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Abstract

Background: Machine learning-based risk prediction models may outperform tradi-

tional statistical models in large datasets with many variables, by identifying both

novel predictors and the complex interactions between them. This study compared

deep learning extensions of survival analysis models with Cox proportional hazards

models for predicting cardiovascular disease (CVD) risk in national health administra-

tive datasets.

Methods: Using individual person linkage of administrative datasets, we constructed a

cohort of all New Zealanders aged 30–74 who interacted with public health services dur-

ing 2012. After excluding people with prior CVD, we developed sex-specific deep learn-

ing and Cox proportional hazards models to estimate the risk of CVD events within 5

years. Models were compared based on the proportion of explained variance, model cali-

bration and discrimination, and hazard ratios for predictor variables.

Results: First CVD events occurred in 61 927 of 2 164 872 people. Within the reference

group, the largest hazard ratios estimated by the deep learning models were for tobacco

use in women (2.04, 95% CI: 1.99, 2.10) and chronic obstructive pulmonary disease with

acute lower respiratory infection in men (1.56, 95% CI: 1.50, 1.62). Other identified predic-

tors (e.g. hypertension, chest pain, diabetes) aligned with current knowledge about CVD

risk factors. Deep learning outperformed Cox proportional hazards models on the basis

of proportion of explained variance (R2: 0.468 vs 0.425 in women and 0.383 vs 0.348 in

men), calibration and discrimination (all P<0.0001).

Conclusions: Deep learning extensions of survival analysis models can be applied to

large health administrative datasets to derive interpretable CVD risk prediction equations

that are more accurate than traditional Cox proportional hazards models.
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Introduction

Cardiovascular disease (CVD) risk equations, derived in clini-

cal cohorts, are an established means to inform clinical deci-

sions regarding a person’s CVD risk management.1 They

facilitate risk communication in a clinical setting and moti-

vate adherence to recommended treatment and lifestyle modi-

fications.2 A complementary use of CVD risk equations is

their derivation in routine administrative datasets and their

application to every person in a given population for popula-

tion health planning (e.g. estimation of future CVD inci-

dence, identification of target sub-populations for prevention

and assessment of the likely benefit of health policies and

interventions in different risk groups).3,4 We have previously

developed equations to estimate the 5-year risk of a fatal or

non-fatal CVD event across the primary prevention popula-

tion of New Zealand, solely using linked routine national ad-

ministrative health datasets, and these equations showed

good calibration and discrimination across risk groups strati-

fied by age, ethnicity, geographical region, level of depriva-

tion and previous CVD-related pharmaceutical dispensing.5

CVD risk equations for population health planning differ

from equations in clinical use as they can only consider pre-

dictors available in routinely collected administrative health

data, which usually do not include smoking status, blood

pressure and lipid profile. However, administrative health

data may contain useful proxies for missing CVD predictors,

e.g. diagnoses and procedures recorded during hospitaliza-

tions and pharmaceutical dispensing. If additional CVD pre-

dictors can be identified in routinely collected data, the

predictive accuracy of CVD risk equations for population

health planning can be improved. Whereas traditional

methods for statistical inference using longitudinal data, such

as Cox proportional hazards regression,6 require predictors

to be pre-specified and become less reliable as the number of

predictors and possible associations among them increase,7

machine learning can be used to identify relevant patterns

across complex multimodal data. Recent methodological

developments, which replaced the linear combination of pre-

dictors in a Cox proportional hazards model with a deep neu-

ral network, were able to demonstrate improved calibration

and discrimination results.8 In this study, deep learning exten-

sions of survival analysis models were applied to routinely

collected administrative health data to predict the 5-year

CVD risk of over two million adult New Zealanders.

This study had the following aims: (i) to develop novel

deep learning models for predicting the 5-year risk of a fatal

or non-fatal CVD event across the New Zealand adult popu-

lation without prior CVD or heart failure, using routinely

collected administrative health data; (ii) to determine which

diagnoses, procedures and dispensed medications are associ-

ated with increased risk of CVD event; (iii) to compare the

performance of the deep learning models and traditional Cox

proportional hazards models on the basis of the proportion

of explained variance, calibration and discrimination.

Methods

Study population and data sources

This study has been performed in accordance with the ethi-

cal standards laid down in the 1964 Declaration of

Helsinki and is part of the VIEW research programme,

which was approved by the Northern Region Ethics

Key Messages

• This study proposes a combined survival analysis and deep learning approach for cardiovascular disease (CVD) risk

prediction, which accounts for censoring of unobserved events and allows estimation of hazard ratios associated with

each predictor.

• This study is the first to apply machine learning models for CVD risk prediction across a national population, using

predictors available in routinely collected administrative health data.

• The developed models could be used for accurate CVD risk prediction and population health planning in other

countries where large administrative health datasets can be linked at the individual person level; for example, they

may be used to estimate future CVD incidence, identify target sub-populations for prevention and assess the likely

benefit of health policies and interventions in different risk groups.

• The proposed approach has applications beyond CVD risk prediction and could be used in time-to-event analyses to

identify diagnoses, procedures and medications associated with other conditions.
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Committee Y in 2003 (AKY/03/12/314), with subsequent

annual re-approval by the national Multi-Region Ethics

Committee since 2007 (MEC/01/19/EXP). Individual pa-

tient consent was not required, as all data are anonymized.

The study population comprised New Zealand residents

aged 30–74 years who were alive, in New Zealand, on 31

December 2012 (index date) and with a health contact

recorded in one or more of the following New Zealand rou-

tine national health databases: demographic characteristics,

primary care enrolment (with voluntary re-enrolment occur-

ring every 3 years), primary care visit reimbursements (to

capture primary care visits by non-enrolled patients), com-

munity laboratory requests (but no laboratory results), com-

munity pharmaceutical dispensing, outpatient visits,

hospitalizations and deaths. Data for each person were

linked based on the National Health Index number (NHI

number), a unique identifier assigned to every person who

uses health and disability support services in New Zealand

(estimated 98% of the population9). NHI numbers in the

linked dataset were encrypted at source and all other indi-

vidual patient identifiers were also removed. The dataset

was linked to the Virtual Diabetes Registry, administered by

the New Zealand Ministry of Health, to identify individuals

with a history of diabetes as at 31 December 2012. The age

range for inclusion reflects the age group recommended for

CVD risk assessment in New Zealand.10

People with a history of CVD, heart failure or missing

predictor variables were excluded from the dataset. People

were considered to have a history of CVD or heart failure

if their data contained relevant ICD10-AM codes associ-

ated with hospitalizations between 1 January 1993 and the

index date, if they were dispensed loop diuretics or antian-

ginals three or more times in the 5 years prior to the index

date or if they were dispensed metolazone in the 6 months

prior to the index date. The cohort development flowchart

is presented in Supplementary Figure S1, available as

Supplementary data at IJE online. Additional information

is reported in Supplementary Methods, available as

Supplementary data at IJE online.

Outcome

The outcome of interest was the time in days to the first fa-

tal or non-fatal CVD event identified from national hospi-

talization and mortality datasets over the 5-year period

between 1 January 2013 and 31 December 2017 (ICD10-

AM codes are reported in the Supplementary Methods).

Five years is the recommended CVD risk prediction period

in New Zealand guidelines.10 People who died of CVD-

unrelated causes during follow-up were censored. People

who ceased to have any recorded health contact before 31

December 2017 were assumed to have left New Zealand

during follow-up and were also censored at their last

recorded contact date with a health provider.

Deep learning models

Predictors

Deep learning models for predicting 5-year CVD risk were

developed using linked data for the described 2012 study

population.5 The input data contained both pre-specified

predictors and all diagnoses, procedures and medications

in the 5 years prior to the index date.

Pre-specified predictors were included to facilitate com-

parisons between models. These pre-specified predictors

were selected based on evidence regarding CVD risk fac-

tors and availability in the national health databases, and

included: sex, age, ethnicity, level of deprivation, diabetes

status, previous hospitalization for atrial fibrillation (in-

cluding both primary and secondary diagnoses between 1

January 1993 and the index date) and baseline dispensing

of blood-pressure-lowering, lipid-lowering and antiplate-

let/anticoagulant medications, respectively. Deprivation

was available in national health databases according to

deciles of the New Zealand Index of Deprivation 2006

(NZDep2006), but was aggregated into quintiles (i.e. 1–5)

to mitigate the effect of reassignment between deciles

which occurs with different versions of the deprivation in-

dex over time. Age and deprivation quintiles were centred

for analysis, using the mean value for age and the third

quintile for level of deprivation. Changes in CVD pharma-

cotherapy over 5 years have been shown to be infrequent11

and were not considered. First-order interaction terms

were included based on clinical plausibility and statistical

significance in traditional Cox proportional hazards mod-

els (P-value of <0.001).11 Additional information regard-

ing the pre-specified predictors is available in the

Supplementary Methods.

ICD10-AM coded diagnoses and procedures and dis-

pensed medications were sorted chronologically by year

and calendar month. Whenever a person’s hospitalization

or medication period spanned multiple calendar months,

the associated diagnoses, procedures and medications were

listed a corresponding number of times. Each listed

ICD10-AM code was also associated with a variable indi-

cating whether it was a primary diagnosis, a secondary di-

agnosis, an external cause of injury or a procedure/

operation. Rare ICD10-AM codes and medications associ-

ated with less than 500 people were excluded.

Neural network architecture

A schematic representation of the neural network used to

map a person’s pre-specified predictors, diagnoses,
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procedures and medications to the log of the relative risk

function is presented in Figure 1. At first, ICD10-AM

codes and medications are represented as high-dimensional

real-valued vectors (embeddings). The embeddings for

ICD10-AM codes are summed with other embeddings de-

scribing the type of code (primary diagnosis, secondary di-

agnosis, external cause of injury or procedure/operation).

These vectors are then concatenated with a scalar value Dt,

indicating the time difference, in months, between the cur-

rent and the previous code in the clinical history (Dt¼ 0 for

the first code). Next, the vectors are passed to three

stacked bidirectional gated recurrent unit (GRU) layers

with 10% dropout. GRUs are a gating mechanism in recur-

rent neural networks; for each sequential input vector, a

GRU outputs a vector which depends on the current input

and the GRU’s internal state (memory). Therefore, they are

able to generate a vector representation of an input code in

the context of a person’s recent clinical history. The size of

the GRU’s hidden state was set equal to the input size.

Three stacked layers were used to increase the network’s

expressive power. To focus on the most relevant outputs of

the GRU layers and to obtain a single vector representation

of the entire clinical history, a linear combination of the

outputs was computed using dot-product attention. The

resulting vector was concatenated with the pre-specified

predictors, passed through a size-preserving fully con-

nected layer with exponential linear unit (ELU) activation

and finally mapped to a scalar value (the log of the relative

risk) by another fully connected layer. Network hyperpara-

meters were optimized using 10% of the data, stratified by

+

Type

Embeddings

Code

Embeddings

Time Difference

(Δt)

GRU

Stacked GRU

Layers

GRU

Outputs

Attention-pooled

GRU Outputs

Pre-specified

Predictors

Fully-

connected

Layer

Log Relative Risk

Fully-

connected

Layer

Figure 1 A schematic representation of the neural network used to map a person’s predictors and clinical history to the log of the relative risk func-

tion. Code embeddings indicate vector representations of diagnoses, procedures and medications. Type embeddings describe the type of code (pri-

mary diagnosis, secondary diagnosis, external cause of injury, or procedure or operation). An extended description is reported in the main text. The

‘k’ symbol indicates vector concatenation. Gated recurrent units (GRUs) are a gating mechanism in recurrent neural networks
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outcome; details and additional references are reported in

the Supplementary Methods.

Training

The remaining 90% of the data were used to train and test

the deep learning models, using stratified 5 � 2 cross-vali-

dation.12 Sex-specific estimates of network parameters

were obtained by maximizing the Cox partial likelihood

on the training data, using mini-batch stochastic gradient

descent.8 An Adam optimizer with a learning rate of 0.001

and b ¼ (0.9, 0.999) was used for stochastic optimiza-

tion.13 Training epochs iterated over all people who expe-

rienced a CVD event, and individual mini-batches

consisted of 256 cases matched one-to-one with random

controls in the respective risk set.8 During hyperparameter

optimization, overfitting of the training data became ap-

parent after approximately 10 training epochs and there-

fore training was stopped after 10 epochs. An ensemble of

10 neural networks was constructed for each cross-

validation fold by repeating training with different random

parameter initializations and averaging predictions.14

Five-year risk predictions were derived by estimating

the baseline survival at the mean value of age, the third

quintile of level of deprivation and the reference group of

categorical variables.15

Testing and validation in New Zealand sub-populations

The deep learning models were evaluated quantitatively

based on Royston and Sauerbrei’s R2 (a measure of the

proportion of explained variance16), Royston and

Sauerbrei’s D statistic,16 Harrell’s C statistic17 and the inte-

grated Brier score.18 Royston and Sauerbrei’s D statistic

and Harrell’s C statistic are measures of discrimination.

Royston and Sauerbrei’s D statistic represents the log haz-

ard ratio of two equally sized prognostic groups identified

by dividing the study population according to the median

of the prognostic index. Therefore, the D statistic quanti-

fies the prognostic separation of survival curves between

these two groups.16 Harrell’s C statistic estimates the pro-

portion of pairs of individuals where concordance is ob-

served between predictions and outcomes.17 The expected

Brier score may be interpreted as the mean square error of

prediction, and is affected by both calibration and discrim-

ination.18,19 The integrated Brier score averages model per-

formance over all available times. Further qualitative

assessment was performed through calibration plots and

discrimination plots (i.e. dot charts of proportion of events

occurring in each decile of predicted risk). Qualitative as-

sessment was repeated for New Zealand sub-populations

stratified by: (i) 15-year age bands; (ii) ethnicity; (iii) quin-

tiles of deprivation; and (iv) dispensing of preventive

medications.

Statistical inference

To approximate the uncertainty of network parameters,

the deep learning models were trained on the entire dataset

100 times with different random parameter initializa-

tions.14 For each trained model, a baseline risk was com-

puted for a person of mean age, in the third quintile of

level of deprivation, in the reference group of categorical

variables and with no associated diagnoses, procedures or

medications. The data for this person was then perturbed

by either changing the values of continuous or binary pre-

dictors, or adding an individual diagnosis, procedure or

medication. The resulting change in risk was used to esti-

mate sex-specific ‘local hazard ratios’ (HRs) for the modi-

fied predictor. Local HRs averaged across trained models

were reported together with 95% confidence intervals

(CI). The local HRs are valid only for comparisons with

the selected baseline population, whereas HRs derived by

traditional Cox proportional hazards models describe gen-

eral changes in hazard when other predictors are kept

constant.

Comparison with Cox proportional hazards

models

Sex-specific, multivariable Cox proportional hazards CVD

risk models were developed using the same pre-specified

predictors and first-order interaction terms used to develop

the deep learning models. The methodology for developing

the Cox models has been described previously in detail.5

For the current study, these models were replicated in the

2012 New Zealand population. As for the deep learning

models, calibration and discrimination measures were

computed using 5 � 2 cross-validation. The statistical sig-

nificance of differences between the deep learning and the

traditional Cox models was assessed using combined 5 � 2

F tests.12 Hazard ratios were determined after fitting the

Cox models to the entire dataset.

Neural network ablation study

The predictors used to develop the deep learning models

were partly redundant: diabetes status, previous hospitali-

zation for atrial fibrillation and baseline dispensing of

blood-pressure-lowering, lipid-lowering and antiplatelet/

anticoagulant medications were included both as binary

predictors and as individual ICD10-AM codes or medica-

tions. Similarly, first-order interaction terms between pre-

specified predictors were part of the input but could also

have been computed by the fully connected layers of the

deep learning models. Therefore, the deep learning models

were re-trained using only age, ethnicity and level of depri-

vation as pre-specified predictors. Local HRs, the
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proportion of explained variance, and calibration and dis-

crimination measures were computed for these ‘deep learn-

ing models without redundant predictors’ and compared

with the deep learning models using all pre-specified

predictors.

Hardware and software

The deep learning models were implemented in Python

3.7.5 using PyTorch 1.5.1 and based in part on the PyCox

library.8 Hyperparameter optimization was performed us-

ing Optuna 1.5.0. One training epoch took approximately

90 s on a personal computer with a 3.50 GHz Intel Xeon

processor, 64 GB of random access memory and a

NVIDIA GeForce RTX 2080 Super graphics card.

Statistical analyses to develop the Cox proportional haz-

ards models were undertaken using Stata software version

14.1. The developed algorithms, trained deep learning

models and tabulated results are publicly available at

[https://github.com/VIEW2020/Varianz2012].

Results

After applying the exclusion criteria (Supplementary

Figure S1), the cohort for this study comprised 2 164 872

New Zealand residents aged 30–74 years and still alive on

31 December 2012 (Table 1). The proportion of women

was 52.7%. The majority of the study population was of

European (69.8% of women and 71.8% of men) and

M�aori (11.6% of women and 10.5% of men) descent, with

5.3% Pacific peoples, 3.5% Indian and 9.3% of other or

unknown descent. The estimated prevalence of diabetes

was around 6% for both sexes, and 0.6% of women and

1.2% of men had recorded diagnoses of atrial fibrillation.

Blood-pressure-lowering medications were the most com-

monly dispensed category of baseline CVD preventive

pharmacotherapy (17.0% of women, 16.4% of men).

Among the women in this study, 2.1% experienced a

CVD event during a mean follow-up time of 4.8 years

(0.3% experienced a fatal CVD event). Among men, 3.7%

experienced a CVD event during a mean follow-up time of

4.7 years (0.5% experienced a fatal CVD event).

Table 1 Participant characteristics (N¼2 164 872)

Womena Mena

Participants 1 141 925 (52.7%) 1 022 947 (47.3%)

Age in years, mean (standard deviation) 49.0 (11.8) 49.0 (11.6)

Ethnicity

European 797 571 (69.8%) 734 891 (71.8%)

M�aori 132 802 (11.6%) 106 912 (10.5%)

Pacific 60 965 (5.3%) 54 659 (5.3%)

Indian 38 481 (3.4%) 36 248 (3.5%)

Other 112 106 (9.8%) 90 237 (8.8%)

Deprivation quintile

1 272 564 (23.9%) 242 794 (23.7%)

2 244 140 (21.4%) 216 602 (21.2%)

3 227 684 (19.9%) 202 118 (19.8%)

4 212 257 (18.6%) 190 774 (18.6%)

5 185 280 (16.2%) 170 659 (16.7%)

Diabetes 67 143 (5.9%) 65 290 (6.4%)

Atrial fibrillation 6393 (0.6%) 11 900 (1.2%)

Medications dispensed at baseline

Blood-pressure-lowering 194 670 (17.0%) 167 839 (16.4%)

Lipid-lowering 110 428 (9.7%) 137 529 (13.4%)

Antiplatelet/anticoagulant 64 158 (5.6%) 79 443 (7.8%)

Follow-up

Total follow-up, years (mean) 5 451 552 (4.8) 4 792 390 (4.7)

Cardiovascular disease deaths 2986 (0.3%) 5153 (0.5%)

Cardiovascular disease events (non-fatal

and fatal)

23 592 (2.1%) 38 335 (3.7%)

Median time to cardiovascular disease

event, yearsb (interquartile range)

2.8 (1.4, 3.9) 2.7 (1.4, 3.9)

Non-cardiovascular disease deaths 13 771 (1.2%) 15 660 (1.5%)

Censored at 5 years 1 021 829 (89.5%) 866 167 (84.7%)

aValues are N (%) unless otherwise stated.
bAmong those with an event between 2013 and 2017 inclusively.
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Deep learning models

Tables 2 and 3 present the adjusted local hazard ratios for pre-

dictors in the sex-specific deep learning models, together with

the proportions of people with each risk factor. Only the 10 di-

agnoses and procedures and the 10 medications associated with

the largest local hazard ratios are reported; the full tables can be

accessed at [https://github.com/VIEW2020/Varianz2012].

The 5-year risk of a first CVD event increased on aver-

age by 9% for each 1-year increment in age, for women

and men. The effect of age was more conspicuous among

people in their sixties and seventies (11% and 13% risk in-

crease in women and men, respectively) than among people

in their thirties (6% risk increase for both women and

men). Event risk at any time during follow-up was greater

among M�aori and Pacific women and M�aori, Pacific and

Indian men but lower among Indian and Other women

and Other men compared with their European counter-

parts. Each increment in quintile of deprivation increased

the CVD event risk by 16% in women and 10% in men.

Among the ICD10-AM codes, current tobacco use was asso-

ciated with a doubling in CVD event risk in women

(HR¼ 2.04, 95% CI: 1.99, 2.10) and an increase of 36% in

men (95% CI: 31%, 41%). Codes related to essential hyperten-

sion, chest pain, diabetes, general anaesthesia for patients with

severe systemic disease, chronic obstructive pulmonary disease,

computerized tomography of the brain, history of long-term use

of medications, retinopathy and retinal vascular changes, and

chronic renal failure were associated with risk increases between

13% and 98% for both women and men. Hospital-recorded al-

cohol use was associated with CVD event risk in women (45%

risk increase, 95% CI: 40%, 50%) but not in men (1% risk in-

crease, 95% CI: �1%, 4%). Some codes were associated with

a 7% to 10% decrease in CVD event risk, such as childbirth in

women and cycling injuries in men.

People with an increased risk of a CVD event were

more likely to have been dispensed smoking cessation med-

ications (nicotine, varenicline tartrate, buproprion hydro-

chloride), medications used for the treatment of raised

blood pressure (cilazapril, furosemide, quinapril, felodi-

pine, glyceryl trinitrate), bronchodilators (salbutamol with

ipratropium bromide, tiotropium bromide) and statins

(simvastatin). These findings were similar between women

and men. Interestingly, dispensing of malathion (a head

lice treatment) was also associated with increased CVD

event risk in both women (37%, 95% CI: 33%, 41%) and

men (32%, 95% CI: 28%, 36%).

Comparison with Cox proportional hazards models

Both the deep learning models and the traditional Cox

models showed good calibration and discrimination, for

both women and men (Figure 2). However, the proportion

of explained variance was larger for the deep learning

models than for Cox models (0.468 vs 0.425 in women

and 0.383 vs 0.348 in men, P< 0.0001; Table 4).

Similarly, discrimination and calibration were better for

the deep learning models in terms of Royston and

Sauerbrei’s D statistic, Harrell’s C statistic and integrated

Brier score, although differences were relatively small

(Table 4). A qualitative evaluation of the calibration plots

for sub-populations stratified by 15-year age bands, ethnic-

ity, quintiles of deprivation and dispensing of preventive

medications also suggested better calibration of the deep

learning models (Supplementary Figures S2–S15, available

as Supplementary data at IJE online). Specific examples of

differences in calibration between the two models in

women and men aged 30–44 years, M�aori women and men

and most deprived women and men are shown in Figure 3.

Overall, performance metrics associated with the models

for women were better than those for men (Table 4).

Hazard ratios determined by the traditional Cox models

were comparable in magnitude to the local HRs deter-

mined by the deep learning models (Table 5), although

slightly smaller for ethnic groups and larger for history of

diabetes and atrial fibrillation and baseline dispensing of

medications. Coefficients of the corresponding CVD risk

equations are reported in Supplementary Table S8, avail-

able as Supplementary data at IJE online.

Neural network ablation study

When comparing the deep learning models developed with

and without redundant predictors, the most evident differ-

ence was that the models without pre-specified predictors

for diabetes status and previous hospitalization for atrial

fibrillation associated a higher risk of a CVD event with

ICD10-AM codes for these conditions (Supplementary

Tables S9 and S10, available as Supplementary data at IJE

online). Performance measures were slightly better for the

deep learning models with redundant predictors (e.g. the

proportion of explained variance was 0.468 vs 0.461 in

women and 0.383 vs 0.379 in men; Supplementary Table

S11, available as Supplementary data at IJE online).

Discussion

This study developed deep learning models to predict the

5-year risk of a fatal or non-fatal CVD event across the en-

tire primary prevention population of New Zealand, using

only predictors available in routinely collected administra-

tive health data. The new models account for censoring of

unobserved events and were used to gain insight into
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Table 2 Adjusted local hazard ratios (HRs) for time to cardiovascular disease event within 5 years for women, determined by the

deep learning model (only the 10 diagnoses and procedures, and the 10 medications, associated with the largest hazard ratios

are reported)

Women (N¼1 141 925) Deep learning model

Predictors N (%) Adjusted local HRs (95% CI)a

Age (per year)b 1.09 (1.06, 1.11)c

Ethnicity

European 797 571 (69.8%) 1

M�aori 132 802 (11.6%) 1.96 (1.95, 1.97)

Pacific 60 965 (5.3%) 1.68 (1.67, 1.69)

Indian 38 481 (3.4%) 0.925 (0.918, 0.932)

Other 112 106 (9.8%) 0.720 (0.716, 0.723)

Deprivation quintile (per quintile)b 1.16 (1.15, 1.16)c

Diabetes 67 143 (5.9%) 1.39 (1.37, 1.40)

Atrial fibrillation 6393 (0.6%) 1.68 (1.66, 1.69)

Medications dispensed at baseline

Blood pressure lowering 194 670 (17.0%) 1.31 (1.29, 1.33)

Lipid lowering 110 428 (9.7%) 0.998 (0.990, 1.01)

Antiplatelet/anticoagulant 64 158 (5.6%) 1.46 (1.45, 1.47)

Interactions

Age (years)*blood-pressure-lowering medication 0.980 (0.978, 0.982)

Age (years)*diabetes 0.999 (0.997, 1.00)

Age (years)*atrial fibrillation 0.963 (0.961, 0.966)

Blood-pressure-lowering medication*diabetes 1.10 (1.09, 1.11)

Antiplatelet/anticoagulant medications*diabetes 0.883 (0.874, 0.892)

Blood-pressure-lowering medication*lipid -lowering medication 0.997 (0.989, 1.01)

Top 10 diagnoses and procedures

Z72.0: Tobacco use, current 84 589 (7.4%) 2.04 (1.99, 2.10)

I10: Essential (primary) hypertension 14 167 (1.2%) 1.98 (1.91, 2.06)

R07.4: Chest pain, unspecified 17 208 (1.5%) 1.69 (1.63, 1.76)

92514-39: General anaesthesia, ASA 3 (Patient with

severe systemic disease that limits activity), nonemergency or not known

10 961 (1.0%) 1.55 (1.49, 1.61)

56001-00: Computerized tomography of brain 16 845 (1.5%) 1.53 (1.47, 1.58)

J44.1: Chronic obstructive pulmonary disease

with acute exacerbation, unspecified

1096 (0.1%) 1.52 (1.47, 1.58)

Z92.2: Personal history of long-term (current)

use of other medicaments

2661 (0.2%) 1.52 (1.47, 1.58)

H35.0: Background retinopathy and retinal vascular changes 692 (0.1%) 1.51 (1.46, 1.57)

Z92.22: Personal history of long-term (current)

use of other medicaments, insulin

2169 (0.2%) 1.47 (1.42, 1.53)

Z72.1: Alcohol use 957 (0.1%) 1.45 (1.40, 1.50)

Top 10 medications

Nicotine 79 506 (7.0%) 1.74 (1.70, 1.78)

Varenicline tartrate 31 750 (2.8%) 1.54 (1.50, 1.58)

Furosemide] 13 340 (1.2%) 1.44 (1.40, 1.49)

Tiotropium bromide 4078 (0.4%) 1.43 (1.39, 1.47)

Bupropion hydrochloride 30 796 (2.7%) 1.40 (1.36, 1.43)

Cilazapril 76 762 (6.7%) 1.38 (1.35, 1.41)

Malathion 22 441 (2.0%) 1.37 (1.33, 1.41)

Salbutamol with ipratropium bromide 22 240 (1.9%) 1.35 (1.32, 1.39)

Quinapril 48 373 (4.2%) 1.33 (1.30, 1.37)

Glyceryl trinitrate 15 899 (1.4%) 1.31 (1.26, 1.37)

aThe local hazard ratios for each predictor are adjusted for all other predictors. Values in parentheses are 95% confidence intervals unless otherwise stated.
bAge was centred at the mean value of 49.021. Deprivation quintile was centred around quintile three. The baseline survival estimate at 5 years for the deep

learning model, relevant to the mean value of age, deprivation quintile three and the reference group of categorical variables, was 0.9926104519395.
cAverage and range (in parentheses) of estimated local hazard ratios for all values of the continuous predictor.
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Table 3 Adjusted local hazard ratios (HRs) for time to cardiovascular disease event within 5 years for men, determined by the

deep learning model (only the 10 diagnoses and procedures and the 10 medications associated with the largest hazard ratios

are reported)

Men (N¼1 022 947) Deep learning model

Predictors N (%) Adjusted local HRs (95% CI)a

Age (per year)b 1.09 (1.06, 1.13)c

Ethnicity

European 734 891 (71.8%) 1

M�aori 106 912 (10.5%) 1.69 (1.69, 1.70)

Pacific 54 659 (5.3%) 1.44 (1.43, 1.44)

Indian 36 248 (3.5%) 1.40 (1.39, 1.41)

Other 90 237 (8.8%) 0.785 (0.781, 0.790)

Deprivation quintile (per quintile)b 1.10 (1.09, 1.10)c

Diabetes 65 290 (6.4%) 1.46 (1.45, 1.47)

Atrial fibrillation 11 900 (1.2%) 1.61 (1.59, 1.62)

Medications dispensed at baseline

Blood-pressure-lowering 167 839 (16.4%) 1.12 (1.11, 1.13)

Lipid-lowering 137 529 (13.4%) 0.937 (0.929, 0.945)

Antiplatelet/anticoagulant 79 443 (7.8%) 1.43 (1.42, 1.44)

Interactions

Age (years)*blood-pressure-lowering medication 0.987 (0.986, 0.989)

Age (years)*diabetes 0.993 (0.991, 0.995)

Age (years)*atrial fibrillation 0.994 (0.991, 0.996)

Blood-pressure-lowering medication*diabetes 0.969 (0.960, 0.978)

Antiplatelet/anticoagulant medications*diabetes 0.855 (0.848, 0.863)

Blood-pressure-lowering medication*lipid-lower-

ing medication

1.01 (1.01, 1.02)

Top 10 diagnoses and procedures

J44.0: Chronic obstructive pulmonary disease with

acute lower respiratory infection

1529 (0.1%) 1.56 (1.50, 1.62)

N18.90: Unspecified chronic renal failure 909 (0.1%) 1.54 (1.49, 1.60)

R07.3: Other chest pain 7665 (0.7%) 1.51 (1.45, 1.57)

E11.71: Non-insulin-dependent diabetes mellitus

with multiple complications, stated as uncontrolled

663 (0.1%) 1.51 (1.45, 1.56)

L97: Ulcer of lower limb, not elsewhere classified 896 (0.1%) 1.50 (1.46, 1.55)

E11.72: Type 2 diabetes mellitus with features of

insulin resistance

6209 (0.6%) 1.50 (1.45, 1.55)

R07.4: Chest pain, unspecified 15 470 (1.5%) 1.47 (1.43, 1.52)

G62.9: Polyneuropathy, unspecified 694 (0.1%) 1.47 (1.41, 1.53)

Z92.2: Personal history of long-term (current) use

of other medicaments

2336 (0.2%) 1.47 (1.42, 1.53)

J44.9: Chronic obstructive pulmonary disease,

unspecified

523 (0.1%) 1.46 (1.42, 1.51)

Top 10 medications

Quinapril 46 541 (4.5%) 1.73 (1.68, 1.78)

Varenicline tartrate 26 037 (2.5%) 1.73 (1.69, 1.76)

Nicotine 64 493 (6.3%) 1.68 (1.65, 1.71)

Simvastatin 140 134 (13.7%) 1.66 (1.62, 1.70)

Glyceryl trinitrate 14 227 (1.4%) 1.65 (1.58, 1.72)

Cilazapril 79 241 (7.7%) 1.60 (1.55, 1.64)

Bupropion hydrochloride 25 139 (2.5%) 1.58 (1.54, 1.61)

Tiotropium bromide 3399 (0.3%) 1.52 (1.46, 1.58)

Salbutamol with ipratropium bromide 14 745 (1.4%) 1.46 (1.42, 1.49)

Felodipine 38 670 (3.8%) 1.39 (1.36, 1.43)

aThe local hazard ratios for each predictor are adjusted for all other predictors. Values in parentheses are 95% confidence intervals unless otherwise stated.
bAge was centred at the mean value of 49.027. Deprivation quintile was centred around quintile three. The baseline survival estimate at 5 years for the deep

learning model, relevant to the mean value of age, deprivation quintile three and the reference group of categorical variables was 0.9812879278038.
cAverage and range (in parentheses) of estimated local hazard ratios for all values of the continuous predictor.
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diagnoses, procedures and medications associated with in-

creased risk of CVD events.

Compared with traditional Cox proportional hazards

models, the deep learning models showed improved cali-

bration and discrimination across the whole population

and in sub-populations stratified by 15-year age bands,

ethnicity, quintiles of deprivation and dispensing of pre-

ventive medications. Inclusion of pre-specified predictors

and interaction terms facilitated comparison between the

deep learning and Cox models and allowed direct estima-

tion of the gain in predictive performance achieved by the

deep learning extension to traditional models. However,

these pre-specified terms were partly redundant and might

have biased some of the estimated local hazard ratios

towards one. Model performance degraded slightly when

these terms were removed, likely because the pre-specified

predictors for diabetes status (derived from the national

Virtual Diabetes Registry) and previous hospitalization for

atrial fibrillation (in the 20 years before the index date)

capture a larger proportion of people with these conditions

than the ICD10-AM codes associated with hospital admis-

sions in the 5 years prior to the index date. In addition, the

deep learning models that included first-order interaction

terms between pre-specified predictors as part of the input

might have been able to compute relevant higher-order in-

teraction terms, improving their predictive performance.

Since the deep learning models adjusted for any diagnoses,

procedures and medications in the 5 years prior to the

Figure 2 Calibration and discrimination of the deep learning models and Cox proportional hazards models for women and men. The calibration plots

show the mean estimated 5-year risk plotted against the proportion of cardiovascular disease events that occurred over 5 years, for deciles of pre-

dicted risk. The diagonal line represents perfect calibration. The discrimination plots show the proportion of total observed events that occurred in

each decile of predicted risk
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index date, the estimated local hazard ratios might also

have been affected by collider bias and multicollinearity.

Accordingly, the local hazard ratios serve primarily to

demonstrate the face validity and biological plausibility of

the deep learning models rather than being interpretable as

estimates of causal effects.

A few previous studies investigated the use of machine

learning for CVD risk prediction using large-scale data

from prospective study cohorts,20,21 family practices in the

UK,22 primary health care centres in Spain23 and hospitals

and community health service centres in China24 and the

United States.25 They suggest that machine learning

improves CVD risk prediction, in agreement with the pre-

sent findings, although their measures of performance

were limited. Moreover, only one of these studies was able

to account for censored data through the use of random

survival forests.20 A recent study comparing machine

learning and traditional survival models for CVD risk pre-

diction using UK family practice data shows that machine

learning models that ignore censoring produce biased risk

estimates, and suggests that survival models that consider

censoring and that are explainable, are preferable.26

However, the latter study did not evaluate any machine

learning models that account for censoring. The present

study is the first to use deep learning extensions of survival

analysis models for CVD risk prediction, using routinely

collected health data for a national population.

Previous studies generally used random forests to rank

the importance of predictors, an approach which might

not always be reliable due to bias towards inclusion of pre-

dictors with many split points.27,28 In the present study,

the associations of individual ICD10-AM codes and medi-

cations with the outcome were described using estimated

hazard ratios. The most relevant diagnoses (e.g. current to-

bacco use, essential hypertension, chest pain, diabetes,

chronic obstructive pulmonary disease, history of long-

term use of medications, retinopathy and retinal vascular

changes) and medications (related to smoking cessation,

treatment of raised blood pressure and heart failure, bron-

chodilators and statins) generally aligned with current

knowledge about CVD risk predictors. The results also

support previous findings regarding sex-related differences

in cardiovascular risk predictors, such as the more deleteri-

ous effect of smoking in women and the particularly high

risk associated with significant renal disease in men.29

In conclusion, the proposed deep learning extensions of

survival analysis models enabled 5-year CVD risk predic-

tions for the primary prevention population of New

Zealand with improved calibration and discrimination.

The developed models are freely available and could simi-

larly be used for CVD risk prediction and population

health planning in other countries where largeT
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Figure 3 Calibration plots for the deep learning models and Cox proportional hazards models in specific New Zealand sub-populations (women and

men aged 30–44 years, M�aori women and men and most deprived women and men), suggesting improved calibration for the deep learning models

942 International Journal of Epidemiology, 2022, Vol. 51, No. 3



administrative health datasets can be linked at the individ-

ual person level. For example, they may be used to estimate

future CVD incidence, identify target sub-populations for

prevention and assess the likely benefit of health policies

and interventions in different risk groups. The proposed

method to compute local hazard ratios has applications be-

yond CVD risk prediction and could be used in time-to-

event analyses to identify diagnoses, procedures and medi-

cations associated with other conditions.

Further improvements to predictive accuracy through

additional data sources such as laboratory tests, and the

development of frameworks which integrate machine

learning and causal inference (e.g. through the use of

causal regularizers which steer deep learning models to-

wards causally interpretable solutions)30 represent interest-

ing avenues for future research.
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aThe hazard ratios for each predictor are adjusted for all other predictors.
bAge was centred in women and men separately using their mean values. For age, the mean value in women was 49.021 and the mean value in men was

49.027. Deprivation quintile was centred around quintile three in women and men. The baseline survival estimate at 5 years relevant to the mean value of age,

deprivation quintile three and the reference group of categorical variables was 0.9905071151673 among women and 0.9782399916755 among men.
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