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Abstract

Background: Antibiotic resistance is a major worldwide public health concern. In clinical settings, timely antibiotic
resistance information is key for care providers as it allows appropriate targeted treatment or improved empirical treatment
when the specific results of the patient are not yet available.

Objective: To improve antibiotic resistance trend analysis algorithms by building a novel, fully data-driven forecasting
method from the combination of trend extraction and machine learning models for enhanced biosurveillance systems.

Methods: We investigate a robust model for extraction and forecasting of antibiotic resistance trends using a decade of
microbiology data. Our method consists of breaking down the resistance time series into independent oscillatory
components via the empirical mode decomposition technique. The resulting waveforms describing intrinsic resistance
trends serve as the input for the forecasting algorithm. The algorithm applies the delay coordinate embedding theorem
together with the k-nearest neighbor framework to project mappings from past events into the future dimension and
estimate the resistance levels.

Results: The algorithms that decompose the resistance time series and filter out high frequency components showed
statistically significant performance improvements in comparison with a benchmark random walk model. We present
further qualitative use-cases of antibiotic resistance trend extraction, where empirical mode decomposition was applied to
highlight the specificities of the resistance trends.

Conclusion: The decomposition of the raw signal was found not only to yield valuable insight into the resistance evolution,
but also to produce novel models of resistance forecasters with boosted prediction performance, which could be utilized as
a complementary method in the analysis of antibiotic resistance trends.
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Introduction

Antibiotic resistance is a major public health problem, leading

to excess morbidity and mortality rates worldwide [1]. As an

example of its impact, the World Health Organization chose

combating antimicrobial resistance as the theme of the World

Health Day 2011. The lack of on-demand evidence to support

antibiotic prescribing and the consequent misuse of antibiotics are

regarded widely as some of the underlying causes of increasing

antibiotic resistance [2]. Phenotype-based antimicrobial suscepti-

bility tests typically take two to three days to provide results on the

pathogen’s susceptibility. As a result, clinicians have often to

prescribe a treatment empirically without the ultimate evidence on

the agent’s effectivity [3]. Another factor associated to the further

spread of resistance is the delay in spotting emerging trends and

resistance outbreaks in current biosurveillance systems [4,5]. The

use of yearly aggregated data, while crucial to assess the efficacy of

interventions and plan future public health policies [6], does not

bring sufficient reactivity to impact clinical practice in a timely

manner. It reduces the ability to detect readily the appearance of

new resistance clones and, consequently, to control their spread in

hospitals and in the community.

At the point of care, short- (days, weeks) and medium-term

(months) resistance trend analyses using up-to-date microbiology

data are essential for care providers and infection control groups

because these types of analyses depict more faithfully the current

dynamics within the clinical setting, especially in units with high

selective pressure [3]. For example, up-to-date resistance data are

a valuable source of information for clinical decision support

systems, such as those supporting empirical therapy [7] but also to

create guidelines for bacterial treatment and hospital infection

control policies. As demonstrated in [8], the injection of resistance
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information in automatic guideline generation systems significantly

improves the precision of selecting the most appropriate antibiotic

for a given treatment condition. Moreover, accurate predictive

models for short-term resistance trends are important components

of outbreak detection biosurveillance systems, serving as a

reference value between an endemic and pandemic judgment [9].

Whereas long-term (years) trends are relatively easy to extract

and forecast due to the slow dynamics in the evolutionary

timescale [10], medium- and, particularly, short-term resistance

time series are more challenging to model. Several ecological

models have been developed to describe how resistance varies over

time. They were primarily used to assess the impact of

interventions on resistance [11,12]. However, by estimating

optimally the parameters employed, they could also serve to

predict the evolution of short- and medium-term trends [13].

Despite their potential value to support the design of infection

control and intervention programs [14], these models have some

drawbacks as a general antibiotic resistance forecasting approach.

First, some of them are theoretically valid only under certain a

priori conditions, such as constant antibiotic pressure, which are

often violated in actual clinical practice [15]. Second, they

incorporate several biological and clinical variables, which are in

many cases difficult to estimate accurately. For example, the value

of the parameter associated with the transmission rate, which is

key to these models, is notoriously difficult to estimate precisely

[16]. Finally, some models, like those based on logistic regression

[13], may fail in trivial cases where resistance starts to decrease

over time after some initial increasing – a phenomenon verified

often from actual microbiology data [17].

Taking into account the model-driven approaches above and

their known weaknesses, we investigate the use of data-driven

methods to provide timely resistance trend forecasting for

enhanced biosurveillance systems. Our approach combines robust

trend extraction and prediction methods that do not make any a

priori assumptions of the underlying bacterial and antibiotic

resistance dynamics. Therefore, it can be applied in different

contexts, independent of the agent at stake. Our methodology

operates by extracting waveforms that describe different variation

modes of resistance time series. This is performed using the

empirical mode decomposition (EMD) algorithm [18], an adaptive

and data-driven technique that represents the signal as a set of

oscillatory functions plus a monotonic residual that accounts for

the intrinsic resistance trend. Further, the decomposed waveform

components are used as the input to a machine learning algorithm

supported by the k-nearest neighbor (k-NN) method [19] to

provide the resistance forecasts. Instead of deploying the full signal

spectrum in the learning process, we select only components that

contribute significantly to the underlying signal, that is, those that

differ from noise. The learning algorithm uses the delay coordinate

embedding technique [20,21] to capture the dynamics of the

different time series. Then, using the mean output of k-nearest

embedding vectors, it projects observed resistance events in the

future dimension. The model is trained and tested using leave-one-

out cross-validation in a large data set of resistance time series

spanning a decade of antibiotic susceptibility tests. We demon-

strate some trend extraction analysis use-cases and compare the

accuracy of our forecasting model with other machine learning

forecasting approaches.

Methods

In this study, we use retrospective time series of anonymized

and weekly aggregated antibiograms to develop and test a model

for extraction and prediction of antibiotic resistance trends applied

to up-to-date and short-term resistance changes. The data set was

provided by the microbiology laboratory of the University

Hospitals of Geneva (HUG). HUG is a consortium of all public

and teaching health facilities of the canton of Geneva, Switzerland.

Permission to use anonymized population aggregated information

was granted through the Detecting and Eliminating Bacteria

Using Information Technology (DebugIT) large scale integration

project [22], within which HUG collaborated as a data provider.

The data were extracted using ARTEMIS [23–25], a transna-

tional antimicrobial resistance monitoring system developed within

DebugIT.

The statistics of the data set used to train and assess the

system are presented in Table 1. The training set contains

twenty six resistance time series of four main pathogens –

Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa and

Staphylococcus aureus – tested against a set of antibiotics, selected

according to their relevance in susceptibility tests and anti-

biotherapies. Each time series comprises a decade of resistance

information, containing weekly data from January 1, 2002 to

December 31, 2011 in 520 data points. The forecasting

algorithm was trained using leave-one-out cross-validation

adapted to time series forecasting, where past events are held

in the training set and only future data points are left out for

testing. The minimum number of observations necessary to

train the system was set to 350 weeks, resulting in a test set of

170 data points (see Figure S1 for excerpt of the time series

covering the testing period). In the following sections, we

describe the trend extraction and forecasting methods in details.

Extraction of Resistance Trends
We use the EMD algorithm to decompose and extract trends of

the resistance rate time series. EMD is an empirical, adaptive and

fully data-driven method for signal decomposition suitable for

nonlinear and non-stationary processes [18,26,27]. Contrary to

other signal decomposition methods, such as Fourier transforma-

tion and wavelets, which assume arbitrary functions for the

underlying process (sinusoid and wavelet basis functions respec-

tively), EMD is adaptive to the natural scales of the data and thus

can reveal the features of the time series more precisely [28]. The

method works by breaking down the signal as superpositions of

local intrinsic modes of oscillation called Intrinsic Mode Functions

(IMFs). According to Huang et al. [18], each IMF satisfies two

particular conditions: (i) in the whole data set, the number of

extrema, that is, the local minima or maxima, and the number of

zero crossings must either equal or differ at most by one; and (ii) at

any point, the mean value of the envelopes defined by the local

maxima (upper) and the local minima (lower) is zero. The result of

the EMD algorithm is a set of IMF components, with zero mean

and unrestricted amplitude and frequency along the time axis, and

a residual component, which accounts for the mean underlying

trend.

IMFs are extracted from the signal through a sifting process,

which can be implemented according to the following algorithm

(see Figure 1):

1. Identify the local maxima and minima of a signal x(t).

2. Connect the local maxima with a cubic spline as the upper

envelope emax(t). Repeat the process for the local minima to

create the lower envelope emin(t).

3. At every time point t, calculate the local mean m(t) given by

the average of the upper and lower envelopes:

Timely Antibiotic Resistance Trend Analyses
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m(t)~
emax(t)zemin(t)

2
: ð1Þ

4. Obtain the first oscillatory component h(t) by taking the

difference between the data signal x(t) and the local mean

m(t), that is, h(t)~x(t){m(t).

5. If h(t) is not an IMF, it is taken as the new signal x(t) and steps

1–4 are repeated until h(t) satisfies the IMF conditions. The

final h(t) is designated as cj(t), the jth IMF component.

6. Once an IMF component has been identified, it is subtracted

from the signal, leaving a residual r(t)~x(t){cj(t). Steps 1–5

are repeated with r(t) taking the place of x(t) until r(t) becomes

a monotonic function from which no more IMFs may be

extracted.

After the data signal x(t) has passed through the IMF sifting

process, it can be represented in terms of the IMFs cj(t) and the

monotonic residual component r(t) as

x(t)~
Pn
j~1

cj(t)zr(t), ð2Þ

where n is the number of IMFs obtained in the sifting process.

The residual r(t) in Equation 2 provides the mean trend of the

signal. According to Huang et al. [18], the oscillatory components

cj(t) are orthogonal functions and may represent physically

meaningful signals, which in the case of resistance time series

could theoretically express short-, medium- and long-term trends

and eventually outbreaks. The first component c1(t) has the

smallest time scale and thus corresponds to the highest frequency

component. As such, it is associated to noise. Notice that the

components are extracted using a fully data-driven process, where

it is not required to predetermine any basis functions. Therefore,

this methodology is adaptive to any time varying signal, which

makes it suitable to extract trends from the different bacterial-

antibiotic resistance time series.

Forecasting Resistance Trends
Delay coordinate embedding. The theoretical background

of our forecasting algorithm is derived from the delay coordinate

embedding theorem [20,21]. This theorem describes a phase space

reconstruction technique that provides the conditions for nonlin-

ear dynamic systems to be reconstructed from a finite sequence of

observations of the system’s state. Let us consider a time series

x~fx1,x2,,xNg represented by a sequence of N observations

generated from a nonlinear function. In delay coordinate

embedding, vectors in the new phase space, the embedding space,

are defined by

x’i~fxi{(m{1)t, xi{(m{2)t,:::,xig, ð3Þ

where m is the embedding dimension and t is the delay time or lag

relative to the sampling rate. Equation 3 provides a multidimen-

sional representation of a unidimensional nonlinear time series,

which according to Takens [20] and Sauer et al. [21] can

reconstruct the observations made with a generic unknown

function f (:) of a nonlinear dynamical system. The dimension m
can be considered as the minimum number of state variables

required to describe the system. For the sake of exposition, in the

remainder of the paper we take by convention t~1.

Now, considering the same one-dimensional time series x

generated by a system f (:), whose values we are trying to predict, a

standard approach in time series forecasting is to project future

values using a function of past observations such that

x̂xNz1~f̂f (xN ), ð4Þ

where xN is current system state, f̂f (:) is the estimated function of

Table 1. Weekly resistance rate time series – means and
standard deviations (SD).

Time series Organism Antibiotic Mean (%) SD

EC 1 E. coli AMI1 6.42 2.91

EC 2 E. coli AMP2 47.22 7.39

EC 3 E. coli AMC3 12.96 6.24

EC 4 E. coli FEP4 6.59 5.73

EC 5 E. coli CF35 6.92 5.75

EC 6 E. coli FLU6 16.76 6.25

EC 7 E. coli SXT7 27.47 6.07

KP 1 K. pneumonia AMI 7.32 7.42

KP 2 K. pneumonia AMC 14.03 11.82

KP 3 K. pneumonia FEP 10.80 10.59

KP 4 K. pneumonia CF3 10.91 10.63

KP 5 K. pneumonia FLU 9.07 9.07

KP 6 K. pneumonia TZP8 3.95 5.90

KP 7 K. pneumonia SXT 17.26 12.18

PA 1 P. aeruginosa AMI 7.11 4.99

PA 2 P. aeruginosa CAR9 11.34 6.54

PA 3 P. aeruginosa FEP 3.94 4.05

PA 4 P. aeruginosa CAZ10 6.52 4.97

PA 5 P. aeruginosa CIP11 8.14 5.96

PA 6 P. aeruginosa TZP 6.79 9.36

SA 1 S. aureus AMI 33.40 13.06

SA 2 S. aureus PEN12 92.20 5.32

SA 3 S. aureus CLI13 38.28 10.08

SA 4 S. aureus FLU 39.10 12.30

SA 5 S. aureus MAC14 41.66 10.29

SA 6 S. aureus SXT 1.56 1.83

Time series of weekly resistance rates defined as the percentage (%) of resistant
tests from the total of antibiograms (including intermediate results) for four
groups of pathogens – Escherichia coli, Klebsiella pneumonia, Pseudomonas
aeruginosa and Staphylococcus aureus.
1aminoglycoside;
2aminopenicillin;
3amoxicillin-clavulanic acid;
4cefepime;
53rd generation cephalosporin;
6fluoroquinolone;
7trimethoprim-sulfamethoxazole;
8piperacillin-tazobactam;
9carbapenem;
10ceftazidime;
11ciprofloxacin;
12benzylpenicillin;
13clindamycin;
14macrolide.
doi:10.1371/journal.pone.0061180.t001
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the actual system f (:) and x̂xNz1 is the estimate of the next system

state. Similarly, we can project the future system state using the

delay vectors of Equation 3 such that

x̂xNz1~f̂f ’(x’N ), ð5Þ

where f̂f ’(:) is the estimated function in the embedded space of the

actual system f (:). Under suitable assumptions on the dynamics,

the correspondence presented in Equation 5 is one-to-one, which

means that the behavior of the nonlinear system is accounted for

in the behavior of the delay coordinate embedding defined by the

mapping f̂f ’(:) [20].

There are several ways to estimate the function f (:) for

obtaining the point forecast x̂xNz1 [29]. Our model employs the k-

NN framework as a piecewise estimator of f (:). The k-NN

algorithm implements a function approximator f̂f ’(:) that stores a

set of mappings x’j?xjz1, with jvN, where the delay coordinate

vector x’j acts as a surrogate for xj . When the algorithm is tested

against a point forecasting query x’N , the k delay vectors having

the shortest Euclidean distance to the query state are extracted and

the mapping outputs xjz1 are used to obtain xNz1. If kw1, the

value of the point forecast is computed as the average of the k
extracted samples, that is,

x̂xNz1~
1

DUk D

P
x’j[Uk

xjz1, ð6Þ

where Uk is a neighborhood of size e in the space defined by the

embedding vectors x’j and DUk D ¼: k is the number of neighbors.

The k-nearest embedding vector forecasting

algorithm. Our forecasting system is depicted in Figure 2. To

simplify discussion, we refer from now on to the IMF components

cj(t) and the residue r(t) obtained from the decomposition process

simply as components, and denote them by the vector C~fc1,,cn,rg
of length nz1, where C1 corresponds to the first IMF and Cnz1 to

the residue r(t). The system breaks down the input resistance time

series x into several oscillatory components using the EMD

algorithm. Then, components that do not contribute to the signal

are removed and those remaining are embedded into delay vectors

of dimension m. Further, the algorithm is trained to compute the

size of the delay vector neighborhood k, which will provide the

best estimate of the forecast ŷy. Thus, from a machine learning

viewpoint, the tasks of the learning algorithm sum up, firstly, to

identify the EMD components Ci that represent best the system

being modeled, secondly, to estimate the dimension m of the

embedding sequences and, finally, to compute the number k of

nearest neighbors that encompass the dynamics of the system.

In the following steps, we summarize the computationally

efficient leave-one-out cross-validation algorithm that we used to

train and test the forecasting system:

1. Divide the input time series of size N into two independent

parts: a training set xi~fx1,,xN ’g and a testing set

yi~fxN ’z1,,xN ’zhg, where N ’vN is the minimum number

of observations necessary to fit the model and h is the

forecasting horizon.

2. Decompose the training time series xi into components Ci

using the EMD algorithm.

3. Select the subset of components C’i(Ci that are relevant to

the learning model (this is described below).

4. Compute the optimal embedding dimension m for the space

created by C’i (this is described below).

5. Embed the components C’i into a space of dimension m and

together with the respective one-step-ahead output create the

training set Dij~fsi(j{mz1),si(j{mz2),:::,sij?xijz1g, where sij

is a vector containing the jth elements of the components C’i
and mƒjƒN ’{1. Then, compute the optimal number of

nearest neighbors k for the training set Dij using cross-

validation.

6. For h’~1,h:

(a) Create the test input tih’~fsi(N ’{mz1), siN ’g from the last

embedded vector obtained from components C’i. Then,

using the training model fDij , kg, find the k nearest

neighbors of the test input tih’. Finally, project the k
embedding vectors into the dimension N ’zh’ using

Equation 6 for estimating the h’-step-ahead forecast x̂xN ’zh’.

(b) While h’vh, concatenate the forecast outcome x̂xN ’zh’ into

the time series x and repeat steps 2 and 3 to update the

components C’i.

7. Compute the residual error using the forecasted values

ŷyi~fx̂xN ’z1, x̂xN ’zhg: EiN ’~yi{ŷyi.

8. Increase N ’ and go to step 1 while N ’vN.

9. Once each time point in the test set has been predicted,

compute the overall cross-validation mean absolute error

Figure 1. EMD –IMF sifting process. Signal x(t) – black continuous line; upper envelope emax(t) – red line; lower envelop emin(t) – blue line; local
mean m(t) – black dashed line.
doi:10.1371/journal.pone.0061180.g001
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MAE~ 1
h

Ph
j~1

1
N{N ’o

PN
i~N ’oz1 Eij

�� ��� �
and root mean

squared error RMSE~ 1
h

Ph
j~1

1
N{N ’o

PN
i~N ’oz1 E2

ij

� �1=2

,

where N ’o is the initial minimum number of observations.

In our algorithm, predictions are made using the latest

resistance time points. Horizons greater than one are estimated

taking the one-step-ahead forecast as the last time point. An

alternative algorithm would create a training set for each h-step-

ahead of interest and, at step 5, the one-step-ahead mapping

would be replaced by a h-step-ahead. Then, the loop in step 6

would be avoided. However, it would require one training model

for each step-ahead forecast 1,h, which is computationally more

expensive.

Selecting the components C9. We envisage three models to

select the relevant EMD components C’. The first model, DECA,

does not actually filter any component and thus the system is

trained with the full signal spectrum. For the other two models, we

make a fair assumption that the machine learning algorithm

cannot learn the noisy components and hence they shall be

excluded from the model to avoid a negative impact on the

forecasting. The remaining components, which correspond to the

physically meaningful signals, are then used to train the system.

Based on this assumption, the second model (see Figure 3 - left),

DECF, filters out noisy components using a frequency threshold.

High frequency components are empirically associated with noise.

We consider a period of 10 weeks as the minimum necessary to

learn the signal. Components with shorter cycles are filtered out.

The last model (Figure 3 - right) uses a statistical significance test

derived by Wu and Huang [18,26] to distinguish between noise

and signal in the IMF components. The test assumes that the first

IMF is a random noise. Then, other components are compared

with this IMF using a distance metric proportional to the

logarithms of the component’s variance and period [26]. The

components whose variance and period exceed the noisy

boundaries are considered to contain statistically significant

information for the resistance trends. In our experiments, we use

a 2s distance for the noisy boundaries. This model is further

referred as DECS.

Determining the embedding dimension m. We propose

two methods to determine the dimension m of the delay vectors. In

the first approach, we naı̈vely set the embedding dimension to a

fixed size. In the second, we use a modified version of a

methodology derived in [30] that applies fractal dimensions to

specify dynamically the optimal length of the delay vectors.

According to the authors, the fractal dimension fL of the time

series, which gives the intrinsic dimensionality of the embedding

vectors in the embedding space, can determine the optimal value

of the embedding dimension m. In their algorithm, m is

incremented between the range 1ƒmƒmmax and fL is calculated

for each space d created. After some value of m§1, increasing the

embedding dimension does not add any relevant information

regarding the state space, which is verified by a flattening in the

slope of fL. The turning point, which lies within 95% of the

maximum fL, is taken as the optimal m. Further details of the

algorithm can be found in [30]. Since we have several

components, we calculate mi for each space defined by the

components C’i and the final m is defined as the mean of mi. We

use time series EC 4, KP 2, PA 5 and SA 5 and the DECF model to

train the best method, and consequently the dimension m. The

naı̈ve approach is trained for m~f3,6,10g and mmax is set to 10 in

the fractal dimension method.

Performance Measures
The results of the trend extraction method are provided using

two use-cases of resistance trend analysis. Due to the lack of

standard and formal definitions for trend, there is no benchmark

for trend extraction. Thus, it is difficult to quantitatively measure

trend extraction methods. To demonstrate qualitatively the power

of the EMD algorithm, we first present the statistics on the

oscillatory period of the resistance components. Second, we

correlate components from the resistance time series with

components of time series that may be associated with resistance.

We take a temperature time series from the Geneva region as an

example.

For the machine learning forecaster, we provide the results for

1, 3 and 12 week-ahead forecasting horizons using the MAE and

RMSE cost functions. Since MAE and RMSE measure the

deviation between actual and predicted values, the smaller the

values of MAE and RMSE the closer the predicted time series is to

the true time series. Results of the models DECA, DECF and DECS

are compared to a baseline approach based on the random walk

method, which is the standard benchmark in machine learning

forecasting [31], and to a k-NN regression applied to the raw

signal with m~6.

Statistical Analysis
We use R version 2.15.0 to decompose the resistance trends,

implement the machine learning models and perform the

statistical analyses. We apply the paired two-sided Wilcoxon test

to compare the error of the forecasting models. P-values lower

than.05 are considered significant. Correlation statistics are

Figure 2. High-level block diagram of the k-nearest embedding vectors forecaster. The empirical mode decomposition (EMD) block
decomposes the input x. Then, the filter block selects the time series functions C’ that are relevant to the signal. Further, the delay coordinate
embedding (DCE) block determines the embedding dimension m and embeds the signal C’ into a multidimensional space. Finally, the k-nearest
neighbor (k-NN) block calculates the distance between the input query and the training points in the embedded space and makes the projection in
the future dimension to obtain the forecast ŷy.
doi:10.1371/journal.pone.0061180.g002
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reported using the Pearson’s coefficient of correlation. Supple-

mentary information on the software implemented is available

from the authors upon request.

Results

In the following sections, we present the results of the trend

extraction and forecasting methods for timely analyses of antibiotic

resistance trends. Because this study yielded several hundred

results, we provide aggregated statistics and some prominent

examples for each of the evaluation dimensions. The full result set

is provided as supplementary material. We start by displaying

some qualitative analyses of the trend extraction methods, where

the EMD technique is used to extract periodicity of the time series

and to correlate resistance trends with external factors that may be

associated with changes in resistance. Then, we present the results

of the machine learning forecasting, where the performance in

terms of MAE and RMSE metrics for the models described

previously is shown.

Trend Extraction
We have applied the EMD algorithm for extracting antibiotic

resistance trends to the entire set of Table 1. The resulting

components were used for trend analyses but also in the learning

algorithm. A representative example of using EMD for antimi-

crobial resistance trend extraction is shown in Figure 4, where the

time series EC 1 and KP 3 are decomposed into eight independent

components (see Figure S2, S3, S4, S5 for the remaining list of

time series decomposition). The first seven components (C12C7)

correspond to the IMFs and describe short-, medium- and long-

term periodic trends. The component C8 is the residue of the

sifting process and represents the slowly varying mean resistance

trend. The raw weekly resistance signal is equivalent to the sum of

the eight components. The first component presents the highest

frequency and as the component index increases, the frequency

decreases. The same pattern is verified for the other time series

and it is inherent to the EMD algorithm. The mean resistance

trend is determined empirically and, for EC 1, it approximates a

sigmoid shape. Research has shown that a sigmoid is the resistance

pattern expected under constant selective pressure [13]. If the

actual resistance dynamics of time series EC 1 is indeed sigmoidal,

then the resistance has reached its equilibrium and, from

component C8, it becomes trivial to detect the resistance

stabilization point, which happens to be around week 380.

Considering that the resistance has started to increase around

week 80, it took thus 5.8 years to reach the stabilization point.

Similar rising period has been verified in other studies [13].

Differently, for KP 3, the resistance has not reached the

stabilization point, maintaining a steady and linear rise.

Periodicity of resistance trends. By counting the zero-

crosses of the IMFs, we can extract the central period of oscillation

of the resistance trend components. Figure 5 shows for the four

groups of time series in Table 1 the results of applying this

methodology. The oscillatory periods are given in weeks and are

limited to the first six components. Components C1 and C2 have

the smallest periods (3:0+0:2 weeks and 6:6+0:7 weeks

respectively) and provide information on short-term trends.

Components C3 (13:7+1:3 weeks) and C4 (29:2+4:9 weeks)

represent medium-term variations, with periodic trend oscillation

varying between a quarter and a year long. Finally, components

C5 (60:1+9:7 weeks) and C6 (148:6+47:9 weeks) represent long-

term trends, with periods longer than one year.

Correlation with resistance factors. Instead of seeking a

direct relationship between time series, correlation can be

computed using the intrinsic trend components extracted through

the EMD technique [32]. In this case, the resistance process is seen

as a sum of underlying physically meaningful factors that

contribute independently to the increase and decrease of the

overall resistance trend. To illustrate that, we use a temperature

time series of the Geneva region as the external factor that may be

associated to the resistance evolution at HUG. The temperature

series comprises monthly sampled data for the same study period

and is provided by the Federal Office of Meteorology and

Climatology MeteoSwiss. The correlation is then computed

between the components of temperature and those of the

resistance time series (monthly aggregated). The results for the

Figure 3. Component selection models. A component labeled as noise implies that it is not distinguishable from a pure white noise series. Thus,
it cannot be learned by the machine learning algorithm. Left - example of the empirical selection model using a threshold filter (DECF), where
components with period smaller than 10 weeks (or log10period~1) are excluded from the learning algorithm. Right - example of the component
selection model using the Wu and Huang [26] expectation of variance approach to define statistically significant components (DECS).
doi:10.1371/journal.pone.0061180.g003
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highest (positively or negatively) correlation coefficients are

displayed in Table 2 (see Figure S6 for detailed correlation

results). To avoid bias, we excluded residue-residue (Cn+1) linkages,

since by definition these are monotonic smoothed functions and

therefore tend to present spurious correlation coefficients. The

mean absolute correlation (0 to 1) between the original temper-

ature and resistance time series is weak (0ƒDrweak Dv0:36)

(DrD~0:10+0:04). However, when we consider the particular

EMD components of Table 2, the mean correlation becomes

much stronger (DrD~0:53+0:16). More specifically, time series EC

2, KP 1, PA 3, SA 2 and SA 6 contain components strongly

(0:68ƒDrstrong Dv0:90) correlated with temperature components

(DrD~0:75+0:05), whereas EC 1, EC 3, EC 4, EC 6, EC 7, KP 2, KP

4, KP 5, PA 4, PA 5, PA 6, SA 1, SA 3, SA 4 and SA 5 show moderate

(0:36ƒDrmoderateDv0:68) correlation (DrD~0:55+0:08), and EC 5,

KP 3, KP 6, KP 7, PA 1 and PA 2 contain only weakly correlated

components (DrD~0:28+0:04).

The quality of the above correlations can be further checked

through a statistical significance test step. In this approach, we

validate the linkages assuming that the components used in the

correlation are either meaningful signals, in which case the linkage

is valid, or noisy components, where the results should be

discarded. For that, we recur to the statistical test proposed by

Wu and Huang [26], by which components can be distinguished

from a pure white noise series represented by the first IMF. If the

linkages are created using mutually statistically significant compo-

nents, then we consider that they are also significant. As for

detecting the signal components in the DECS model, we use a 2s
margin in the statistical test. The results are shown in the column

Signal of Table 2. Applying the EMD algorithm to the monthly

temperature and to the resistance time series yields 5 and median

Figure 4. Result of the EMD technique applied to resistance trend extraction. In the example, EMD is used to decompose time series EC 1
and KP 3. Components C1 and C2 describe short-term resistance trends; components C3 and C4 describe medium-term trends; and components C5 to
C8 describe long-term trends. The residue of the decomposition process (C8) provides the underlying mean trend of the resistance signal.
Components used in the *DECA, uDECF and {DECS models.
doi:10.1371/journal.pone.0061180.g004
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of 5 (interquartile range 5 to 6) components respectively, where

components C2, C3, C4 and C5 of temperature are statistically

significant different from component C1. It turns out, under such a

criterion, that all significant correlations but those for EC 1, EC 4,

EC 5, EC 6, PA 3 and PA 4 time series contain at least one

overlapping significant component with temperature, that is, they

are bordering on the statistically significant at 95.4% confidence

level. Thus, results for EC 1, EC 2, EC 4, EC 6 and PA 3 are

discarded, leading to 20 out of 26 valid linkages and a still

moderate level of correlation (DrD~0:51+0:18).

Resistance Forecasting
In the next sections, we show the results of the forecasting

algorithm applied to test points varying from week 351 (September

2008) to 520 (December 2011) and trained on the respective 350

to 519 data points. Our first task is to determine the optimal size of

the embedding dimension m. For that, the time series EC 4, KP 2,

PA 5 and SA 5 are taken as the training set. We use this

information in the final model evaluation, which excludes the

aforementioned four time series from the training and test sets to

avoid overfitting bias.

Embedding dimension. There were no statistical differences

between the forecasts using any of the naı̈ve methods and the

method based on the fractal dimension fL to determine the

optimal embedding dimension m in the experiments with 1, 3 and

12 forecasting horizons. Nevertheless, similarly to the results

obtained in [30], the dynamic method was able to adapt to the

different time series and compute a well performing m, while

keeping it small enough so as not to degrade the training and

testing time. It resulted in an overall MAE of 5.57%, being the

lowest MAE in 4 out of 12 tests – a result equivalent to the best

naı̈ve method (m~6). Thus, in the subsequent tests we employed

the fractal dimension method in the DECA, DECF and DECS

models to determine the size of the optimal embedding dimension

m.

Forecasting models. In Figure 6, we display a representative

example of resistance forecasting and its respective residual error.

In the top panel, the actual resistance rate is displayed in black

whereas the 1 week-ahead forecasts for the RW (random walk),

KNN (k-NN without trend decomposition), DECA, DECF and

DECS models are shown in red, green, dark blue, light blue and

purple, respectively (see Figure S7 for forecasts of the remaining

time series). The predictions of the baseline model follow the signal

but are always lagged by one data point (one week in this case).

Thus, this model presents the largest absolute residuals, caused

especially by stochastic zigzag variations in the resistance time

series. The KNN and DECA models, despite using the full signal

spectrum, are not able to capture high frequency changes either.

They forecast medium-term trends but without accuracy. Finally,

the DECF and DECS models learn essentially the underlying mean

trend.

The prediction patterns are consistent as the forecasting

horizons and time series changes. For example, in Figure 7, the

residual errors of the EC 3, KP 7, PA 6 and SA 1 time series are

displayed for 1, 3 and 12 forecasting horizons using the same color

schema of Figure 6. The row panels correspond to forecasting

horizons and the column panels correspond to the different time

series. Similarly to Figure 6, given that each of the models uses

different forecasting algorithms, none is still able to forecast the

high-frequency trend components. The short-term spikes appear

in all the residual results as we walk along the columns.

Furthermore, they do not increase significantly with the forecast-

ing horizon, being of the same order of magnitude. Finally, the

column residuals for a specific model are highly correlated

(r§0:94+0:08).

The MAE and RMSE prediction errors for 1 week-ahead

horizons generated by the various forecasting models are displayed

in Table 3. Overall, the models that employ decomposition of the

time series and filter out noisy components, that is, DECF and

DECS, improve significantly the forecasting accuracy over the

other models for both error measures (Pƒ:004). The DECS model

performs slightly better than the DECF model for both MAE and

RMSE metrics. However, their difference in forecasting accuracy

is not statistically significant (P&:05).

Figure 5. Oscillatory period in quarters of the resistance trend components stratified into pathogen groups. Components C1 and C2

describe short-term variations in the resistance rates (median period v7 weeks); components C3 and C4 describe medium-term variations (median
period between 3 and 12 months); and components C5 and C6 describe long-term changes (median period w1 year). Notice how the period of the
resistance trends are tightly associated to meaningful calendar cycles.
doi:10.1371/journal.pone.0061180.g005

Timely Antibiotic Resistance Trend Analyses

PLOS ONE | www.plosone.org 8 April 2013 | Volume 8 | Issue 4 | e61180



To compare the forecasting models at 1, 3 and 12 forecasting

horizons, we perform a statistical significance test of accuracy

using the MAE values. The results are displayed in Figure 8, where

the frequency that a given model significantly outperforms the

other models (wins) is shown in green and the frequency that a

model is outperformed by the other models (losses) is shown in red.

As we can see, the DECS and DECF models have the best

performance in all forecasting horizons, that is, they have the

highest number of wins (DECF: 135, DECS: 118) and smallest

number of losses (DECF: 17, DECS: 25). As the horizon increases,

the power of the models that use decomposition becomes more

evident. Particularly, at the 12 week-ahead horizon they outper-

form both the RW and KNN models. Finally, all the k-NN-based

models improve upon the RW baseline model.

The impact of the individual components (C1, C2, …, Cnz1) in

the DECA, DECF and DECS forecasting models can be assessed

through a systematic evaluation of the forecasting errors. In this

approach, we compare the relative gain of incrementally including

higher frequency components in the model. If there is a positive

gain, that is, the forecasting accuracy increases, then the

component adds value to the model. Otherwise, it is irrelevant

or may even degrade the quality of the predictions. The results of

performance gain in terms of MAE for 1 week-ahead forecasts are

shown in Figure 9. The model containing only the component

Cnz1 (residue) is taken as the reference. Then, the relative gain is

computed for the other models: C1 includes all components

(equivalent to DECA), C2 includes all components but C1, C3

includes all but C1 and C2 (equivalent to DECF – notice from

Figure 5 that periods of components C1 and C2 are smaller than

10 weeks while periods of components C3 to C6 are greater than

10 weeks) and so forth up to C6+, which includes components C6

to Cnz1 (at any testing point, the resistance time series had at least

seven components). We can distinguish three segments: C1 and C2

degrade the forecasting accuracy (Pv:001 and P~:21) by 4.6%

and 1.0% respectively, C3 to C5 do not impact significantly in the

model (P§:55), with gains varying between 20.4% to 0.1%, and

C6+, which improves the overall model (P~:03) by 0.9%.

Discussion

In the present study, we developed a two-stage model for

temporal analyses of antibiotic resistance data using trend

extraction and forecasting methods applied to up-to-date and

short-term trends. Our model was validated in a large scale data

set spanning a decade of weekly aggregated resistance time series.

The use of the EMD algorithm for trend extraction was effective

Table 2. Correlation between resistance and temperature components.

Time #Resistance Component index r P-value Signal

series components Temperature Resistance

EC 1 5 3 3 0.25 .007 0

EC 2 5 3 4 20.79 ,.001 1

EC 3 5 5 4 20.47 ,.001 1

EC 4 5 2 4 0.20 .03 0

EC 5 5 3 4 0.29 ,.001 0

EC 6 5 3 4 0.47 ,.001 0

EC 7 6 4 5 20.53 ,.001 1

KP 1 6 4 5 0.71 ,.001 1

KP 2 6 4 4 0.32 ,.001 1

KP 3 5 4 4 0.31 .001 1

KP 4 6 4 5 0.65 ,.001 1

KP 5 6 4 5 0.54 ,.001 1

KP 6 5 4 4 20.27 .002 1

KP 7 6 5 4 0.34 ,.001 1

PA 1 5 2 3 0.25 .006 1

PA 2 5 2 3 0.25 .006 1

PA 3 6 4 5 0.73 ,.001 0

PA 4 6 3 3 0.49 ,.001 0

PA 5 5 4 4 20.58 ,.001 1

PA 6 6 3 5 20.45 ,.001 1

SA 1 5 3 4 20.65 ,.001 1

SA 2 7 5 6 20.82 ,.001 1

SA 3 5 3 4 20.55 ,.001 1

SA 4 5 4 4 0.50 ,.001 1

SA 5 6 3 4 20.66 ,.001 1

SA 6 5 4 4 20.69 ,.001 1

Results for the correlations with highest significance between components of monthly resistance and temperature time series. The column Signal indicates whether the
associations are created from mutually statistically significant components (1) or from noisy components (0).
doi:10.1371/journal.pone.0061180.t002
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Figure 6. Example of forecasting results. Top: 1 week-ahead forecasting results for times series EC 7. Bottom: Respective forecasting residuals.
doi:10.1371/journal.pone.0061180.g006

Figure 7. Example of forecasting residuals for 1, 3 and 12 week-ahead horizons. Results for four representative time series of each
pathogen group – EC 3, KP 7, PA 6 and SA 1. RW: red; KNN: green; DECA: dark blue; DECF: light blue; DECS: purple.
doi:10.1371/journal.pone.0061180.g007
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Table 3. Accuracy of 1 week-ahead forecasting – mean absolute (MAE) and root mean squared (RMSE) errors.

Time series

Error Method EC 1 EC 2 EC 3 EC 5 EC 6 EC 7 PA 1 PA 2 PA 3 PA 4 PA 6

RW 3.15 5.78 4.42 4.56 5.19 5.64 4.62 6.13 3.46 4.10 5.46

KNN 2.52 4.74 4.00 3.72 4.06 4.66 3.95 4.86 3.01 3.70 4.59

MAE DECA 2.54 4.68 3.65 3.56 4.08 4.50 4.02 4.74 3.01 3.84 4.68

DECF 2.50 4.46 3.67 3.51 3.98 4.32 3.87 4.67 3.06 3.64 4.23

DECS 2.50 4.50 3.64 3.37 3.94 4.37 3.89 4.73 3.03 3.37 4.29

RW 3.79 7.35 5.64 5.76 6.62 7.07 6.02 7.71 4.67 5.49 7.07

KNN 3.07 5.85 4.93 4.79 5.36 5.70 4.85 6.24 3.60 4.47 5.76

RMSE DECA 3.04 5.75 4.73 4.68 5.35 5.45 5.01 6.19 3.74 4.75 5.95

DECF 2.94 5.51 4.65 4.60 5.15 5.28 4.76 6.05 3.68 4.47 5.42

DECS 2.93 5.47 4.59 4.36 5.17 5.30 4.84 6.08 3.57 4.19 5.48

Time series

Error Method KP 1 KP 3 KP 4 KP 5 KP 6 KP 7 SA 1 SA 2 SA 3 SA 4 SA 6

RW 6.08 8.83 8.85 8.18 5.69 10.97 6.51 4.38 7.28 7.44 1.40

KNN 5.14 7.41 7.46 6.69 5.35 8.89 5.82 3.88 6.50 6.86 1.27

MAE DECA 5.20 8.10 7.95 7.04 5.80 9.24 5.66 3.95 6.49 6.68 1.20

DECF 5.19 7.50 7.59 6.05 5.59 8.45 5.28 3.80 5.99 6.25 1.20

DECS 5.35 7.67 7.33 6.41 5.53 8.19 5.14 3.87 6.06 6.20 1.24

RW 7.89 11.66 11.70 9.98 7.82 13.85 8.28 5.73 9.22 9.53 2.08

KNN 6.26 9.74 9.78 8.30 7.11 11.05 7.31 4.94 8.24 8.55 1.53

RMSE DECA 6.67 10.54 10.44 8.62 7.65 11.39 7.27 5.14 8.20 8.49 1.49

DECF 6.51 9.67 9.76 7.80 7.26 10.58 6.83 4.78 7.59 7.82 1.48

DECS 6.58 9.99 9.55 8.07 7.22 10.20 6.54 4.85 7.69 7.80 1.49

Results for the best forecasting performance are displayed in bold. Overall, the DECF and DECS methods have the smallest prediction errors, outperforming the other
methods for all but time series PA 3, KP1, KP3 and KP 6 when we consider the MAE metric.
doi:10.1371/journal.pone.0061180.t003

Figure 8. Statistical comparison of the different forecasting methods using the mean absolute error (MAE) for 1, 3 and 12 week-
ahead horizons. Wins: frequency that a method significantly outperforms other methods. Losses: frequency that a method is significantly
outperformed by other methods.
doi:10.1371/journal.pone.0061180.g008
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not only to obtain the resistance trends, but also to provide insight

into the periodicity of the resistances and into the level of

correlation with external variables. The machine learning

forecasting models supported by the k-nearest embedding vectors

produced results with good accuracy, statistically outperforming

the baseline approaches. The decomposition of the raw signal and

exclusion of the noisy components had a positive impact to reduce

the forecasting error. Finally, both trend extraction and forecasting

methods proved to be robust, adapting to time series of different

resistance dynamics.

We focused on short-term trends because they are able to

capture more efficiently the resistance dynamics within a given

clinical setting. Especially in cases of resistance outbreaks, monthly

and yearly resistance trends cannot spot readily changes in the

mean rates. For example, in the vancomycin-resistance Enterococcus

outbreak experienced at Princess Alexandra Hospital, Brisbane,

Australia in 1999, in approximately 10 weeks the number of

resistant prevalence cases increased 14 fold, even if an abnormal

prevalence rate had already been detected in the first week of the

outbreak [33]. Thus, effective biosurveillance systems should apply

timely trend analysis methods to avoid further spreading of

resistance strains.

Trend Extraction
We have explored the EMD algorithm to extract antibiotic

resistance trends from weekly aggregated time series. Tradition-

ally, infectious disease specialists use monthly and yearly resistance

data and statistical tests to assess resistance trends [34]. In

comparison, the methodology introduced here provides improved

insight into the dynamics of resistance than the simple detection of

upward/downward trends. First, it is able to extract medium- and

long-term variations in the resistance rate but it can also capture

short-term changes through the IMF components, which are

neglected in trend detection analyses. Second, some components

of the resistance signal, especially those with high frequency, could

be further used in biosurveillance systems as an early warning of

emerging resistance, particularly if using data from high antibiotic

pressure units, like intensive care. When combined with forecasts,

which serve as the reference signal, the variation of components

like C1 and C2 may be applied to differentiate between a normal

fluctuation of resistant strains and the start of an outbreak,

determined when the component’s amplitude extrapolates the

95% variance interval [35]. Third, infectious disease specialists can

use the methodology to determine periodicity and cycles within

resistance trends from the decomposed components and may

adopt infection control interventions accordingly. For instance,

component C5 in Figure 5 has a period slightly longer than one

year, which could be related, for example, to warm and cold

seasons or, more precisely, to high winter peaks of antibiotic use as

verified in the study presented in [36]. Therefore, the EMD

methodology may serve as a complementary tool for the analysis

of short-term antibiotic resistance data, and eventually, to help

controlling long-term resistance trends as a result of prompt

preventive measures.

The components extracted using the EMD technique may be

further applied to improve correlation analyses between antibiotic

resistance evolution and variations in other clinical, societal and

environmental factors, such as duration of treatment, infection

control measures, antibiotic consumption and weather [17,36].

IMFs are orthogonal functions to one another and can thus be

interpreted as independent factors. Moreover, they may some-

times represent biologically meaningful events in the resistance

process [26,37]. These events might not always be explicit in the

raw signal, sometimes undermining any attempt to associate their

effect upon changes in resistance when using only the raw time

series. For example, as demonstrated in the correlation between

resistance and temperature time series, while the raw time series

showed week correlation, some EMD components had moderate

and high correlation coefficients. To further illustrate that,

imagine that in a given clinical setting resistance has increased

1% due to antibiotic misuse and decreased 1% due to better hand

hygiene practices, resulting in no changes in the raw resistance

signal (see around week 300 of time series EC 1 in Figure 4 for a

concrete example of effects acting in opposite direction, where the

wave forms are negative for components C4 and C7 and positive

for C5 and C6). Hence, the attempt to correlate one of these

factors – antibiotic consumption or hand hygiene practices – with

raw resistance changes are likely not going to yield any conclusive

results. On the other hand, if antibiotic consumption and hand

hygiene have independent effect upon resistance, that is, they have

different timing (phase and frequency) or power (amplitude), their

effect shall be captured in the decomposition process, allowing

thus a more fine grained correlation analysis.

Resistance Forecasting
We have developed a novel machine learning method to

forecast antibiotic resistance trends based on the k-nearest

embedding vectors. The algorithm showed relatively good

forecasting accuracy for short-term trends, outperforming baseline

machine learning benchmarks but also other enhanced methods,

such as the k-NN. The method is supported by the delay

coordinate embedding theorem, a technique derived from the

Figure 9. Contribution of the individual components to the forecasting model. While low frequency components improve the prediction
accuracy, high frequency components worsen the model.
doi:10.1371/journal.pone.0061180.g009
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studies of chaos to model deterministic nonlinear time series, and

by the k-NN framework to project observed resistance events in

embedded spaces into the future dimension. From our experi-

ments, we identified that decomposing the raw signal to enhance

the features of the training data and excluding high frequency

components from the learning set boosts the performance of the

forecaster. This reinforces our hypothesis that some components of

the resistance signals are derived from a pure random process.

Hence, they cannot be learned by and degrade the quality of the

learning algorithm. As further demonstrated in the systematic

analyses of the individual components, high frequency IMFs, in

particular C1 and C2, worsen the power of the algorithm.

Therefore, they should be filtered out from the antibiotic

resistance forecasting model to enhance its accuracy. These

findings may imply that short-term aggregated resistance time

series contain significant stochastic components and thus cannot

be learned and predicted precisely using only past data.

Our results suggests that the k-nearest embedding vector model

could be eventually used to improve clinical decision support

systems for antibiotic prescribing, giving more accurate informa-

tion on the current resistance dynamics than the latest resistance

statistics when there are delays of a week or more in the resistance

numbers. As shown in Figure 6, the forecasts provided by the

naı̈ve method, which was used as the baseline benchmark, are

delayed by one week (notice the one-step forward shift between the

red and black lines). As such, they are equivalent to the latest

resistance data points, or x̂xNz1&xN , which are obtained in

phenotypic antibiograms, in the best case, from samples extracted

two or three days in the past. Since the models that use

decomposition significantly improves upon the naı̈ve method, by

consequence, they also provide better evidence to empirical

therapy and outbreak detection models than methods that use the

latest resistance rate information when actual results are delayed

by at least one data point.

Limitations
This study used data aggregated from several wards. Thus,

analyses restricted to a specific ward may lead to different

outcomes. Nevertheless, as the methodology is data-independent,

we believe it can be readily applied to such cases. Moreover, it was

limited to time series of pathogens that present some level of

resistance to the respective antibiotics. Sequences showing bursting

patterns [38], as verified at the beginning of the resistance

development process, were not tested and, from the forecasting

results, it is unlikely that our model will be able to forecast bursts.

Finally, we have not investigated the effect of irregular time series,

that is, those containing null values. The time series of the study

describe resistance information of bacteria with high prevalence

rate, having at least one positive culture followed by an

antibiogram per week.

Conclusions
This paper presents a two-stage methodology for analyses of

short-term antibiotic resistance trends. Using a large microbiology

data set, we have developed a robust, fully data-driven method-

ology for trend extraction and forecasting of resistance time series.

Our method, with decomposed resistance trends and appropri-

ately selected model components, added valuable insight into the

dynamics of the resistance time series and significantly outper-

formed the baseline forecasting algorithms. Hence, the method

could potentially be used to improve outbreak detection and

biosurveillance models within clinical settings. Moreover, since the

trend extraction and forecasting methodologies do not assume any

underlying model for the data set, it could be generalized to other

time varying clinical events. Future research could be aimed at

investigating the correlation of other time dependent clinical

factors, such as antibiotic consumption, with decomposed resis-

tance trends. Finally, the forecasting methodology could be

combined with burst detection models to improve the prediction

accuracy.
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