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We examined a series of commercially available screen-printed electrodes (SPEs) for their
suitability for electrochemical and electrogenerated chemiluminescence (ECL) detection
systems. Using cyclic voltammetry with both a homogeneous solution-based and a
heterogeneous bead-based ECL assay format, the most intense ECL signals were
observed from unmodified carbon-based SPEs. Three commercially available varieties
were tested, with Zensor outperforming DropSens and Kanichi in terms of sensitivity. The
incorporation of nanomaterials in the electrode did not significantly enhance the ECL
intensity under the conditions used in this evaluation (such as gold nanoparticles 19%,
carbon nanotubes 45%, carbon nanofibers 21%, graphene 48%, and ordered
mesoporous carbon 21% compared to the ECL intensity of unmodified Zensor carbon
electrode). Platinum and gold SPEs exhibited poor relative ECL intensities (16% and 10%)
when compared to carbonaceous materials, due to their high rates of surface oxide
formation and inefficient oxidation of tri-n-propylamine (TPrA). However, the ECL signal at
platinum electrodes can be increased ∼3-fold with the addition of a surfactant, which
enhanced TPrA oxidation due to increasing the hydrophobicity of the electrode surface.
Our results also demonstrate that each SPE should only be used once, as we observed a
significant change in ECL intensity over repeated CV scans and SPEs cannot be
mechanically polished to refresh the electrode surface.

Keywords: electrogenerated chemiluminescence, screen-printed electrodes, point-of-care sensors,
electrochemiluminescence

INTRODUCTION

The personal glucometer is a device that employs screen-printed electrodes (SPEs) to provide diabetic
patients with accurate blood glucose measurements using an electrochemical reaction. It is one of many
examples of electrochemical point-of-care (POC) diagnostic systems, with other analytical targets
including heavy metals, pesticides, ethanol, dopamine, nucleic acids or specific antigens (Boujtita
et al., 2000; Darain et al., 2003; Carpini et al., 2004; Kadara and Tothill, 2004; Arduini et al., 2006;
Martinez et al., 2009; Viswanathan et al., 2009; Nie et al., 2010a; Nie et al., 2010b;Metters et al., 2011; Ping
et al., 2012; Chen et al., 2019). Electrogenerated chemiluminescence also referred to as
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electrochemiluminescence (ECL) provides a highly sensitivemode of
detection (Miao et al., 2002; Miao and Bard, 2003, Miao and Bard,
2004; Miao, 2008; Chen et al., 2019), measuring the light emission at
an electrode surface arising from the formation of excited states as a
result of an electrochemical reaction (Richter, 2004; Richter, 2008).
ECL offers many advantages when compared to conventional
electrochemical, fluorescent or chemiluminescent detection
techniques as it does not require precise current monitoring or
an external light source; ECL also offers accurate spatial and
temporal control over the reaction. Following their success in
electrochemical assays, ECL detection strategies have been
developed using disposable SPEs, aiming to combine the
enhanced sensitivity with simplified and low-cost devices,
addressing drawbacks of many proof-of-concept POC devices
(Delaney et al., 2011; Ge et al., 2012; Xu and Wang, 2012; Yan
et al., 2012; Delaney et al., 2013; Doeven et al., 2015a; Chen et al.,
2019). A recent review by Martínez-Periñán et al. (2020) evaluated
the plethora of analytical applications of ECL sensing using SPEs.

Numerous electrode characteristics are important for
developing highly sensitive analytical ECL and
electrochemical diagnostic applications, including: 1) fast
electron transfer rates; 2) highly reproducible electrode
surfaces to improve assay precision; 3) high electroactive
surface area to maximize signal; 4) high electrode surface
stability, to improve the reproducibility between potential
scans and prevent electrode passivation; 5) wide
electrochemical potential window; 6) low background
current; and 7) for ECL, a hydrophobic electrode surface, to
permit efficient oxidation of the co-reactant TPrA (Workman
and Richter, 2000; Li and Zu, 2004; Valenti et al., 2016). Valenti
et al. (2016) recently reviewed classical electrode materials and
defined these critical parameters that electro-active materials
must possess to produce efficient ECL with the classic tris(2,2′-
bipyridine)ruthenium(II) ([Ru(bpy)3]

2+) and tri-n-
propylamine (TPrA) oxidative-reduction co-reactant system.
Kadara et al. (2009) and Fanjul-Bolado et al. (2008)
conducted thorough electrochemical characterizations of a
range of in-house produced and commercially available SPEs.
Since then, a wide variety of SPEs that exploit advances in
electro-active materials, such as modified electrodes
incorporating carbon nanofibers (CNF), carbon nanotubes
(CNT), gold nanoparticles (GNP), graphene (GPH), ordered
mesoporous carbon (OMC) and combinations of these
materials, have become available from commercial suppliers
(Zhao et al., 2002; Kim and Yang, 2003; Chang et al., 2006; Guo
and Wang, 2007; Huang et al., 2008; Liu et al., 2008; Brownson
and Banks, 2011). Herein, we interrogate 13 commercially
available SPEs including traditional (carbon, gold and
platinum) and modified electrodes for their suitability for use
for ECL detection in a POC setting.

EXPERIMENTAL

Chemicals
Potassium hexacyanoferrate(II) (potassium ferrocyanide, >98%,
Ajax, Australia), potassium chloride (>99%, LabServ, Australia),

sodium chloride (>99.5%, Sigma Aldrich), potassium phosphate
monobasic (>99%, Sigma-Aldrich), potassium phosphate dibasic
(>98%, Sigma Aldrich), Tris (>99%, Sigma-Aldrich), borate
(>99%, Sigma-Aldrich) potassium hydroxide (>85%, Sigma-
Aldrich), hydrochloric acid (32%, Chem-Supply, Australia),
tri-n-propylamine (>98%, Sigma-Aldrich), tris(2,2′-bipyridine)
ruthenium(II) chloride hexahydrate ([Ru(bpy)3]Cl2.6H2O,
>99.5%, Sigma-Aldrich), Tween 20 (polyethylene glycol
sorbitan monolaurate, T20, Sigma-Aldrich), and Triton X-100
(polyethylene glycol tert octylphenyl ether, TX-100, Ajax) were
used as supplied. All samples were prepared in milli Q water
(18.2 MΩ cm−1). Biotinylated 89mer ssDNA used as a nucleic
acid proxy assay was purchased from Integrated DNA Technologies,
United States (details in SI), Bis(2,2′-bipyridine)(4-methyl-4′-
carboxypropyl-2,2′-bipyridine)ruthenium(II) hexafluorophosphate
(Ru(bpy)2([mbpy-COOH](PF6)2) was purchased from
SunaTech. Dynabeads d280 streptavidin coated 2.8 µm
paramagnetic beads (Invitrogen) were purchased from Life
Technologies (Australia), and were washed in binding buffer
(0.5 M NaCl, 20 mM Tris.HCl, pH 8.0) three times prior to use.
Beads were used at a concentration of 2 mg/mL and stored in
binding buffer unless otherwise specified.

Analysis Procedures
We machined custom SPE holders from 10 mm thick cast
poly(methyl methacrylate) (PMMA) sheets using a Datron
M7HP CNC mill (Datron AG, Germany). SPE holders were
designed using SolidWorks 2015 CAD package (Dassault
Systems, France), while G-code CNC toolpaths were created
using Siemens NX 10 CAD/CAM package (Siemens,
Germany). 3D drawings of these holders are shown in
Supplementary Figure S1. These holders were designed to
house the SPEs for analysis and to reproducibly interface the
cells with the detector. For the paramagnetic particle based
experiments, the holders were designed to hold a 3 × 4 mm
diameter rod shaped N42 rare earth magnet (Aussie Magnets,
Australia) beneath the working electrode position, to facilitate
particle capture at the electrode surface. Two detectors were used:
solution phase ECL was detected using a photomultiplier tube
(extended-range trialkali S20 PMT, ET Enterprises model
9828B), while ECL from the magnetic bead based assay was
detected using an AdvanSiD (Italy) 3 × 3 mm silicon photon
multiplier (ASD-RGB3S-P), to remove any effect of the magnetic
field on the PMT. The SiPM was biased at 33 V and interfaced
with an AdvanSiD ASD EP EB N amplifier board. Data from the
SiPM was recorded using an eDAQ401 (eDAQ, Australia) data
recording unit using the supplied eDAQ Chart software.

For electrochemical and ECL (PMT) experiments, we used a
custom-built, light-tight, Faraday cage and an Autolab PGSTAT
101 or PGSTAT 128 N (Metrohm Autolab B.V., Netherlands)
potentiostat with accompanying NOVA software. The following
varieties of electrodes were obtained fromDropSens (http://www.
dropsens.com/): unmodified carbon (DS-C), ordered
mesoporous carbon (DS-OMC), carbon nanotubes (DS-CNT),
carbon nanofiber (DS-CNF), graphene (DS-GPH), gold (BT-250
model, DS-Au) platinum (DS-Pt), carbon with gold nanoparticles
(DS-GNP), carbon nanofiber with gold nanoparticles (DS-CNF-

Frontiers in Chemistry | www.frontiersin.org January 2021 | Volume 8 | Article 6284832

Kerr et al. Screen-printed electrodes for electrochemiluminescence

http://www.dropsens.com/
http://www.dropsens.com/
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


GNP), carbon nanotubes with gold nanoparticles (DS-CNT-
GNP), and graphene with gold nanoparticles (DS-GPH-GNP).
Two additional varieties of carbon electrodes were obtained from
eDAQ (http://www.edaq.com/, Zensor and Kanichi varieties).
Each SPE contained a three-electrode configuration with
varying working electrode surfaces (DropSens varieties 4 mm
working electrode diameter, Kanichi and Zensor, 3 mm working
electrode diameter), carbon auxiliary electrode and Ag/AgCl
reference electrode. For electrochemical experiments, analytes
were measured in either 1 M KCl or 0.1 M phosphate buffer
solution (PBS), pH 7.5. For ECL experiments, solutions of analyte
at the appropriate concentration were prepared in ECL buffer;
0.1 M PBS, pH 7.5, containing 100 mM TPrA. Relative ECL
intensities were calculated from the integrated area of the
PMT response from three cyclic voltammetry (CV) cycles
between 1.6 V and −1.2 V at 0.1 V/s and each result was
proportionally adjusted to the geometric working electrode
surface area.

For DNA assay comparison experiments, we prepared an Ru-
DNA-biotin construct that could be immobilized on
paramagnetic particles, following the procedure detailed by
Zhou et al. (2014). Ru(bpy)2(mbpy-NHS)2+ was prepared from
Ru(bpy)2(mbpy-COOH)2+ as previously described, followed by
bioconjugation with the NH2 terminated DNA sequence (Zhou
et al., 2014; Chen et al., 2019). The DNA was isolated and the Ru-
DNA-biotin conjugate concentration quantified by UV-visible
spectrometry. This purified Ru-DNA-biotin conjugate was then
bound to the paramagnetic beads by streptavidin-biotin
interaction. The beads (with bound Ru-DNA-biotin construct)
were then washed and re-suspended in binding buffer at 2 mg/mL
for later use.

To perform ECL experiments on the Ru-DNA-bead
constructs, the paramagnetic beads were re-suspended in ECL
buffer at 2 mg/mL. The SPE to be tested was mounted in the
holder, then 80 µL of ECL buffer was pipetted into the well in the
holder located over the electrode area. 5 µL of the Ru-DNA-bead
solution (10 µG paramagnetic particles) was then pipetted over
the working electrode area, where the beads were captured at the
working electrode surface by the magnet located directly
underneath. The detector was then mounted to the top of the
cell (the SiPM fits in the machined recess) and ECL was
performed in an identical fashion to the solution phase
experiments.

We employed a handheld digital multi-meter to measure the
conductive path resistance (Dick Smith Electronics, Q-1559). The
measurement was taken from the working electrode connection
pad to the center of the working electrode surface. An
acceleration voltage of 12 kV and either an in-lens or
secondary electron (SE) detector was employed to collect
scanning electron micrographs (Zeiss Supra 55VP Scanning
Electron Microscope, SEM; Zeiss, Germany). The working
distance (WD) used to collect the SEM micrographs was
optimized for each electrode and was between 3.2 and 4.7 mm.
Contact angles for each electrode were collected using a contact
angle goniometer (Ramè-Hart, United States).

RESULTS AND DISCUSSION

Electrochemical Properties
We tested each electrode for its electrochemical properties
(Table 1) using potassium ferro/ferricyanide, a thoroughly
studied outer-sphere redox couple. The peak-to-peak
separation of the redox couple (ΔE) for each electrode was
greater than anticipated for a one-electron transfer process
(59 mV), displaying quasi-reversible electrochemical
characteristics. Although not ideal, these results are consistent
with those of both Fanjul-Bolado et al. (2008) and Banks et al.
(2005) who proposed that the electrochemical irreversibility of
the ferro/ferricyanide couple at these electrode surfaces results
from a combination of electrode characteristics including the
nature of the ink used to produce the electrode, the amount of
organic binder incorporated into the electrode, the temperature
employed in the curing process, the degree of formation of
oxygenated species at the electrode surface, the hydrophilicity
of the electrode surface and the electrode material itself (Fanjul-
Bolado et al., 2008; Kadara et al., 2009).

The electro-active area (A) of the electrode was calculated
from scan rate studies of 1 mM potassium ferrocyanide in 1 M
KCl, using the Randles-Sevcik Eq. 1 (Bard and Faulkner, 1980).

ip � (2.69 × 105)n3/2ACD1/2v1/2, (1)

TABLE 1 | Electrochemical properties of various commercially available SPEs.

A
(cm2)a,b

Areal
c Conductive

path
resistance

(Ω)d

ΔE
(mV)

Ic/Ia TPrA
oxidation

(µmol/cm2)e

Zensor 0.027 0.38 115 131 1.05 1.11
DS-C 0.055 0.44 477 156 1.00 1.20
Kanichi 0.040 0.56 196 126 1.01 0.98
DS-OMC 0.056 0.44 262 76 0.96 0.65
DS-CNT 0.078 0.62 279 81 0.99 1.22
DS-CNF 0.098 0.78 376 81 1.01 1.16
DS-GPH 0.073 0.58 353 91 0.97 0.85
DS-Pt 0.099 0.79 1 65 1.01 0.24
DS-Au 0.083 0.66 1 70 0.99 3.38
DS-GNP 0.069 0.55 254 111 1.06 1.08
DS-
CNF-GNP

0.103 0.82 202 70 0.99 1.22

DS-
GPH-GNP

0.114 0.91 259 70 1.00 1.39

DS-
CNT-GNP

0.080 0.64 291 91 1.05 1.12

GC 0.051 0.72 4 70 1.02 3.37

aCalculated using Eq. 1, (average RSD � 5%, n � 3).
bAlso commonly referred to as ‘roughness factor’.
cCalculated using Eq. 2.
dAverage RSD � 2%, n � 3.
eCalculated using N � (Q/nFA), where Q is the charge at the electrode surface (the area
under the blank subtracted TPrA anodic oxidation wave current vs time peak, in
coulombs), n is the number of electrons transferred in the reaction, F is the Faraday
constant (96,485 C mol−1) and A is the geometric electrode area (cm2), (average RSD �
7%, n � 2).
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where ip is the peak current, n is the number of electrons
participating in the electron transfer reaction, A is the
working electrode area, D is the diffusion coefficient and v is
the scan rate. We have included representative scan rate studies
and graphs of the variation of ip with scan rate in
Supplementary Figures S2, S3. The proportion of the
electrode surface that is electro-active (Areal) can be
calculated using the following equation;

Areal � A
Ageo

, (2)

where Ageo is the geometric area of the electrode. As expected, the
nanomaterial modified electrodes generally showed an increase in
Areal when compared to standard carbon electrodes (with the
exception of DS-OMC), and electrodes modified with two
different nano-materials (e.g., nanotubes and gold nano-
particles) exhibited a further increase in Areal. High resistance
can adversely affect the reversibility of electron transfer reactions

at the electrode surface (Keil, 1986). We observed minimal
resistance in both DS-Au and DS-Pt electrodes, due to the
high conductivity of gold and platinum metals. Carbon
electrodes showed much higher resistance. The Zensor variety
displayed the lowest resistivity (115Ω) of the carbon electrodes.
The resistivity of the DropSens carbon-based varieties varied
between 202 and 477Ω. The Kanichi electrodes, unlike DropSens
and Zensor varieties, do not have an underlying silver track
between the working electrodes and the connectors and displayed
the highest resistivity at 1966Ω.

SEM Characterization
It is possible to visualize the electroactive surface area on each
electrode variety using the SEMmicrographs, as the exposed edge or
plane-like surfaces are the predominant source of electron transfer in
carbon-based electrodes (Banks et al., 2005; Kadara et al., 2009). SEM
micrographs showed variations between the different modified
electrodes (Figure 1; Supplementary Figure S4). Unmodified

FIGURE 1 | SEM characterization of commercially available SPE varieties. (A) Kanichi. (B)DS-GNP. (C)DS-GPH. (D)DS-GPH-GNP. (E)DS-CNT. (F)DS-CNF. (G)
DS-CNT-GNP. (H) DS-CNF-GNP. (I) DS-Pt. (J) DS-Au. Additional SEM micrographs are included in Supplementary Figure S2. An SE detector was used to collect
micrographs A, I, and J. An in-lens detector was used for all other micrographs.
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Kanichi, DropSens and Zensor carbon electrodes displayed a
similar surface profile, with visible graphitic particles surrounded
by a binding polymer, as previously observed by Kadara et al.
(2009). Carbon electrodes modified with GNPs showed a similar
surface structure to DS-C electrodes with the addition of GNPs
present on the surface ranging between ∼30–100 nm in diameter.
Graphene modified electrodes exhibited distinct graphene
‘shards’ and electrodes modified with both graphene and
GNPs displayed spherical GNPs distributed across the
graphene shards. Electrodes modified with carbon nanotubes
and carbon nanofibers both exhibited ‘web-like’ appearances
and the respective GNP derivatives showed spherical GNPs
embedded in the web-like surface. Platinum and gold
electrodes both displayed distinct metallic crystalline ‘bead’
structures.

ECL
CVs of [Ru(bpy)3]

2+ in PBS showed a reversible oxidation peak
at 0.92 V vs Ag/AgCl (representative CVs are shown in Figure 2.
For all CVs, see Supplementary Figure S5). CVs of gold or
gold-nanoparticle-modified electrodes also exhibited additional
waves corresponding to the formation of gold oxides at the
electrode surface. The formation of surface oxides began at
∼0.7 V vs Ag/AgCl (appearing as a shoulder on the [Ru(bpy)3]

2+

oxidation wave) and in the reverse sweep, we observed the
corresponding reduction of the surface oxide layer at ∼0.3 V vs
Ag/AgCl (Woods and Bard, 1976; Bard and Faulkner, 1980; Zu
and Bard, 2000). We also collected CVs of TPrA at 100 mM
(Supplementary Figure S6) to monitor the extent of TPrA
oxidation, an important, rate-limiting step in ECL (Miao et al.,
2002; Choi and Bard, 2005).

FIGURE 2 | Representative CVs of 1 mM [Ru(bpy)3]
2+ in 0.1 M PBS (scan rate 0.1 V/s). (A) Kanichi. (B) DS-CNT. (C) DS-Au. (D) DS-GNP. (E) DS-GPH.

(F) DS-GPH-GNP.
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To compare the selected SPEs to determine their relative ECL
intensities, we selected relatively low [Ru(bpy)3]

2+ concentrations
(1 × 10−7 M and 1 × 10−8 M) to reflect the low concentrations of
metal complex present in bioanalytical ECL applications
(Santhanam and Bard, 1965; Zu and Bard, 2000; Miao et al.,
2002). The generalized mechanism for [Ru(bpy)3]

2+ ECL with
TPrA is outlined in reaction steps 1–9 below:

1) [Ru(bpy)3]
2+–e−→[Ru(bpy)3]

3+

2) TPrA–e−→TPrA+•

3) [Ru(bpy)3]
3+ + TPrA→[Ru(bpy)3]

2+ + TPrA+•

4) TPrA•+→TPrA• + H+

5) [Ru(bpy)3]
3+ + TPrA• → [Ru(bpy)3]

2+* + Pr2N
+C�H2CH3

6) [Ru(bpy)3]
2+ + TPrA• → [Ru(bpy)3]

+ + Pr2N
+C�H2CH3

7) [Ru(bpy)3]
3+ + [Ru(bpy)3]

+→[Ru(bpy)3]
2+* + [Ru(bpy)3]

2+

8) [Ru(bpy)3]
+ + TPrA•+→[Ru(bpy)3]

2+* + TPrA
9) [Ru(bpy)3]

2+*→[Ru(bpy)3]
2+ + hv (λmax � 620 nm)

In magnetic bead based assays, where [Ru(bpy)3]
2+ is located

too far away from the electrode to undergo direct oxidation, and
at low concentrations of [Ru(bpy)3]

2+, the amount of formation
of [Ru(bpy)3]

3+ via reaction 1 is small and ECL is predominantly
produced by reactions 2, 4, 6, 8, and 9 (Miao et al., 2002).

We calculated ECL intensities relative to the Zensor carbon
electrodes and corrected for differences in geometric working

electrode area (using Eq. 1 in the SI; 3 mm diameter for Zensor
and Kanichi SPEs; 4 mm diameter for DS varieties), as shown in
Figure 3. DS-C and Zensor electrodes displayed the highest ECL
intensities, followed in decreasing order by DS-CNT >DS-GPH >
Kanichi > DS-GNP > DS-CNF > DS-OMC > DS-GPH-GNP >
DS-CNT-GNP > DS-Pt > DS-Au and DS-CNF-GNP. This trend
was consistent within experimental error at two concentrations (1
× 10−7 and 1 × 10−8 M). The five electrodes exhibiting the highest
ECL intensities (Zensor, DS-C, DS-CNT, DS-GPH and Kanichi)
were selected to carry out a magnetic bead-based DNA assay. We
designed a bead-based assay using DNA bound to a magnetic
bead to mimic a nucleic acid bead-based assay testing for a short
length polymerase chain reaction (PCR) product. Using pre-
bound DNA eliminates the experimental variability associated
with primer recognition and binding; therefore, any variation in
signal will result only from differences in the working electrode
material, relative ECL intensities are summarized in Figure 4.
Zensor electrodes displayed the highest relative ECL intensity
followed by DS-C and Kanichi. A significant decrease in the
relative ECL from both DS-CNT and DS-GPH electrodes in the
bead-based assay experiments was observed, when compared to
experiments with free complex.

Carbon-based electrodes are ideal for analytical ECL
applications because they: have fast and efficient TPrA
oxidation (Zu and Bard, 2000; Miao et al., 2002; Miao and
Choi, 2004); are relatively hydrophobic (contact angle
measurements for each electrode are included in
Supplementary Table S1 (Workman and Richter, 2000; Li
and Zu, 2004; Xu et al., 2005)), allowing high concentrations
of TPrA to be present at the electrode surface; and have low rates
of surface oxide formation compared to noble metal electrodes
(Zu and Bard, 2000). These three factors result in the high ECL
response we observed from carbon-based electrodes compared to
DS-Pt, DS-Au, and electrodes with GNPs. Despite many
publications employing nanostructured carbon materials for

FIGURE 3 | ECL intensities from various SPEs relative to Zensor,
conducted in pH 7.5 PBS, 100 mM TPrA. (A) 1 × 10−7 M [Ru(bpy)3]

2+. (B) 1 ×
10−8 M [Ru(bpy)3]

2+ (n � 3). Intensities are corrected for the difference in
geometric working electrode area (Zensor and Kanichi SPEs 3 mm
working electrode diameter, DS 4 mm working electrode diameter).

FIGURE 4 | Relative ECL intensity (corrected for working electrode area)
for bead-based DNA assay (100 mM TPrA, 0.2 M PBS, pH 7.5, n � 3).
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diagnostic ECL applications (Qi et al., 2009; Hu and Xu, 2010),
including GNPs (Wang et al., 2006), OMC (Wu et al., 2014), GPH
(Guo et al., 2016), and CNTs (Sardesai et al., 2011;
Venkatanarayanan et al., 2012), we observed no enhancement
of the ECL signal from electrodes composed of these materials
in our experiments when compared to unmodified carbon SPEs,
demonstrating that the incorporation of these nanomaterials is not
necessarily advantageous for the [Ru(bpy)3]

2+-TPrA ECL system.
Generally, nanomaterial electrodes exhibit superior ECL

signals in assays where the functionality of the nanomaterial is
integrated into the assay procedure (Zhao et al., 2002; Prieto et al.,
2003; Carpini et al., 2004; Wang et al., 2006; Dong et al., 2007;
Guo andWang, 2007; Li et al., 2007; Liu et al., 2008; Forster et al.,
2009; Qi et al., 2009; Sardesai et al., 2009; Hu and Xu, 2010;
Malhotra et al., 2010; Xu et al., 2010; Sardesai et al., 2011; Zheng
et al., 2011; Rusling, 2012; Venkatanarayanan et al., 2012; Liu and
Song, 2014; Liu et al., 2016). For example, Guo et al. (2016)
developed an ‘in-electrode’ biosensor by functionalizing two
separate graphene sheets with a capture antibody (this sheet
was then immobilized on the electrode surface) and a
detection antibody (this secondary sheet was then
functionalized with an electrochemiluminophore). When the
bio-conjugate was assembled on the electrode surface, the two
conductive graphene sheets served to extend the effective working
electrode area, meaning all of the electrochemiluminophores
were within the distance required for direct oxidation to
produce ECL, unlike a conventional bead type assay, where
the electrochemiluminophores may be located far outside of
the electrode double layer or TPrA radical diffusion distance
(Guo et al., 2016). Many nanomaterials also find applications with
alternative co-reactants and luminophores (Dong et al., 2007;
Guo and Wang, 2007; Qi et al., 2009; Rusling, 2012; Fang et al.,
2018; Zhang et al., 2019; Zhang et al., 2020), which are beyond the
scope of this evaluation. Although commercially available SPEs
composed of carbon and nanomaterials showed no increase in
ECL intensity when compared to unmodified carbon electrodes
in our CV experiments; nanomaterials do present opportunities
for innovative exploitation and modification when compared to
classic carbon, platinum or gold electrodes; such as the
aforementioned example. In the case of platinum and gold
SPEs, and to a lesser extent in gold nanoparticle modified
electrodes, a significant cathodic ECL signal was also observed,
triggered by the reaction of [Ru(bpy)3]

2+ with reactive oxygen
species (ROS (Cao et al., 2002; Zheng et al., 2011; Lu et al., 2012; Li
et al., 2013)). These ROS are formed upon reduction of the oxide
layers at noble metal electrodes and the reduction of dissolved
oxygen species. Negligible cathodic ECL was observed at carbon-
based electrodes.

We selected CV, instead of chronoamperometry, for ECL
generation because it provides information about the potential
dependence of ECL processes; this is of particular interest to our
research group (Doeven et al., 2013; Doeven et al., 2015b; Kerr
et al., 2015; Kerr et al., 2016a; Kerr et al., 2016b; Soulsby et al.,
2018a; Soulsby et al., 2018b). Furthermore, we observed higher
variability in chronoamperometry experiments (average RSD
9%, n � 3) when compared to CV experiments (average RSD
3%, n � 3) and it was not possible to detect ECL

using chronoamperometry from all electrodes at the same
concentration (see Supplementary Figure S7). However,
different relative ECL intensities were observed from
chronoamperometry experiments (0.5 s pulse to 1.4 V vs Ag/
AgCl) when compared to CV experiments; presumably, the
reduced timespan of the applied potential minimizes electrode
passivation and effects such as the electro-active surface area
become more important for ECL intensity, indicating that the
electrochemical technique/initiating voltage waveform can also
have a significant effect on the ECL intensity generated from a
specific electrode material.

Effect of the Addition of Surfactants on ECL
Intensity
Surfactants such as Tween 20 or Triton X-100 (Supplementary
Figure S8) are regularly employed to enhance ECL at the noble
metal electrode surfaces (Workman and Richter, 2000; Zu and
Bard, 2000; Factor et al., 2001; Zu and Bard, 2001; Li and Zu,
2004; Xu et al., 2005). Surfactants increase the hydrophobicity of
noble metal electrode surfaces, thereby increasing the
concentration of TPrA at the electrode surface and facilitating
higher rates of TPrA oxidation (Workman and Richter, 2000;
Factor et al., 2001; Li and Zu, 2004; Xu et al., 2005). At carbon
electrodes, researchers have demonstrated that surfactants have
the opposite effect and the ready adsorption of the hydrophobic
surfactant tails onto the electrode surface attenuates TPrA
oxidation and ECL intensity (Xu et al., 2005).

We investigated the effect of two surfactants, Tween 20
(T20) and Triton X-100 (TX), at concentrations of 0.1% and 1%

FIGURE 5 | Effect of Tween 20 (T20) or Triton X-100 (TX) surfactants on
ECL intensity relative to that from the same electrode without surfactant, 0.1 M
PBS pH 7.5, 100 mM TPrA. (A) 1 × 10−7 M [Ru(bpy)3]

2+. (B) 1 × 10−8 M
[Ru(bpy)3]

2+ (n � 3).
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at both DS-Pt and DS-Au electrodes on ECL intensity
(Figure 5). Minimal enhancement at DS-Au electrodes was
observed with the addition of surfactant, but DS-Pt electrodes
exhibited up to 3-fold enhancement with the addition of 0.1%
TX. Lower ECL intensities were observed at both DS-Pt and
DS-Au electrodes with the addition of either 1% T20 or TX. As
expected, no significant ECL enhancement was observed with
the addition of surfactant at DS-C electrodes (Supplementary
Figure S9; Workman and Richter, 2000; Zu and Bard, 2000;
Factor et al., 2001; Li and Zu, 2004; Xu et al., 2005).
Furthermore, with the addition of surfactant, the ECL
intensity observed at carbon (DS-C) electrodes was ∼3-fold
higher than that observed at DS-Pt electrodes and ∼8-fold
higher than that observed at DS-Au electrodes with the
addition of surfactant (0.1% TX).

Stability of ECL Over Multiple Potential
Cycles
Another important characteristic of electrodes for ECL
applications is the stability of the ECL response over
consecutive scans or potential cycles. Traditional solid disk
electrodes are mechanically or electrochemically polished
between ECL measurements to refresh the electrode surface
and ensure reproducible results, but SPEs cannot be polished.
To investigate this property, we conducted three potential
scans at 0.1 V/s between 1.6 V to −1.2 V (vs Ag/AgCl) and
measured the ECL response for each scan (Supplementary
Figures S6, S10). Zensor, Kanichi and DropSens carbon
electrodes generally displayed a consistent decrease in ECL
with scan number. This results from a number of factors
including deprotonation of the TPrA radical cation by
oxygen containing surface species (Chen and Zu, 2008),
increased oxidative consumption of the TPrA radical
species (Chen and Zu, 2008), and passivation of the
electrode surface caused by the attachment of
dipropylamine (a side-product of TPrA• oxidation) to the
electrode surface after oxidation. A generalized reaction
mechanism for this process has been included in the
supplementary information (Adenier et al., 2004). The net
result of these three factors is a steady passivation of the
electrode surface, causing a decrease in ECL signal with
scan number.

In contrast, we observed an increase in ECL response with
scan number when using electrodes composed of platinum and
certain carbon nanomaterials. In the case of platinum
electrodes, this increase results from the intense cathodic
ECL signal. In the case of SPEs modified with nanomaterials,
it is possible that the nanomaterials may also be inherently
stable and ‘resistant’ to passivation when compared to
unmodified carbon (graphite) electrodes, or the nanomaterial
may be subtly altered during the scanning process. When
compared to a classic 3 mm GC electrode, we observed poor
relative ECL intensities from commercially available SPEs;
ranging from 4% for DS-Pt electrodes to 47% for Zensor
electrodes (GC 100%). However, we observed a consistent
decrease with scan number similar to that observed for

unmodified carbon SPEs. Commercially available SPEs are
considerably cheaper and easier to use (they do not require
polishing), and therefore, SPEs are suitable for single-use
experiments and applications where disposability is preferred;
for example, dealing with bio-hazards (e.g., infectious viral
agents), biological samples or in systems that are frequently
contaminated (e.g., RNA assays).

CONCLUSION

We have compared a variety of commercially available SPEs for
their application in heterogenous and homogenous ECL sensing
strategies. Unmodified carbon-based SPEs displayed the highest
relative ECL intensities (Zensor 100%, DS-C 61%, and Kanichi
45%) when interrogated using CV. Surprisingly, for conventional
bead-based ECL assay formats, these cheaper classic carbon SPEs
provided the best performance. The incorporation of
nanomaterials did not enhance the ECL signal when compared
to unmodified carbonaceous SPEs. This study aims to aid
researchers to choose the optimal SPE for their application
from the plethora of commercially available varieties of SPEs.
Our results suggest that unmodified carbon electrodes produce
the brightest ECL using the conventional [Ru(bpy)3]

2+

luminophore with TPrA co-reactant. Future studies elucidating
the suitability of noble metal and nanomaterial modified electrodes
for alternative sensing applications (e.g., incorporating
electrografting or surface assembly of biological recognition
elements) should be undertaken to determine the suitability of
commercially available SPEs for a wider variety of sensing
applications.
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