2. In the
second column, the values according to [30] were demonstrated. In the third, fourth and
fifth columns, the results computed using different geometry are presented, see Figure 5a–c,
respectively and Materials and Methods section.

Table 2. The stiffnesses of representative shell element computed for a different approach of mod-
elling confronted with data from ref. [30] for saw tooth geometry.

Stiffness Ref. [30] Axial
Geometry

Inner
Geometry

Outer
Geometry

A11, (kPa·m) 2158 2140 2154 2131
A22, (kPa·m) 1660 1665 1643 1687
A12, (kPa·m) 379.9 382.9 385.4 381.9
A33, (kPa·m) 677.6 662.5 668.4 656.8
D11,

(
Pa·m3) 6.370 6.392 6.389 7.482

D22,
(
Pa·m3) 3.824 3.859 3.740 4.549

D12,
(
Pa·m3) 1.092 1.115 1.113 1.305

D33,
(
Pa·m3) 1.655 1.656 1.639 1.937

A44,(Pa·m) - 202.4 179.4 218.5
A55, (Pa·m) - 99.0 89.0 112.4

3.2. Stiffnesses Variation Due to Different Finite Element Type

In this section, the influence of using different element type in RVE on determination
of Ak stiffnesses was verified. Here, the sine geometry of fluting was used. In Table 3,
the second column represents the results from the model with the 4-node quadrilateral
element with full integration scheme (labelled in Abaqus FEA as S4). The third column
represents the results from the model with the 4-node quadrilateral element with a reduced
integration scheme (labelled in Abaqus FEA as S4R). The fourth column represent the
results from the model with the 3-node triangular element (labelled in Abaqus FEA as
S3). In the fifth column, the results for quadrilateral, bilinear deflection and rotations and
linear transverse shear strain fields (QLLL) element was shown, embedded in in-house
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finite element method code [13]. In all cases, the number of nodes is the same, however, in
the mesh with triangular element type the number of elements is almost twice bigger, see
Table 3.

Table 3. The stiffnesses of the representative shell element computed for different element type-
sine geometry.

Stiffness Quadrilateral
Element (S4)

Reduced
Quadrilateral
Element (S4R)

Triangular
Element (S3) QLLL Element

A11, (kPa·m) 2219 2218 2225 2128
A22, (kPa·m) 1694 1694 1694 1677
A12, (kPa·m) 411.8 411.5 413.4 378.9
A33, (kPa·m) 659.3 659.3 659.6 659.7
D11,

(
Pa·m3) 6.521 6.517 6.535 6.443

D22,
(
Pa·m3) 4.071 4.066 4.091 4.035

D12,
(
Pa·m3) 1.149 1.148 1.152 1.135

D33,
(
Pa·m3) 1.729 1.728 1.731 1.716

A44,(Pa·m) 140.5 139.8 143.8 71.1
A55, (Pa·m) 132.6 132.4 135.6 102.4

nodes/element 969/896 969/896 969/1792 969/896

3.3. Stiffnesses Variation Due to Different Fluting Discretization

Next, the fluting shape discretization was analyzed to derive, how the number of
segments influence the determination of Ak matrix. For this purpose different discretiza-
tions were considered, namely, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, and 64
segments for a single fluting period. Two RVS were selected, the one with unsymmetric
fluting (flute period starts from the middle), and the one with symmetric fluting (flute
period starts from the liner). Three selected discretizations with 8, 16, and 32 segments on
unsymmetric model are presented in the Figure 6. In the first row, the three-dimensional
fluting cardboards are presented, in the second row the corresponding cross-sections are
shown. In those numerical examples, the quadrilateral, bilinear deflection and rotations
and linear transverse shear strain fields (QLLL) element was used.

Figure 6. Different discretizations of cardboard fluting for unsymmetric RVE: (a) 8, (b) 16, and (c) 32 fluting segments; and
corresponding cross-sections: (d) 8, (e) 16, and (f) 32 fluting segments.
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The Ak stiffnesses obtained for those cases are presented in Table 4. In Figure 7, the
results of A44 and A55 for all used flute segments (16 cases) are plotted separately.

Table 4. The stiffnesses of the representative shell element computed for different number of segments for one fluting
period–sine geometry.

Stiffness Unsymmetric
8 Segments

Unsymmetric
16 Segments

Unsymmetric
32 Segments

Symmetric
8 Segments

Symmetric
16 Segments

Symmetric
32 Segments

A11, (kPa·m) 2128 2108 2106 2126 2114 2107
A22, (kPa·m) 1677 1681 1682 1678 1681 1682
A12, (kPa·m) 378.9 373.7 373.4 380.4 375.9 373.7
A33, (kPa·m) 659.7 658.7 658.3 659.6 658.4 658.1
D11,

(
Pa·m3) 6.443 6.433 6.432 6.445 6.435 6.429

D22,
(
Pa·m3) 4.035 4.087 4.101 4.033 4.086 4.099

D12,
(
Pa·m3) 1.135 1.130 1.130 1.137 1.131 1.129

D33,
(
Pa·m3) 1.715 1.728 1.732 1.682 1.694 1.698

A44,(Pa·m) 71.1 48.0 43.1 75.0 49.0 42.5
A55, (Pa·m) 102.4 104.4 104.7 113.4 114.4 114.6

Figure 7. The variation of (a) A44 and (b) A55 due to different number of fluting segments used.

3.4. Stiffnesses Variation Due to Different Numbers of Periods

Because the application of general strains (γ13) at RVE edges allows free deformation
of liners and fluting (see Figure 8) therefore the influence of the number of periods of
the internal layer on the calculated transversal shear stiffness A44 was checked here. The
different numbers of periods (namely 1, 2, or 3 periods) for corrugated cardboard with sine-
shaped fluting was studied. Two geometries were analyzed, i.e., with the period starting
from the middle of fluting–unsymmetric, see Figure 9a–c; and with the period starting
from the liner–symmetric, see Figure 9d–f. In those numerical examples, the quadrilateral,
bilinear deflection and rotations and linear transverse shear strain fields (QLLL) element
was used. Note that in CD the length is conservatively assumed to be equal the period
length, i.e., 8 mm. In Table 5, the second to fourth columns represent the results from the
model with the unsymmetric periods—1, 2, or 3, respectively. The fifth to seventh columns
represent the results from the symmetric periods—1, 2, or 3, respectively.
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Figure 8. Deformation of RVE cross-section under transverse shear strains for different numbers of periods of corrugated
cardboard for unsymmetric fluting cardboards: (a) 1, (b) 2, and (c) 3 periods; and symmetric fluting cardboards: (d) 1, (e) 2,
and (f) 3 periods.

Figure 9. Different numbers of periods of corrugated cardboard for unsymmetric fluting cardboards: (a) 1, (b) 2, and (c) 3
periods; and symmetric fluting cardboards: (d) 1, (e) 2, and (f) 3 periods.

Table 5. The stiffnesses of the representative shell element computed for different numbers of periods for unsymmetric and
symmetric sine geometry.

Stiffness Unsymmetric
1 Period

Unsymmetric
2 Periods

Unsymmetric
3 Periods

Symmetric
1 Period

Symmetric
2 Periods

Symmetric
3 Periods

A11, (kPa·m) 2108 2106 2106 2114 2110 2108
A22, (kPa·m) 1681 1680 1680 1681 1681 1681
A12, (kPa·m) 373.7 373.4 373.3 375.9 374.5 374.0
A33, (kPa·m) 658.7 658.5 658.4 658.4 658.4 658.4
D11,

(
Pa·m3) 6.433 6.445 6.458 6.435 6.428 6.426

D22,
(
Pa·m3) 4.087 4.085 4.085 4.086 4.085 4.084

D12,
(
Pa·m3) 1.130 1.129 1.129 1.131 1.129 1.128

D33,
(
Pa·m3) 1.728 1.713 1.710 1.694 1.694 1.694

A44,(Pa·m) 48.0 45.9 45.1 49.0 46.4 45.4
A55, (Pa·m) 104.4 102.8 102.3 114.4 107.8 105.6
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4. Discussion
4.1. Different Approach of Modelling Cross-Direction Section

Regarding results presented in Section 3.1 concerning modelling cross-direction sec-
tion it should be noted, that the extended approach derived in this paper, in which A44 and
A55 are computed from the RVE, does not influence the computed values of A11, A22, A12,
A33, D11, D22, D12, and D33. Therefore, the data in the second column from Biancolini [30]
may be directly compared with the third, fourth, and fifth columns. The stiffness in the
second and third column are the closest to each other, thus, it may be concluded that this
approach was used by author.

Notice that the inner geometry case (fourth column) is closer to the real-world ge-
ometry, but the offset technique used here is rarely available in finite element method
software. Via comparing the third and the fourth columns, it may be concluded, that the
inner geometry case does not give meaningful changes to the axial geometry case. Thus, the
fluting simplification with the axial geometry case, without the use of the offset technique,
is justified. On contrary, the outer geometry case meaningfully differs with other cases,
especially in D11, D22, D12, and D33, in which distance between liners plays important role.
In this case, corrugated cardboard thickness is 0.29 mm higher than in previous cases, cf.
Figure 5c with Figure 5a,b.

4.2. Different Finite Element Type

Regarding results presented in Section 3.2 concerning different finite element type,
while comparing results from using quadrilateral elements (second column) and results
from using quadrilateral elements with reduced integration scheme (third column), it may
be observed that all Ak corresponding stiffnesses are very similar (difference less than 0.5%).
There is no significant difference between the full quadrilateral and reduced quadrilateral
element in A44 and A55.

While comparing the results from using quadrilateral elements (second column) and
results from using triangular elements (fourth column), it may be observed that again Ak
corresponding stiffnesses are very close to each other (difference less than 0.5%). Here,
there are some differences between full quadrilateral and triangular element in A44 and
A55, 2.3% and 2.3%, respectively.

On the other hand, the differences obtained from QLLL and S4 elements are quite large,
the most significant differences was in A44 and A55, i.e., about 27% and 46%, respectively.
Since, this element approach was proved to be exceeding the S4/S4R/S3 elements, see [13],
QLLL element was used in computations in Sections 3.3 and 3.4.

4.3. Different Fluting Discretization

Regarding results presented in Section 3.3 concerning different fluting discretizations
considered, while comparing unsymmetric and symmetric cases the results from using
32 segments (fourth column) with the results from using 16 and 8 segments, it may be
observed that Ak corresponding stiffnesses are similar. The difference less is than 1.7%.
However, it should be noted that, as presented in Table 4 and Figure 7 there is a meaningful
difference between the values of A44 and A55 considered for different segments number;
it stabilizes with increasing number of fluting segments. As presented in Figure 7 an
asymptote is reached for approximately 32 segments. The same effect is shown for both
cases analyzed (unsymmetric and symmetric period).

4.4. Different Numbers of Periods

Regarding results presented in Section 3.4 concerning numbers of periods used, it may
be noted that between unsymmetric period and symmetric period cases the differences in
Ak corresponding stiffnesses are negligible. The biggest differences are visible for A44 and
A55, but they are still less than 5%, while for other stiffnesses they are less than 2%, which
proves that the obtained results are independent of the RVE size.
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5. Conclusions

In this research study, the homogenization technique for corrugated cardboard shell
structures was considered, however it may be adopted for any periodic shell structure.
The strain energy equivalence with condensation technique used to determine the stiffness
properties of homogenized shell was extended here to determine not only the membrane
and bending stiffnesses but also the transverse shear stiffnesses of any periodic shell
structure. The techniques requires computing the FE global stiffness matrix of the full 3D
FE shell structure and simple algebraic operations.

Based on this study several guidelines may be defined for robust determination of
membrane, bending and transverse shear stiffnesses of corrugated cardboard. If one would
like to acquire only membrane and bending stiffnesses the RVE selectin, in particular the
fluting segments number or unsymmetric/symmetric geometry do not play any important
role. But it should be noted that in order to determine proper values of transverse shear
stiffnesses of the corrugated cardboard, at least 32 segments must be used for correct
reconstruction of sine-shaped fluting. Furthermore, the selected number of periods in
RVE is not affecting the obtained results, assuming the RVE dimension in CD length is
constant. The presented here homogenization method together with practical guidelines
can be successfully used to obtain stiffness properties of any corrugated shell structures.
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