Predicting cardiovascular risk from national administrative databases using a combined survival analysis and deep learning approach

Sebastiano Barbieri © ${ }^{\text {, }}{ }^{\mathbf{*}}$ Suneela Mehta, ${ }^{2}$ Billy Wu, ${ }^{2}$ Chrianna Bharat, ${ }^{3}$ Katrina Poppe, ${ }^{2}$ Louisa Jorm (1) ${ }^{\mathbf{1}}$ and Rod Jackson (D) ${ }^{2}$
${ }^{1}$ Centre for Big Data Research in Health, University of New South Wales, Sydney, NSW, Australia, ${ }^{2}$ Section of Epidemiology and Biostatistics, University of Auckland, Auckland, New Zealand and ${ }^{3}$ National Drug and Alcohol Research Centre, University of New South Wales, Sydney, NSW, Australia
Corresponding author. Centre for Big Data Research in Health, Level 2, AGSM Building (G27), UNSW Sydney, NSW 2052, Australia. E-mail: s.barbieri@unsw.edu.au

Received 10 May 2021; Editorial decision 16 November 2021; Accepted 26 November 2021

Abstract

Background: Machine learning-based risk prediction models may outperform traditional statistical models in large datasets with many variables, by identifying both novel predictors and the complex interactions between them. This study compared deep learning extensions of survival analysis models with Cox proportional hazards models for predicting cardiovascular disease (CVD) risk in national health administrative datasets. Methods: Using individual person linkage of administrative datasets, we constructed a cohort of all New Zealanders aged 30-74 who interacted with public health services during 2012. After excluding people with prior CVD, we developed sex-specific deep learning and Cox proportional hazards models to estimate the risk of CVD events within 5 years. Models were compared based on the proportion of explained variance, model calibration and discrimination, and hazard ratios for predictor variables. Results: First CVD events occurred in 61927 of 2164872 people. Within the reference group, the largest hazard ratios estimated by the deep learning models were for tobacco use in women ($2.04,95 \% \mathrm{Cl}: 1.99,2.10$) and chronic obstructive pulmonary disease with acute lower respiratory infection in men ($1.56,95 \% \mathrm{Cl}$: $1.50,1.62$). Other identified predictors (e.g. hypertension, chest pain, diabetes) aligned with current knowledge about CVD risk factors. Deep learning outperformed Cox proportional hazards models on the basis of proportion of explained variance ($\mathrm{R}^{2}: 0.468$ vs 0.425 in women and 0.383 vs 0.348 in men), calibration and discrimination (all $P<0.0001$). Conclusions: Deep learning extensions of survival analysis models can be applied to large health administrative datasets to derive interpretable CVD risk prediction equations that are more accurate than traditional Cox proportional hazards models.

Key words: Cardiovascular diseases, primary prevention, risk assessment, population health, health planning, machine learning, deep learning, survival analysis

Key Messages

- This study proposes a combined survival analysis and deep learning approach for cardiovascular disease (CVD) risk prediction, which accounts for censoring of unobserved events and allows estimation of hazard ratios associated with each predictor.
- This study is the first to apply machine learning models for CVD risk prediction across a national population, using predictors available in routinely collected administrative health data.
- The developed models could be used for accurate CVD risk prediction and population health planning in other countries where large administrative health datasets can be linked at the individual person level; for example, they may be used to estimate future CVD incidence, identify target sub-populations for prevention and assess the likely benefit of health policies and interventions in different risk groups.
- The proposed approach has applications beyond CVD risk prediction and could be used in time-to-event analyses to identify diagnoses, procedures and medications associated with other conditions.

Introduction

Cardiovascular disease (CVD) risk equations, derived in clinical cohorts, are an established means to inform clinical decisions regarding a person's CVD risk management. ${ }^{1}$ They facilitate risk communication in a clinical setting and motivate adherence to recommended treatment and lifestyle modifications. ${ }^{2}$ A complementary use of CVD risk equations is their derivation in routine administrative datasets and their application to every person in a given population for population health planning (e.g. estimation of future CVD incidence, identification of target sub-populations for prevention and assessment of the likely benefit of health policies and interventions in different risk groups). ${ }^{3,4}$ We have previously developed equations to estimate the 5 -year risk of a fatal or non-fatal CVD event across the primary prevention population of New Zealand, solely using linked routine national administrative health datasets, and these equations showed good calibration and discrimination across risk groups stratified by age, ethnicity, geographical region, level of deprivation and previous CVD-related pharmaceutical dispensing. ${ }^{5}$

CVD risk equations for population health planning differ from equations in clinical use as they can only consider predictors available in routinely collected administrative health data, which usually do not include smoking status, blood pressure and lipid profile. However, administrative health data may contain useful proxies for missing CVD predictors, e.g. diagnoses and procedures recorded during hospitalizations and pharmaceutical dispensing. If additional CVD predictors can be identified in routinely collected data, the predictive accuracy of CVD risk equations for population health planning can be improved. Whereas traditional
methods for statistical inference using longitudinal data, such as Cox proportional hazards regression, ${ }^{6}$ require predictors to be pre-specified and become less reliable as the number of predictors and possible associations among them increase, ${ }^{7}$ machine learning can be used to identify relevant patterns across complex multimodal data. Recent methodological developments, which replaced the linear combination of predictors in a Cox proportional hazards model with a deep neural network, were able to demonstrate improved calibration and discrimination results. ${ }^{8}$ In this study, deep learning extensions of survival analysis models were applied to routinely collected administrative health data to predict the 5 -year CVD risk of over two million adult New Zealanders.

This study had the following aims: (i) to develop novel deep learning models for predicting the 5-year risk of a fatal or non-fatal CVD event across the New Zealand adult population without prior CVD or heart failure, using routinely collected administrative health data; (ii) to determine which diagnoses, procedures and dispensed medications are associated with increased risk of CVD event; (iii) to compare the performance of the deep learning models and traditional Cox proportional hazards models on the basis of the proportion of explained variance, calibration and discrimination.

Methods

Study population and data sources

This study has been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and is part of the VIEW research programme, which was approved by the Northern Region Ethics

Committee Y in 2003 (AKY/03/12/314), with subsequent annual re-approval by the national Multi-Region Ethics Committee since 2007 (MEC/01/19/EXP). Individual patient consent was not required, as all data are anonymized.

The study population comprised New Zealand residents aged 30-74 years who were alive, in New Zealand, on 31 December 2012 (index date) and with a health contact recorded in one or more of the following New Zealand routine national health databases: demographic characteristics, primary care enrolment (with voluntary re-enrolment occurring every 3 years), primary care visit reimbursements (to capture primary care visits by non-enrolled patients), community laboratory requests (but no laboratory results), community pharmaceutical dispensing, outpatient visits, hospitalizations and deaths. Data for each person were linked based on the National Health Index number (NHI number), a unique identifier assigned to every person who uses health and disability support services in New Zealand (estimated 98% of the population ${ }^{9}$). NHI numbers in the linked dataset were encrypted at source and all other individual patient identifiers were also removed. The dataset was linked to the Virtual Diabetes Registry, administered by the New Zealand Ministry of Health, to identify individuals with a history of diabetes as at 31 December 2012. The age range for inclusion reflects the age group recommended for CVD risk assessment in New Zealand. ${ }^{10}$

People with a history of CVD, heart failure or missing predictor variables were excluded from the dataset. People were considered to have a history of CVD or heart failure if their data contained relevant ICD10-AM codes associated with hospitalizations between 1 January 1993 and the index date, if they were dispensed loop diuretics or antianginals three or more times in the 5 years prior to the index date or if they were dispensed metolazone in the 6 months prior to the index date. The cohort development flowchart is presented in Supplementary Figure S1, available as Supplementary data at IJE online. Additional information is reported in Supplementary Methods, available as Supplementary data at $I J E$ online.

Outcome

The outcome of interest was the time in days to the first fatal or non-fatal CVD event identified from national hospitalization and mortality datasets over the 5 -year period between 1 January 2013 and 31 December 2017 (ICD10AM codes are reported in the Supplementary Methods). Five years is the recommended CVD risk prediction period in New Zealand guidelines. ${ }^{10}$ People who died of CVDunrelated causes during follow-up were censored. People who ceased to have any recorded health contact before 31 December 2017 were assumed to have left New Zealand
during follow-up and were also censored at their last recorded contact date with a health provider.

Deep learning models

Predictors

Deep learning models for predicting 5-year CVD risk were developed using linked data for the described 2012 study population. ${ }^{5}$ The input data contained both pre-specified predictors and all diagnoses, procedures and medications in the 5 years prior to the index date.

Pre-specified predictors were included to facilitate comparisons between models. These pre-specified predictors were selected based on evidence regarding CVD risk factors and availability in the national health databases, and included: sex, age, ethnicity, level of deprivation, diabetes status, previous hospitalization for atrial fibrillation (including both primary and secondary diagnoses between 1 January 1993 and the index date) and baseline dispensing of blood-pressure-lowering, lipid-lowering and antiplatelet/anticoagulant medications, respectively. Deprivation was available in national health databases according to deciles of the New Zealand Index of Deprivation 2006 (NZDep2006), but was aggregated into quintiles (i.e. 1-5) to mitigate the effect of reassignment between deciles which occurs with different versions of the deprivation index over time. Age and deprivation quintiles were centred for analysis, using the mean value for age and the third quintile for level of deprivation. Changes in CVD pharmacotherapy over 5 years have been shown to be infrequent ${ }^{11}$ and were not considered. First-order interaction terms were included based on clinical plausibility and statistical significance in traditional Cox proportional hazards models (P-value of <0.001). ${ }^{11}$ Additional information regarding the pre-specified predictors is available in the Supplementary Methods.

ICD10-AM coded diagnoses and procedures and dispensed medications were sorted chronologically by year and calendar month. Whenever a person's hospitalization or medication period spanned multiple calendar months, the associated diagnoses, procedures and medications were listed a corresponding number of times. Each listed ICD10-AM code was also associated with a variable indicating whether it was a primary diagnosis, a secondary diagnosis, an external cause of injury or a procedure/ operation. Rare ICD10-AM codes and medications associated with less than 500 people were excluded.

Neural network architecture

A schematic representation of the neural network used to map a person's pre-specified predictors, diagnoses,

Figure 1 A schematic representation of the neural network used to map a person's predictors and clinical history to the log of the relative risk function. Code embeddings indicate vector representations of diagnoses, procedures and medications. Type embeddings describe the type of code (primary diagnosis, secondary diagnosis, external cause of injury, or procedure or operation). An extended description is reported in the main text. The ' $\mid /$ ' symbol indicates vector concatenation. Gated recurrent units (GRUs) are a gating mechanism in recurrent neural networks
procedures and medications to the \log of the relative risk function is presented in Figure 1. At first, ICD10-AM codes and medications are represented as high-dimensional real-valued vectors (embeddings). The embeddings for ICD10-AM codes are summed with other embeddings describing the type of code (primary diagnosis, secondary diagnosis, external cause of injury or procedure/operation). These vectors are then concatenated with a scalar value Δt, indicating the time difference, in months, between the current and the previous code in the clinical history ($\Delta \mathrm{t}=0$ for the first code). Next, the vectors are passed to three stacked bidirectional gated recurrent unit (GRU) layers with 10% dropout. GRUs are a gating mechanism in recurrent neural networks; for each sequential input vector, a GRU outputs a vector which depends on the current input
and the GRU's internal state (memory). Therefore, they are able to generate a vector representation of an input code in the context of a person's recent clinical history. The size of the GRU's hidden state was set equal to the input size. Three stacked layers were used to increase the network's expressive power. To focus on the most relevant outputs of the GRU layers and to obtain a single vector representation of the entire clinical history, a linear combination of the outputs was computed using dot-product attention. The resulting vector was concatenated with the pre-specified predictors, passed through a size-preserving fully connected layer with exponential linear unit (ELU) activation and finally mapped to a scalar value (the \log of the relative risk) by another fully connected layer. Network hyperparameters were optimized using 10% of the data, stratified by
outcome; details and additional references are reported in the Supplementary Methods.

Training

The remaining 90% of the data were used to train and test the deep learning models, using stratified 5×2 cross-validation. ${ }^{12}$ Sex-specific estimates of network parameters were obtained by maximizing the Cox partial likelihood on the training data, using mini-batch stochastic gradient descent. ${ }^{8}$ An Adam optimizer with a learning rate of 0.001 and $\beta=(0.9,0.999)$ was used for stochastic optimization. ${ }^{13}$ Training epochs iterated over all people who experienced a CVD event, and individual mini-batches consisted of 256 cases matched one-to-one with random controls in the respective risk set. ${ }^{8}$ During hyperparameter optimization, overfitting of the training data became apparent after approximately 10 training epochs and therefore training was stopped after 10 epochs. An ensemble of 10 neural networks was constructed for each crossvalidation fold by repeating training with different random parameter initializations and averaging predictions. ${ }^{14}$

Five-year risk predictions were derived by estimating the baseline survival at the mean value of age, the third quintile of level of deprivation and the reference group of categorical variables. ${ }^{15}$

Testing and validation in New Zealand sub-populations

The deep learning models were evaluated quantitatively based on Royston and Sauerbrei's R^{2} (a measure of the proportion of explained variance ${ }^{16}$), Royston and Sauerbrei's D statistic, ${ }^{16}$ Harrell's C statistic ${ }^{17}$ and the integrated Brier score. ${ }^{18}$ Royston and Sauerbrei's D statistic and Harrell's C statistic are measures of discrimination. Royston and Sauerbrei's D statistic represents the log hazard ratio of two equally sized prognostic groups identified by dividing the study population according to the median of the prognostic index. Therefore, the D statistic quantifies the prognostic separation of survival curves between these two groups. ${ }^{16}$ Harrell's C statistic estimates the proportion of pairs of individuals where concordance is observed between predictions and outcomes. ${ }^{17}$ The expected Brier score may be interpreted as the mean square error of prediction, and is affected by both calibration and discrimination. ${ }^{18,19}$ The integrated Brier score averages model performance over all available times. Further qualitative assessment was performed through calibration plots and discrimination plots (i.e. dot charts of proportion of events occurring in each decile of predicted risk). Qualitative assessment was repeated for New Zealand sub-populations stratified by: (i) 15 -year age bands; (ii) ethnicity; (iii) quintiles of deprivation; and (iv) dispensing of preventive medications.

Statistical inference

To approximate the uncertainty of network parameters, the deep learning models were trained on the entire dataset 100 times with different random parameter initializations. ${ }^{14}$ For each trained model, a baseline risk was computed for a person of mean age, in the third quintile of level of deprivation, in the reference group of categorical variables and with no associated diagnoses, procedures or medications. The data for this person was then perturbed by either changing the values of continuous or binary predictors, or adding an individual diagnosis, procedure or medication. The resulting change in risk was used to estimate sex-specific 'local hazard ratios' (HRs) for the modified predictor. Local HRs averaged across trained models were reported together with 95% confidence intervals (CI). The local HRs are valid only for comparisons with the selected baseline population, whereas HRs derived by traditional Cox proportional hazards models describe general changes in hazard when other predictors are kept constant.

Comparison with Cox proportional hazards models

Sex-specific, multivariable Cox proportional hazards CVD risk models were developed using the same pre-specified predictors and first-order interaction terms used to develop the deep learning models. The methodology for developing the Cox models has been described previously in detail. ${ }^{5}$ For the current study, these models were replicated in the 2012 New Zealand population. As for the deep learning models, calibration and discrimination measures were computed using 5×2 cross-validation. The statistical significance of differences between the deep learning and the traditional Cox models was assessed using combined 5×2 F tests. ${ }^{12}$ Hazard ratios were determined after fitting the Cox models to the entire dataset.

Neural network ablation study

The predictors used to develop the deep learning models were partly redundant: diabetes status, previous hospitalization for atrial fibrillation and baseline dispensing of blood-pressure-lowering, lipid-lowering and antiplatelet/ anticoagulant medications were included both as binary predictors and as individual ICD10-AM codes or medications. Similarly, first-order interaction terms between prespecified predictors were part of the input but could also have been computed by the fully connected layers of the deep learning models. Therefore, the deep learning models were re-trained using only age, ethnicity and level of deprivation as pre-specified predictors. Local HRs, the
proportion of explained variance, and calibration and discrimination measures were computed for these 'deep learning models without redundant predictors' and compared with the deep learning models using all pre-specified predictors.

Hardware and software

The deep learning models were implemented in Python 3.7.5 using PyTorch 1.5.1 and based in part on the PyCox library. ${ }^{8}$ Hyperparameter optimization was performed using Optuna 1.5.0. One training epoch took approximately 90 s on a personal computer with a 3.50 GHz Intel Xeon processor, 64 GB of random access memory and a NVIDIA GeForce RTX 2080 Super graphics card. Statistical analyses to develop the Cox proportional hazards models were undertaken using Stata software version 14.1. The developed algorithms, trained deep learning models and tabulated results are publicly available at [https://github.com/VIEW2020/Varianz2012].

Results

After applying the exclusion criteria (Supplementary Figure S1), the cohort for this study comprised 2164872 New Zealand residents aged 30-74 years and still alive on 31 December 2012 (Table 1). The proportion of women was 52.7%. The majority of the study population was of European (69.8% of women and 71.8% of men) and Māori (11.6% of women and 10.5% of men) descent, with 5.3% Pacific peoples, 3.5% Indian and 9.3% of other or unknown descent. The estimated prevalence of diabetes was around 6% for both sexes, and 0.6% of women and 1.2% of men had recorded diagnoses of atrial fibrillation. Blood-pressure-lowering medications were the most commonly dispensed category of baseline CVD preventive pharmacotherapy (17.0% of women, 16.4% of men).

Among the women in this study, 2.1% experienced a CVD event during a mean follow-up time of 4.8 years (0.3% experienced a fatal CVD event). Among men, 3.7% experienced a CVD event during a mean follow-up time of 4.7 years (0.5% experienced a fatal CVD event).

Table 1 Participant characteristics ($N=2$ 164872)

	Women	Men $^{\mathrm{a}}$
Participants	$1141925(52.7 \%)$	$1022947(47.3 \%)$
Age in years, mean (standard deviation)	$49.0(11.8)$	$49.0(11.6)$
Ethnicity		
European	$797571(69.8 \%)$	$734891(71.8 \%)$
Māori	$132802(11.6 \%)$	$106912(10.5 \%)$
Pacific	$60965(5.3 \%)$	$54659(5.3 \%)$
Indian	$38481(3.4 \%)$	$36248(3.5 \%)$
Other	$112106(9.8 \%)$	$90237(8.8 \%)$
Deprivation quintile		
1	$272564(23.9 \%)$	$242794(23.7 \%)$
2	$244140(21.4 \%)$	$216602(21.2 \%)$
3	$227684(19.9 \%)$	$202118(19.8 \%)$
4	$212257(18.6 \%)$	$190774(18.6 \%)$
5	$185280(16.2 \%)$	$170659(16.7 \%)$
Diabetes	$67143(5.9 \%)$	$65290(6.4 \%)$
Atrial fibrillation	$6393(0.6 \%)$	$11900(1.2 \%)$
Medications dispensed at baseline		
Blood-pressure-lowering	$194670(17.0 \%)$	$167839(16.4 \%)$
Lipid-lowering	$110428(9.7 \%)$	$137529(13.4 \%)$
Antiplatelet/anticoagulant	$64158(5.6 \%)$	$79443(7.8 \%)$
Follow-up		
Total follow-up, years (mean)	$5451552(4.8)$	$4792390(4.7)$
Cardiovascular disease deaths	$2986(0.3 \%)$	$5153(0.5 \%)$
Cardiovascular disease events (non-fatal	$23592(2.1 \%)$	$38335(3.7 \%)$
and fatal)		
Median time to cardiovascular disease	$2.8(1.4,3.9)$	$2.7(1.4,3.9)$
event, years ${ }^{\text {b }}$ (interquartile		
Non-cardiovascular disease deaths	$13771(1.2 \%)$	$15660(1.5 \%)$
Censored at 5 years	$1021829(89.5 \%)$	$866167(84.7 \%)$

${ }^{\text {a }}$ Values are $N(\%)$ unless otherwise stated.
${ }^{\mathrm{b}}$ Among those with an event between 2013 and 2017 inclusively.

Deep learning models

Tables 2 and 3 present the adjusted local hazard ratios for predictors in the sex-specific deep learning models, together with the proportions of people with each risk factor. Only the 10 diagnoses and procedures and the 10 medications associated with the largest local hazard ratios are reported; the full tables can be accessed at [https://github.com/VIEW2020/Varianz2012].

The 5-year risk of a first CVD event increased on average by 9% for each 1 -year increment in age, for women and men. The effect of age was more conspicuous among people in their sixties and seventies (11% and 13% risk increase in women and men, respectively) than among people in their thirties (6% risk increase for both women and men). Event risk at any time during follow-up was greater among Māori and Pacific women and Māori, Pacific and Indian men but lower among Indian and Other women and Other men compared with their European counterparts. Each increment in quintile of deprivation increased the CVD event risk by 16% in women and 10% in men.

Among the ICD10-AM codes, current tobacco use was associated with a doubling in CVD event risk in women ($\mathrm{HR}=2.04,95 \% \mathrm{CI}: 1.99,2.10$) and an increase of 36% in men (95% CI: $31 \%, 41 \%$). Codes related to essential hypertension, chest pain, diabetes, general anaesthesia for patients with severe systemic disease, chronic obstructive pulmonary disease, computerized tomography of the brain, history of long-term use of medications, retinopathy and retinal vascular changes, and chronic renal failure were associated with risk increases between 13% and 98% for both women and men. Hospital-recorded alcohol use was associated with CVD event risk in women (45% risk increase, $95 \% \mathrm{CI}: 40 \%, 50 \%$) but not in men (1% risk increase, $95 \% \mathrm{CI}:-1 \%, 4 \%)$. Some codes were associated with a 7% to 10% decrease in CVD event risk, such as childbirth in women and cycling injuries in men.

People with an increased risk of a CVD event were more likely to have been dispensed smoking cessation medications (nicotine, varenicline tartrate, buproprion hydrochloride), medications used for the treatment of raised blood pressure (cilazapril, furosemide, quinapril, felodipine, glyceryl trinitrate), bronchodilators (salbutamol with ipratropium bromide, tiotropium bromide) and statins (simvastatin). These findings were similar between women and men. Interestingly, dispensing of malathion (a head lice treatment) was also associated with increased CVD event risk in both women (37%, 95% CI: 33%, 41%) and men (32%, 95% CI: $28 \%, 36 \%$).

Comparison with Cox proportional hazards models

Both the deep learning models and the traditional Cox models showed good calibration and discrimination, for
both women and men (Figure 2). However, the proportion of explained variance was larger for the deep learning models than for Cox models (0.468 vs 0.425 in women and 0.383 vs 0.348 in men, $P<0.0001$; Table 4). Similarly, discrimination and calibration were better for the deep learning models in terms of Royston and Sauerbrei's D statistic, Harrell's C statistic and integrated Brier score, although differences were relatively small (Table 4). A qualitative evaluation of the calibration plots for sub-populations stratified by 15 -year age bands, ethnicity, quintiles of deprivation and dispensing of preventive medications also suggested better calibration of the deep learning models (Supplementary Figures S2-S15, available as Supplementary data at $I J E$ online). Specific examples of differences in calibration between the two models in women and men aged 30-44 years, Māori women and men and most deprived women and men are shown in Figure 3. Overall, performance metrics associated with the models for women were better than those for men (Table 4).

Hazard ratios determined by the traditional Cox models were comparable in magnitude to the local HRs determined by the deep learning models (Table 5), although slightly smaller for ethnic groups and larger for history of diabetes and atrial fibrillation and baseline dispensing of medications. Coefficients of the corresponding CVD risk equations are reported in Supplementary Table S8, available as Supplementary data at $I J E$ online.

Neural network ablation study

When comparing the deep learning models developed with and without redundant predictors, the most evident difference was that the models without pre-specified predictors for diabetes status and previous hospitalization for atrial fibrillation associated a higher risk of a CVD event with ICD10-AM codes for these conditions (Supplementary Tables S9 and S10, available as Supplementary data at IJE online). Performance measures were slightly better for the deep learning models with redundant predictors (e.g. the proportion of explained variance was 0.468 vs 0.461 in women and 0.383 vs 0.379 in men; Supplementary Table S11, available as Supplementary data at $I J E$ online).

Discussion

This study developed deep learning models to predict the 5 -year risk of a fatal or non-fatal CVD event across the entire primary prevention population of New Zealand, using only predictors available in routinely collected administrative health data. The new models account for censoring of unobserved events and were used to gain insight into

Table 2 Adjusted local hazard ratios (HRs) for time to cardiovascular disease event within 5 years for women, determined by the deep learning model (only the 10 diagnoses and procedures, and the 10 medications, associated with the largest hazard ratios are reported)

Women ($N=1141$ 925) Predictors	$N(\%)$	Deep learning model Adjusted local HRs (95\% CI) ${ }^{\text {a }}$
Age (per year) ${ }^{\text {b }}$		$1.09(1.06,1.11)^{\text {c }}$
Ethnicity		
European	797571 (69.8\%)	1
Māori	132802 (11.6\%)	1.96 (1.95, 1.97)
Pacific	60965 (5.3\%)	1.68 (1.67, 1.69)
Indian	38481 (3.4\%)	0.925 (0.918, 0.932)
Other	112106 (9.8\%)	0.720 (0.716, 0.723)
Deprivation quintile (per quintile) ${ }^{\text {b }}$		$1.16(1.15,1.16)^{\text {c }}$
Diabetes	67143 (5.9\%)	1.39 (1.37, 1.40)
Atrial fibrillation	6393 (0.6\%)	1.68 (1.66, 1.69)
Medications dispensed at baseline		
Blood pressure lowering	194670 (17.0\%)	1.31 (1.29, 1.33)
Lipid lowering	110428 (9.7\%)	0.998 (0.990, 1.01)
Antiplatelet/anticoagulant	64158 (5.6\%)	1.46 (1.45, 1.47)
Interactions		
Age (years)*blood-pressure-lowering medication		0.980 (0.978, 0.982)
Age (years)*diabetes		0.999 (0.997, 1.00)
Age (years)*atrial fibrillation		0.963 (0.961, 0.966)
Blood-pressure-lowering medication* diabetes		1.10 (1.09, 1.11)
Antiplatelet/anticoagulant medications*diabetes		0.883 (0.874, 0.892)
Blood-pressure-lowering medication*lipid -lowering medication		0.997 (0.989, 1.01)
Top 10 diagnoses and procedures		
Z72.0: Tobacco use, current	84589 (7.4\%)	2.04 (1.99, 2.10)
I10: Essential (primary) hypertension	14167 (1.2\%)	1.98 (1.91, 2.06)
R07.4: Chest pain, unspecified	17208 (1.5\%)	1.69 (1.63, 1.76)
92514-39: General anaesthesia, ASA 3 (Patient with severe systemic disease that limits activity), nonemergency or not known	10961 (1.0\%)	1.55 (1.49, 1.61)
56001-00: Computerized tomography of brain	16845 (1.5\%)	1.53 (1.47, 1.58)
J44.1: Chronic obstructive pulmonary disease	1096 (0.1\%)	1.52 (1.47, 1.58)
with acute exacerbation, unspecified		
Z92.2: Personal history of long-term (current)	2661 (0.2\%)	1.52 (1.47, 1.58)
use of other medicaments		
H35.0: Background retinopathy and retinal vascular changes	692 (0.1\%)	1.51 (1.46, 1.57)
Z92.22: Personal history of long-term (current)	2169 (0.2\%)	1.47 (1.42, 1.53)
use of other medicaments, insulin		
Z72.1: Alcohol use	957 (0.1\%)	1.45 (1.40, 1.50)
Top 10 medications		
Nicotine	79506 (7.0\%)	1.74 (1.70, 1.78)
Varenicline tartrate	31750 (2.8\%)	1.54 (1.50, 1.58)
Furosemide]	13340 (1.2\%)	1.44 (1.40, 1.49)
Tiotropium bromide	4078 (0.4\%)	1.43 (1.39, 1.47)
Bupropion hydrochloride	30796 (2.7\%)	1.40 (1.36, 1.43)
Cilazapril	76762 (6.7\%)	1.38 (1.35, 1.41)
Malathion	22441 (2.0\%)	1.37 (1.33, 1.41)
Salbutamol with ipratropium bromide	22240 (1.9\%)	1.35 (1.32, 1.39)
Quinapril	48373 (4.2\%)	1.33 (1.30, 1.37)
Glyceryl trinitrate	15899 (1.4\%)	1.31 (1.26, 1.37)

${ }^{\text {a }}$ The local hazard ratios for each predictor are adjusted for all other predictors. Values in parentheses are 95% confidence intervals unless otherwise stated.
${ }^{\mathrm{b}}$ Age was centred at the mean value of 49.021 . Deprivation quintile was centred around quintile three. The baseline survival estimate at 5 years for the deep learning model, relevant to the mean value of age, deprivation quintile three and the reference group of categorical variables, was 0.9926104519395 .
${ }^{\mathrm{c}}$ Average and range (in parentheses) of estimated local hazard ratios for all values of the continuous predictor.

Table 3 Adjusted local hazard ratios (HRs) for time to cardiovascular disease event within 5 years for men, determined by the deep learning model (only the 10 diagnoses and procedures and the 10 medications associated with the largest hazard ratios are reported)

Men ($N=1022947$)Predictors		Deep learning model
	$N(\%)$	Adjusted local HRs (95\% CI) ${ }^{\text {a }}$
Age (per year) ${ }^{\text {b }}$		$1.09(1.06,1.13)^{\text {c }}$
Ethnicity		
European	734891 (71.8\%)	1
Māori	106912 (10.5\%)	1.69 (1.69, 1.70)
Pacific	54659 (5.3\%)	1.44 (1.43, 1.44)
Indian	36248 (3.5\%)	1.40 (1.39, 1.41)
Other	90237 (8.8\%)	0.785 (0.781, 0.790)
Deprivation quintile (per quintile) ${ }^{\text {b }}$		1.10 (1.09, 1.10) ${ }^{\text {c }}$
Diabetes	65290 (6.4\%)	1.46 (1.45, 1.47)
Atrial fibrillation	11900 (1.2\%)	1.61 (1.59, 1.62)
Medications dispensed at baseline		
Blood-pressure-lowering	167839 (16.4\%)	1.12 (1.11, 1.13)
Lipid-lowering	137529 (13.4\%)	0.937 (0.929, 0.945)
Antiplatelet/anticoagulant	79443 (7.8\%)	1.43 (1.42, 1.44)
Interactions		
Age (years)*blood-pressure-lowering medication		0.987 (0.986, 0.989)
Age (years)* diabetes		0.993 (0.991, 0.995)
Age (years)*atrial fibrillation		0.994 (0.991, 0.996)
Blood-pressure-lowering medication* diabetes		$0.969(0.960,0.978)$
Antiplatelet/anticoagulant medications* diabetes		0.855 (0.848, 0.863)
Blood-pressure-lowering medication*lipid-lowering medication		1.01 (1.01, 1.02)
Top 10 diagnoses and procedures		
J44.0: Chronic obstructive pulmonary disease with acute lower respiratory infection	1529 (0.1\%)	1.56 (1.50, 1.62)
N 18.90 : Unspecified chronic renal failure	909 (0.1\%)	1.54 (1.49, 1.60)
R07.3: Other chest pain	7665 (0.7\%)	1.51 (1.45, 1.57)
E11.71: Non-insulin-dependent diabetes mellitus with multiple complications, stated as uncontrolled	663 (0.1\%)	1.51 (1.45, 1.56)
L97: Ulcer of lower limb, not elsewhere classified	896 (0.1\%)	1.50 (1.46, 1.55)
E11.72: Type 2 diabetes mellitus with features of insulin resistance	6209 (0.6\%)	1.50 (1.45, 1.55)
R07.4: Chest pain, unspecified	15470 (1.5\%)	1.47 (1.43, 1.52)
G62.9: Polyneuropathy, unspecified	694 (0.1\%)	1.47 (1.41, 1.53)
Z92.2: Personal history of long-term (current) use of other medicaments	2336 (0.2\%)	1.47 (1.42, 1.53)
J44.9: Chronic obstructive pulmonary disease, unspecified	523 (0.1\%)	1.46 (1.42, 1.51)
Top 10 medications		
Quinapril	46541 (4.5\%)	1.73 (1.68, 1.78)
Varenicline tartrate	26037 (2.5\%)	1.73 (1.69, 1.76)
Nicotine	64493 (6.3\%)	1.68 (1.65, 1.71)
Simvastatin	140134 (13.7\%)	1.66 (1.62, 1.70)
Glyceryl trinitrate	14227 (1.4\%)	1.65 (1.58, 1.72)
Cilazapril	79241 (7.7\%)	1.60 (1.55, 1.64)
Bupropion hydrochloride	25139 (2.5\%)	1.58 (1.54, 1.61)
Tiotropium bromide	3399 (0.3\%)	1.52 (1.46, 1.58)
Salbutamol with ipratropium bromide	14745 (1.4\%)	1.46 (1.42, 1.49)
Felodipine	38670 (3.8\%)	1.39 (1.36, 1.43)

[^0]

Figure 2 Calibration and discrimination of the deep learning models and Cox proportional hazards models for women and men. The calibration plots show the mean estimated 5 -year risk plotted against the proportion of cardiovascular disease events that occurred over 5 years, for deciles of predicted risk. The diagonal line represents perfect calibration. The discrimination plots show the proportion of total observed events that occurred in each decile of predicted risk
diagnoses, procedures and medications associated with increased risk of CVD events.

Compared with traditional Cox proportional hazards models, the deep learning models showed improved calibration and discrimination across the whole population and in sub-populations stratified by 15 -year age bands, ethnicity, quintiles of deprivation and dispensing of preventive medications. Inclusion of pre-specified predictors and interaction terms facilitated comparison between the deep learning and Cox models and allowed direct estimation of the gain in predictive performance achieved by the deep learning extension to traditional models. However, these pre-specified terms were partly redundant and might have biased some of the estimated local hazard ratios
towards one. Model performance degraded slightly when these terms were removed, likely because the pre-specified predictors for diabetes status (derived from the national Virtual Diabetes Registry) and previous hospitalization for atrial fibrillation (in the 20 years before the index date) capture a larger proportion of people with these conditions than the ICD10-AM codes associated with hospital admissions in the 5 years prior to the index date. In addition, the deep learning models that included first-order interaction terms between pre-specified predictors as part of the input might have been able to compute relevant higher-order interaction terms, improving their predictive performance. Since the deep learning models adjusted for any diagnoses, procedures and medications in the 5 years prior to the
Table 4 Performance metrics for the deep learning models and traditional Cox proportional hazards models

Performance metric	Statistic (95\% CI)					
	Women			Men		
	Deep learning	Cox proportional hazards	P-value ${ }^{\text {d }}$	Deep learning	Cox proportional hazards	P-value ${ }^{\text {d }}$
$\mathrm{R}^{2 \mathrm{a}}$	0.468 (0.465, 0.471)	0.425 (0.423, 0.428)	<0.0001	0.383 (0.381, 0.385$)$	0.348 (0.346, 0.350)	<0.0001
D statistic ${ }^{\text {b }}$	1.92 (1.91, 1.93)	1.76 (1.75, 1.77)	<0.0001	1.61 (1.60, 1.62)	1.49 (1.49, 1.50)	<0.0001
Harrell's C ${ }^{\text {b }}$	0.813 (0.812, 0.814)	0.795 (0.794, 0.797)	<0.0001	0.771 (0.771, 0.772)	$0.759(0.758,0.759)$	<0.0001
Integrated Brier score ${ }^{\text {c }}$	0.00971 (0.00970, 0.00972)	0.00978 (0.00977, 0.00979)	<0.0001	0.0176 (0.0176, 0.0176)	0.0177 (0.0177, 0.0177)	<0.0001

[^1]index date, the estimated local hazard ratios might also have been affected by collider bias and multicollinearity. Accordingly, the local hazard ratios serve primarily to demonstrate the face validity and biological plausibility of the deep learning models rather than being interpretable as estimates of causal effects.

A few previous studies investigated the use of machine learning for CVD risk prediction using large-scale data from prospective study cohorts, ${ }^{20,21}$ family practices in the UK, ${ }^{22}$ primary health care centres in Spain ${ }^{23}$ and hospitals and community health service centres in China ${ }^{24}$ and the United States. ${ }^{25}$ They suggest that machine learning improves CVD risk prediction, in agreement with the present findings, although their measures of performance were limited. Moreover, only one of these studies was able to account for censored data through the use of random survival forests. ${ }^{20} \mathrm{~A}$ recent study comparing machine learning and traditional survival models for CVD risk prediction using UK family practice data shows that machine learning models that ignore censoring produce biased risk estimates, and suggests that survival models that consider censoring and that are explainable, are preferable. ${ }^{26}$ However, the latter study did not evaluate any machine learning models that account for censoring. The present study is the first to use deep learning extensions of survival analysis models for CVD risk prediction, using routinely collected health data for a national population.

Previous studies generally used random forests to rank the importance of predictors, an approach which might not always be reliable due to bias towards inclusion of predictors with many split points. ${ }^{27,28}$ In the present study, the associations of individual ICD10-AM codes and medications with the outcome were described using estimated hazard ratios. The most relevant diagnoses (e.g. current tobacco use, essential hypertension, chest pain, diabetes, chronic obstructive pulmonary disease, history of longterm use of medications, retinopathy and retinal vascular changes) and medications (related to smoking cessation, treatment of raised blood pressure and heart failure, bronchodilators and statins) generally aligned with current knowledge about CVD risk predictors. The results also support previous findings regarding sex-related differences in cardiovascular risk predictors, such as the more deleterious effect of smoking in women and the particularly high risk associated with significant renal disease in men. ${ }^{29}$

In conclusion, the proposed deep learning extensions of survival analysis models enabled 5-year CVD risk predictions for the primary prevention population of New Zealand with improved calibration and discrimination. The developed models are freely available and could similarly be used for CVD risk prediction and population health planning in other countries where large

Figure 3 Calibration plots for the deep learning models and Cox proportional hazards models in specific New Zealand sub-populations (women and men aged 30-44 years, Māori women and men and most deprived women and men), suggesting improved calibration for the deep learning models

Table 5 Adjusted hazard ratios for time to cardiovascular disease event within 5 years, determined by the Cox proportional hazards models

Predictors	Adjusted hazard ratios (95\% CI $)^{\text {a }}$	
	Women	Men
Age (per year) ${ }^{\text {b }}$	1.09 (1.09, 1.09)	1.08 (1.08, 1.08)
Ethnicity		
European	1	1
Māori	$1.84(1.78,1.91)$	1.55 (1.51, 1.61)
Pacific	1.40 (1.33, 1.48)	1.26 (1.20, 1.32)
Indian	0.910 (0.837, 0.989)	1.18 (1.11, 1.25)
Other	0.688 (0.647, 0.732)	0.751 (0.717, 0.787)
Deprivation quintile (per quintile) ${ }^{\text {b }}$	1.15 (1.14, 1.16)	1.11 (1.10, 1.12)
Diabetes	2.43 (2.26, 2.62)	2.20 (2.07, 2.33)
Atrial fibrillation	2.54 (2.14, 3.01)	1.99 (1.80, 2.20)
Medications dispensed at baseline		
Blood-pressure-lowering	2.24 (2.13, 2.35)	1.86 (1.79, 1.94)
Lipid-lowering	1.02 (0.956, 1.08)	0.942 (0.903, 0.982)
Antiplatelet/anticoagulant	1.48 (1.42, 1.55)	1.32 (1.27, 1.37)
Interactions		
Age (years)* blood pressure-lowering-medication	0.975 (0.972, 0.978)	0.976 (0.974, 0.979)
Age (years)*diabetes	0.983 (0.980, 0.987)	0.982 (0.979, 0.985)
Age (years)*atrial fibrillation	$0.984(0.975,0.994)$	0.985 (0.979, 0.991)
Blood pressure-lowering-medication* diabetes	0.878 (0.807, 0.956)	0.858 (0.803, 0.917)
Antiplatelet/anticoagulant medications*diabetes	$0.804(0.744,0.868)$	0.855 (0.803, 0.910)
Blood-pressure-lowering medication*lipid-lowering medication	0.858 (0.797, 0.923)	0.941 (0.892, 0.994)

${ }^{\text {a }}$ The hazard ratios for each predictor are adjusted for all other predictors.
${ }^{\mathrm{b}}$ Age was centred in women and men separately using their mean values. For age, the mean value in women was 49.021 and the mean value in men was 49.027. Deprivation quintile was centred around quintile three in women and men. The baseline survival estimate at 5 years relevant to the mean value of age, deprivation quintile three and the reference group of categorical variables was 0.9905071151673 among women and 0.9782399916755 among men.
administrative health datasets can be linked at the individual person level. For example, they may be used to estimate future CVD incidence, identify target sub-populations for prevention and assess the likely benefit of health policies and interventions in different risk groups. The proposed method to compute local hazard ratios has applications beyond CVD risk prediction and could be used in time-toevent analyses to identify diagnoses, procedures and medications associated with other conditions.

Further improvements to predictive accuracy through additional data sources such as laboratory tests, and the development of frameworks which integrate machine learning and causal inference (e.g. through the use of causal regularizers which steer deep learning models towards causally interpretable solutions) ${ }^{30}$ represent interesting avenues for future research.

Data availability

All data were obtained from the New Zealand Ministry of Health. Access to the dataset can be requested from R.J. at [rt.jackson@auckland.ac.nz]. Requests will be granted after consideration by the VIEW research programme Governance Group, agreement by
the New Zealand Ministry of Health and ethical approval by the New Zealand Multi-Region Ethics Committee. The developed algorithms, trained deep learning models and tabulated results are publicly available at [https://github.com/VIEW2020/Varianz2012].

Supplementary data

Supplementary data are available at $I J E$ online.

Funding

This work was supported by the Health Research Council of New Zealand (grant numbers $11 / 800$, 14/010 to S.M.), S.M. was supported by a New Zealand Health Research Council Clinical Research Training Fellowship, C.B. is supported by National Drug and Alcohol Research Centre (NDARC) and University of New South Wales Scientia PhD Scholarships, and K.P. is supported by a New Zealand Heart Foundation Hynds Senior Fellowship. The study funders/sponsors had no role in the study design, collection, analysis or interpretation of data.

Author contributions

S.B., K.P., L.J., R.J. designed the study. B.W. performed data cleaning and pre-processing. S.M. implemented the Cox proportional
hazards models. S.B. implemented the deep learning models and drafted the manuscript. S.B. and C.B. evaluated the performance of the Cox and deep learning models. All authors contributed to the interpretation of findings and manuscript revisions.

Conflict of interest

No financial or other relationships with any organizations that might have an interest in the submitted work in the previous 3 years.

References

1. Damen JA, Hooft L, Schuit E et al. Prediction models for cardiovascular disease risk in the general population: systematic review. BMJ 2016;353:12416.
2. Usher-Smith JA, Silarova B, Schuit E, Moons KG, Griffin SJ. Impact of provision of cardiovascular disease risk estimates to healthcare professionals and patients: a systematic review. BMJ Open 2015;5:e008717.
3. Manuel DG, Rosella LC, Hennessy D, Sanmartin C, Wilson K. Predictive risk algorithms in a population setting: an overview. J Epidemiol Community Health 2012;66:859-65.
4. Manuel DG, Rosella LC. Commentary: assessing population (baseline) risk is a cornerstone of population health planninglooking forward to address new challenges. Int J Epidemiol 2010;39:380-82.
5. Mehta S, Jackson R, Pylypchuk R, Poppe K, Wells S, Kerr AJ. Development and validation of alternative cardiovascular risk prediction equations for population health planning: a routine health data linkage study of 1.7 million New Zealanders. Int J Epidemiol 2018;47:1571-84.
6. Cox DR. Regression models and life-tables. J R Stat Soc Ser B Methodol 1972;34:187-202.
7. Bzdok D, Altman N, Krzywinski M. Points of significance: statistics versus machine learning. Nat Methods 2018;15:233-34.
8. Kvamme H, Borgan \varnothing, Scheel I. Time-to-event prediction with neural networks and Cox regression. J Mach Learn Res 2019;20:1-30.
9. Ministry of Health (New Zealand). National Health Index Data Dictionary (Version 5.3) [Internet]. Wellington: Ministry of Health (New Zealand), 2009.
10. New Zealand Guidelines Group. Cardiovascular Disease Risk Assessment. Updated 2013 (New Zealand Primary Care Handbook 2012). Wellington: Ministry of Health (New Zealand), 2013.
11. Mehta S, Jackson R, Wells S, Harrison J, Exeter DJ, Kerr AJ. Cardiovascular medication changes over 5 years in a national data linkage study: implications for risk prediction models. Clin Epidemiol 2018;10:133-41.
12. Alpaydm E. Combined $5 \times 2 \mathrm{CVF}$ test for comparing supervised classification learning algorithms. Neural Comput 1999;11: 1885-92.
13. Kingma DP, Ba J, Adam: A method for stochastic optimization. ArXiv 2014;14126980. Preprint: not peer reviewed.
14. Fort S, Hu H, Lakshminarayanan B, Deep ensembles: a loss landscape perspective. ArXiv2019;191202757. Preprint: not peer reviewed.
15. Breslow NE. Discussion of the paper by D. R. Cox. J R Stat Soc B 1972;34:216-17.
16. Royston P, Sauerbrei W. A new measure of prognostic separation in survival data. Stat Med 2004;23:723-48.
17. Harrell FE, Califf RM, Pryor DB, Lee KL, Rosati RA. Evaluating the yield of medical tests. JAMA 1982;247:2543-46.
18. Graf E, Schmoor C, Sauerbrei W, Schumacher M. Assessment and comparison of prognostic classification schemes for survival data. Stat Med 1999;18:2529-45.
19. Blattenberger G, Lad F. Separating the Brier score into calibration and refinement components: a graphical exposition. $A m$ Stat 1985;39:26-32.
20. Ambale-Venkatesh B, Yang X, Wu CO et al. Cardiovascular event prediction by machine learning: the multi-ethnic study of atherosclerosis. Circ Res 2017;121:1092-101.
21. Alaa AM, Bolton T, Di Angelantonio E, Rudd JH, van der Schaar M. Cardiovascular disease risk prediction using automated machine learning: a prospective study of 423,604 UK Biobank participants. PLoS One 2019;14:e0213653.
22. Weng SF, Reps J, Kai J, Garibaldi JM, Qureshi N. Can machinelearning improve cardiovascular risk prediction using routine clinical data? PLoS One 2017;12:e0174944.
23. Quesada JA, Lopez-Pineda A, Gil-Guillén VF et al. Machine learning to predict cardiovascular risk. Int J Clin Pract 2019;73:e13389.
24. Du Z, Yang Y, Zheng J et al. Accurate prediction of coronary heart disease for patients with hypertension from electronic health records with big data and machine-learning methods: model development and performance evaluation. JMIR Med Inform 2020;8:e17257.
25. Zhao J, Feng Q, Wu P et al. Learning from longitudinal data in electronic health record and genetic data to improve cardiovascular event prediction. Sci Rep 2019;9:1-10.
26. Li Y, Sperrin M, Ashcroft DM, van Staa TP. Consistency of variety of machine learning and statistical models in predicting clinical risks of individual patients: longitudinal cohort study using cardiovascular disease as exemplar. BMJ 2020;371: m3919.
27. Strobl C, Boulesteix A-L, Zeileis A, Hothorn T. Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics 2007;8:25.
28. Nasejje JB, Mwambi H, Dheda K, Lesosky M. A comparison of the conditional inference survival forest model to random survival forests based on a simulation study as well as on two applications with time-to-event data. BMC Med Res Methodol 2017;17:115.
29. Maas AH, Appelman YE. Gender differences in coronary heart disease. Neth Heart J 2010;18:598-603.
30. Luo Y, Peng J, Ma J. When causal inference meets deep learning. Nat Mach Intell 2020;2:426-27.

[^0]: ${ }^{\text {a }}$ The local hazard ratios for each predictor are adjusted for all other predictors. Values in parentheses are 95% confidence intervals unless otherwise stated.
 ${ }^{\mathrm{b}}$ Age was centred at the mean value of 49.027 . Deprivation quintile was centred around quintile three. The baseline survival estimate at 5 years for the deep learning model, relevant to the mean value of age, deprivation quintile three and the reference group of categorical variables was 0.9812879278038 .
 ${ }^{\mathrm{c}}$ Average and range (in parentheses) of estimated local hazard ratios for all values of the continuous predictor.

[^1]: Better results are in bold. 95% confidence intervals (CIs) are computed using 5×2 cross-validation.
 ${ }^{\text {a }}$ Royston and Sauerbrei's R^{2} measures how much of the time-to-event occurring is explained by the model. Higher values indicate that more variation is accounted for by the model. ${ }^{16}$ ${ }^{\mathrm{b}}$ Royston and Sauerbrei's D statistic and Harrell's C statistic are measures of discrimination. Better discrimination is indicated by higher values. ${ }^{\text {c The integrated Brier score is affected by both calibration and discrimination. }}{ }^{18,19}$ Better calibration and discrimination are indicated by lower values.
 ${ }^{\mathrm{d}}$ Computed using combined $5 \times 2 \mathrm{~F}$ tests.

