
The MyLO CRISPR-Cas9 toolkit: a markerless yeast
localization and overexpression CRISPR-Cas9 toolkit

Björn D.M. Bean , Malcolm Whiteway , Vincent J.J. Martin *

Department of Biology, Centre for Applied Synthetic Biology, Concordia University, Montréal, QC H4B1R6, Canada
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Abstract

The genetic tractability of the yeast Saccharomyces cerevisiae has made it a key model organism for basic research and a target for metabolic
engineering. To streamline the introduction of tagged genes and compartmental markers with powerful Clustered Regularly Interspaced Short
Palindromic Repeats (CRISPR) - CRISPR-associated protein 9 (Cas9)-based genome editing tools, we constructed a Markerless Yeast
Localization and Overexpression (MyLO) CRISPR-Cas9 toolkit with 3 components: (1) a set of optimized Streptococcus pyogenes Cas9-guide
RNA expression vectors with 5 selectable markers and the option to either preclone or cotransform the gRNAs; (2) vectors for the one-step
construction of integration cassettes expressing an untagged or green fluorescent protein/red fluorescent protein/hemagglutinin-tagged gene
of interest at one of 3 levels, supporting localization and overexpression studies; and (3) integration cassettes containing moderately expressed
green fluorescent protein- or red fluorescent protein-tagged compartmental markers for colocalization experiments. These components allow
rapid, high-efficiency genomic integrations and modifications with only transient selection for the Cas9 vector, resulting in markerless
transformations. To demonstrate the ease of use, we applied our complete set of compartmental markers to colabel all target subcellular
compartments with green fluorescent protein and red fluorescent protein. Thus, the MyLO toolkit packages CRISPR-Cas9 technology into a
flexible, optimized bundle that allows the stable genomic integration of DNA with the ease of use approaching that of transforming plasmids.
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Introduction
The yeast Saccharomyces cerevisiae is a key model eukaryotic cell in
part due to the ease of genetic manipulations resulting from its
high rate of homologous recombination and the availability of
stable plasmids. This led to the development of toolkits facilitat-
ing genetic manipulations, typically based on stable selectable
markers (Sikorski and Hieter 1989; Longtine et al. 1998). However,
the small set of available markers limited the number of manipu-
lations possible without using methods to recycle markers based
on counterselections (Alani et al. 1987; Storici and Resnick 2006)
or the Cre-lox system (Jensen et al. 2014). The discovery of
Clustered Regularly Interspaced Short Palindromic Repeats
(CRISPR) and CRISPR-associated protein 9 (Cas9) has greatly im-
proved the efficiency of genomic manipulations (DiCarlo et al.
2013; Doudna and Charpentier 2014). The Cas9 endonuclease can
be directed to introduce a double-stranded break at a specific
location determined by a guide RNA (gRNA). Subsequently, the
cellular machinery attempts repair by either error-prone nonho-
mologous end joining (NHEJ) or homology-directed repair (HDR).
The increased propensity for HDR makes genomic edits based on
homologous recombination over 1,000 times more efficient, alle-
viating the need to integrate stable selectable markers (Ryan et al.
2014).

In yeast, catalytically active Streptococcus pyogenes Cas9 has
now been applied in multiple toolkits and contexts. Combined
Cas9-gRNA expression plasmids were made, and gRNA cloning
methods were simplified (Ryan et al. 2014; Laughery et al. 2015;
Levi and Arava 2020). Groups also focused on multiplexing
CRISPR, allowing multiple simultaneous integrations with meth-
ods to introduce multiple guides and donors (Ryan et al. 2014;
Horwitz et al. 2015; Jako�ci�unas, Bonde, et al. 2015; Jako�ci�unas,
Rajkumar, et al. 2015; Mans et al. 2015; Zhang et al. 2019). Others
updated a toolkit based on Cre-LoxP recycling of selectable
markers with CRISPR to make a markerless system for introduc-
ing untagged genes for metabolic engineering (Ronda et al. 2015;
Jessop-Fabre et al. 2016). Further consolidation of guides and do-
nor DNA has also enabled large-scale CRISPR-based screens (Bao
et al. 2018; Guo et al. 2018; Sadhu et al. 2018).

While CRISPR-Cas9 systems have progressed, there have been
limited efforts to establish a robust set of accompanying vectors
for integrating compartmental markers and tagged or untagged
genes of interest (GOIs) using Cas9. Thus, though CRISPR-Cas9
methodologies present advantages in terms of flexibility and effi-
ciency, classic systems based on homologous recombination
remain heavily utilized for protein tagging. Furthermore, plas-
mids are regularly used for the expression of fluorescent
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compartmental markers, leading to uneven expression within
populations (Ryan et al. 2014).

Here, we present an optimized CRISPR-Cas9 toolkit for the
rapid introduction of tagged genes and compartmental markers.
First, we simplified the Cas9/gRNA expression vector developed
by Ryan et al. to enable PCR-free Golden Gate cloning of gRNAs
into vectors with 5 different selections (Ryan et al. 2014). We then
established novel “split selection” markers that improve transfor-
mation efficiencies by allowing transformation of linearized
pCAS vectors with intramolecular recombination generating a se-
lectable marker. To complement the pCAS vectors, we developed
a set of Golden Gate cloning-compatible plasmids that can be
used to rapidly create integration cassettes that can introduce a
GOI with 3 different N- or C-terminal tags at 3 expression levels.
Importantly, these cassettes contain novel multipurpose homol-
ogy arms that allow gRNA-based targeting to 7 different estab-
lished safe harbor loci, helping ensure that an integration site is
usually available. Finally, we generated a set of green fluorescent
protein (GFP) or red fluorescent protein (RFP)-tagged compart-
mental markers to facilitate and standardize colocalization stud-
ies, aiming to impart the simplicity of plasmids to the stability of
integration. Together, these optimized yeast pCas9 vectors and
versatile integration cassettes form the Markerless Yeast
Localization and Overexpression (MyLO) CRISPR-Cas9 toolkit.

Materials and methods
Plasmids and yeast strains
Most plasmids used were from the MyLO Toolkit collection con-
structed here. They are listed in Supplementary Table 1 and are
available from Addgene with fully annotated maps included un-
der the Resource Information section. Plasmids were made using
Golden Gate cloning or homologous recombination in yeast as
outlined in detail in Supplementary File 1 with primers listed in
Supplementary Table 2. Yeast strains, listed in Supplementary
Table 3, were made with CRISPR/Cas9-based transformations us-
ing MyLO Toolkit components. All plasmids were confirmed by
sequencing and all integrants were confirmed by PCR.

Fluorescence-based yeast transformation assay
Assays of transformation efficiency were performed by integrat-
ing a strong GFP expression cassette [pBBK93, TDH3p-Neon(gfp)]
into wild-type yeast using a lithium acetate-based transforma-
tion protocol (Gietz and Schiestl 2007). Briefly, 3 optical density
600 nm (OD600) of log phase yeast were transformed by incubat-
ing for 30 min at 30�C and then 42�C in a 150 mL final volume with
concentrations as in Gietz et al. Twenty percent of the reaction
was plated and incubated 2 days at 30�C prior to imaging on a
Safe Imager 2.0 (Invitrogen) blue light source to identify positive,
green colonies. In some cases, colonies were counted using the
Fiji (Schindelin et al. 2012) Color Threshold tool followed by the
Analyze Particles tool.

Fluorescence microscopy
Log-phase yeast grown in synthetic selective media were imaged
on slides using a DMi6000B microscope (Leica Microsystems) with
an HCX PL APO 63x oil objective, an Orca R2 CCD camera
(Hamamatsu) and Volocity software (PerkinElmer). Images within
each panel were evenly exposed and processed using FiJi
(Schindelin et al. 2012) and Photoshop CC (Adobe) except for those
in Fig. 5 where large fluctuations in intensity necessitated differ-
ent exposure times.

Western blot
Log-phase yeast were lysed by freezing a pellet, suspending them
in Alternate Thorner Buffer (8M Urea, 5% SDS, 40 mM Tris 6.8,
0.1 mM EDTA, 0.4 mg/mL bromophenol blue, 1% b-mercaptoetha-
nol) with glass beads, heating at 70�C for 5 min and then vortex-
ing 1–2 min. An amount of lysate equivalent to 0.1 OD600 of yeast
was run on an SDS-PAGE gel, transferred to nitrocellulose paper
and blotted with mouse anti-hemagglutinin (HA; Abcam
ab18181) followed by donkey anti-mouse conjugated to IR-Dye
800CW (Mandel Scientific 926-32212). The blot was imaged on an
Odessey 9120 Infrared Imager (LI-COR).

Flow cytometry
Log-phase yeast grown in synthetic complete media were mea-
sured on an Accuri C6 flow cytometer (BD Biosciences). For each
sample, 10,000 events were collected, and the mean green fluo-
rescence values of the complete ungated populations were
recorded.

Results
Optimizing use of Cas9 expression vectors in
S. cerevisiae
To create a set of flexible Cas9-gRNA expression cassettes, we
modified an established pCAS vector (Addgene #60847; Ryan et al.
2014). This vector expresses S. pyogenes Cas9 and a gRNA com-
prising of the 50-cleaving hepatitis delta virus ribozyme, a 20 bp
protospacer responsible for Cas9 targeting and a scaffold mediat-
ing Cas9 interactions. Streptococcus pyogenes Cas9 targets regions
that match the protospacer sequence and are followed by the
protospacer adjacent motif (PAM) -NGG-, cutting 3 bp upstream
of the PAM (Gasiunas et al. 2012; Jinek et al. 2012). We first
substituted the Escherichia coli-yeast Kanamycin resistance (KanR)
cassette for a Hygromycin resistance (HygR) cassette and, in each
plasmid, replaced the protospacer with a cleanly excisable stuffer
containing an NotI and 2 BsaI cut sites, respectively, generating
pBBK94 and pBBK95.

These vectors can be used by excising the stuffer and cotrans-
forming the pCAS with donor DNA and a protospacer fragment
made by dimerizing 2 primers (Fig. 1a). Inside the cell HDR intro-
duces the protospacer into the pCAS allowing expression of Cas9
and a complete gRNA. Selecting for pCAS is sufficient for identify-
ing integrants, and once identified, the selection can be dropped
allowing the cells to discard the plasmid resulting in a
“markerless” genome edit. While flexible, this approach depends
on error-free recombination to generate the gRNA.
Unfortunately, either NHEJ occurring at the guide site or errors in
gRNA primers can result in failure to activate Cas9 and the pro-
duction of nonmodified colonies.

Consequently, we investigated improving transformation effi-
ciency by modifying how the protospacer is introduced. Initial
tests of precloned protospacers resulted in substantially lower
transformation efficiencies, leading us to hypothesize that linear-
ization of the pCAS is required for high efficiencies (data not
shown). Therefore, we shifted the site of linearization to the se-
lection cassette such that selection would depend on repair. We
built a novel KanR-based “split selection” (SplitKanR) cassette by
fusing the first two-thirds of KanR to the final two-thirds with a
short linker containing restriction enzyme cut sites (Fig. 1b-iii).
The original pCAS KanR marker was replaced with SplitKanR,
and an ampicillin resistance cassette for E. coli selection was
added. Transformations with this plasmid linearized at the
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Cas9

Site:
1 “FF18”
2 “FF21”
3 “XII-2”
4 “XII-5”
5 “ARS308”
6 “ARS416”
7 “HIS3”

Location:
chrXV:665159..665140
chrXVI:881437..881418
chrXII:809402..809383
chrXII:839660..839679
chrIII:114130..114149
chrIV:463126..463145
chrXV:722047..722028

Guide RNA:
ATAGAATTACTATTGAAGAG
TCTTGGGTTGCCAAACTAAG
TCGAGAGAGTCGCCGATAGT
TTGTCACAGTGTCACATCAG
CACTTGTCAAACAGAATATA
TAGTGCACTTACCCCACGTT
GATCGAGTGCTCTATCGCTA
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Fig. 1. New Cas9 expression vectors for improved markerless CRISPR transformations. a) Classic approach for integrating DNA in S. cerevisiae with
CRISPR-Cas9. Three DNA fragments are cotransformed: a protospacer (ps.), a cut Cas9 vector and donor DNA. In the cell, (1) the pCAS vector is repaired,
introducing the protospacer upstream of a scaffold (sca.), together creating a complete gRNA. (2) The gRNA directs Cas9 to cut at a site specified by the
protospacer, which is then [3] repaired by the cell using the donor DNA. b) Alternative strategies for introducing the gRNA and Cas9 beyond (i) the
classic recombination approach include either precloning the protospacer into a Cas9 vector with a (ii) complete selection or (iii) a “split selection” that
must be repaired in the cell prior to expression. c) To test the efficiency of the 3 approaches, 100 fmol (569–600 ng) of each Cas9 vector, with 16 pmol
(1,248 ng) protospacer for the type i gRNA recombination vector, and 200 fmol (730 ng) of a strong GFP expression integration cassette (TDH3p-GFP) were
transformed. Green colonies under a blue light indicated successful transformations. The resultant (d) total number of colonies, (e) percent of colonies
that were positive and (f) total number of positive colonies were determined. n ¼ 3; data presented as mean 6 SEM. g) A series of Cas9 vectors with 5
types of complete or split selections. h) A series of split selection Cas9 vectors with precloned gRNAs for 7 sites used in this toolkit.
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SplitKanR should result in increased efficiency because there is
more homology for HDR-based repair, the homology is intramo-
lecular and the process selects for error-free repair.

We compared the transformation efficiencies of the 3 gRNA
introduction strategies: recombination at the gRNA, precloning
the gRNA with a complete selection, and precloning the gRNA
with a split selection (Fig. 1, b and c). To do so, we transformed a
strong GFP expression cassette into the safe harbor site FF18 and
identified positive colonies by their green fluorescence (Fig. 1h).
Transformation tests used 200 fmol of donor DNA (from pBBK93),
100 fmol of prepared pCas9 vector and, for the first strategy, a
160x molar excess of the protospacer. The gRNA recombination
vector resulted in the most colonies, while the precloned full and
split selection vectors, respectively, yielded 14% and 42% as
many colonies (Fig. 1d). This is consistent with reports that line-
arization improves CRISPR-Cas9 transformations and suggests
that either the protospacer excess or NHEJ-based repair at the
protospacer site further increases the number of transformants
(Horwitz et al. 2015; Guo et al. 2018). However, the protospacer re-
combination approach yielded only 16% positive colonies (green
under blue light), roughly one quarter that of either precloned ap-
proach (Fig. 1e). The colonies that were negative with the pre-
cloned approaches were likely a result of genomic repair by NHEJ.
Thus, the precloned split selection pCAS yielded the most posi-
tive colonies, highlighting that this novel approach can take ad-
vantage of linearization-mediated transformation efficiency
improvements while avoiding the generation of inactive gRNAs
(Fig. 1f).

We next generated and validated a series of pCAS vectors with
a variety of complete and split selections for either single-step
gRNA recombination transformations or precloning of gRNAs
(Fig. 1g). We included vectors for the gRNA recombination
method as it is faster and easier for one-off transformations or ef-
ficient guides. To facilitate gRNA cloning, all vectors contain
a BsaI-flanked GFP dropout cassette at the protospacer site for
PCR-free Golden Gate cloning (see Supplementary File 2 for clon-
ing guidelines). The URA3 selectable marker in pBBK9 is also
BsmBI-flanked to simplify introduction of alternate selections
with Golden Gate cloning. We also cloned 7 guides into both the
SplitKanR and SplitHygR vectors (Fig. 1h). These guides corre-
spond to 6 commonly used safe harbor sites FF18/21 (Flagfeldt
et al. 2009), XII-2/5 (Jessop-Fabre et al. 2016), ARS308/416 (Reider
Apel et al. 2017), and one that targets HIS3 enabling screening.
Collectively, our Cas9 vectors offer improved transformation effi-
ciencies with flexibility in strategy and selections.

A toolkit for rapid construction of integration
cassettes
Classic approaches for expressing integrated tagged proteins of-
ten focus on introducing tags at the native locus of the GOI
(Fraczek et al. 2018). While this can be done markerlessly with
CRISPR-Cas9, it requires the case-specific identification of a Cas9
cut site proximal to the 50 or 30UTR of the GOI and the amplifica-
tion of donor DNA containing the tag with flanking homology
specific to that site. Unfortunately, these cut sites can have lower
efficiencies, and as the distance of the cut site from the gene
increases, the probability of the desired recombination event
decreases (Supplementary File 2). Furthermore, expression of
heterologous genes requires an alternate approach, and colocali-
zation studies often favor the ease of plasmid-based expression
even though copy number variations cause significant differen-
ces in intensity between cells (Ryan et al. 2014). CRISPR-Cas9

offers the alternative of easily introducing a complete expression
cassette, containing the tagged GOI, at other loci such as the non-
disruptive safe harbor sites (Fig. 1h).

To facilitate this approach, we adopted a modular cloning
scheme to generate plasmids that simplify building expression
cassettes for untagged, GFP-, RFP-, or HA-tagged GOIs (Lee et al.
2015; Fig. 2a). Each parent plasmid contains homology arms, a
promoter, optionally a tag, a terminator, and a BsaI-flanked GFP
dropout for introducing a GOI by Golden Gate cloning. All tags
contain glycine- and serine-rich linkers (Supplementary File 1).
Once assembled, NotI digestion linearizes complete integration
cassettes for transformations. Parent plasmids are available fea-
turing moderate to strong promoters (RPL18Bp < TEF2p < TDH3p)
and with optional N- or C-terminal tags (Fig. 2b). Both the GFP
and the RFP are recently developed bright variants,
ymNeonGreen and ymScarletI, respectively, (Botman et al. 2019).
Microscopy and flow cytometry were used to verify
ymNeonGreen was brighter than alternative GFP variants Envy
and ZsGreen1 (Supplementary Fig. 1, a and b).

These integration cassette parents feature unique multipur-
pose homology arms (Fig. 2c). Each arm contains a series of
roughly 125 bp sections homologous to regions upstream (left
arm) and downstream (right arm) of the 7 commonly used inte-
gration sites corresponding to the precloned gRNAs in this kit
(Figs. 1g and 2c). The sequential orientation of Sites 1–7 on each
arm means that once a cassette is integrated at one site it cannot
act as a repair template for subsequent cuts at the other 6 sites
(Fig. 2d). Therefore, existing integrated cassettes cannot interfere
with subsequent integrations at other sites. This allows up to 7
integration cassettes with the same homology arms to be sequen-
tially introduced into a strain, facilitating gene dosage and coloc-
alization experiments.

To validate this system, the KanR and HygR precloned split se-
lection pCAS vectors (Fig. 1g) were used to integrate a strong GFP
expression cassette (as in Fig. 1c) into each integration site
(Fig. 2e). Transformations resulted in 250–1,800 colonies, with
integrations into Sites 3, 4, and 7 resulting in greater than 98%
positive colonies. Integrations into Sites 2 and 5 yielded fewer
than 60% positive colonies, which was unexpectedly poor relative
to previous reports (Reider Apel et al. 2017; Bourgeois et al. 2018),
though still sufficient for straightforward integration of cassettes.
The drop in efficiency may reflect some structural feature of the
homology arms or GFP expression cassette. The latter is likely for
Site 2 as subsequent transformations into Site 2 for Fig. 4c yielded
88% positive colonies by PCR (data not shown). Having confirmed
the cassette could be integrated at all sites, expression levels be-
tween sites were compared. Expression levels, assessed by mea-
suring green fluorescence by flow cytometry, were similar
between sites at an average of 36 times the background fluores-
cence (Fig. 2f, Supplementary Fig. 1c). Together, the cassettes de-
veloped here can be integrated at 7 gRNA-determined sites and
result in expression levels uninfluenced by the integration site.

To confirm the functionality of all parent cassettes in Fig. 2b,
compartmental markers were cloned into each and then trans-
formed into Site 1. For N-terminal tagging with fluorophores, a
plasma membrane marker comprised of 2 phospholipase Cd

Pleckstrin homology domains (2xPH; Levine and Munro 2002) was
used while the mitochondrial marker preCOX4 (Sesaki and
Jensen 1999) was used for C-terminal tagging. When integrated,
microscopy showed GFP-tagged (Fig. 3, a and b) and RFP-tagged
(Fig. 3, c and d) versions were expressed with the expected cellu-
lar distributions. The functionality of tag-free cassettes was
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Fig. 2. A set of markerless integration cassettes for introducing untagged, GFP-, RFP-, or 3HA-tagged GOIs with multipurpose targeting sequences.
a) Schematic of integration cassettes with left and right homology arms flanking a promoter at one of 3 strengths, a GFP dropout and a terminator.
Some include N- or C-terminal GFP, RFP, or 3HA tags as indicated. Golden Gate cloning with a BsaI-flanked gene of interest allows introduction of
targets. b) The integration cassettes parent vectors included in this kit. c) The homology arms consist of roughly 125-bp regions either upstream
(left arm) or downstream (right arm) of each Cas9 cut site described in Fig. 1h, arranged in numerical order. d) An example integration at Site
5 indicating that afterwards only 1 homology block of the other sites remains so this integrant will not interfere with subsequent transformations into
those sites. e) Transformation efficiencies at the different sites were determined by integrating a TDH3p-GFP cassette at each site and counting the
total number of colonies as well as the number of colonies that were green under a blue light (positive). Transformations used 100 fmol (600–690 ng)
of a precloned split selection pCAS from Fig. 1h and 200 fmol (730 ng) of the expression cassette. n¼ 4, Twice each with SplitKanR and SplitHygR
vectors. f) To assess expression levels at the integration sites, TDH3p-GFP was introduced at each site, and the increase of green fluorescence over
the wild-type background was measured by flow cytometry. n¼ 3; 10,000 cells/strain/replicate. Data presented as mean 6 SEM.
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demonstrated by introducing GFP (Fig. 3e). HA tagging cassettes
were tested by introducing 2xPH and the vacuolar-localized protein
Prc1 (Huh et al. 2003) and Western blotting (Fig. 3f). In all cases, ex-
pression levels predictably corresponded to the promoter used,
demonstrating the integration cassettes can be used effectively to
integrate target GOIs at adjustable expression levels.

To assess the evenness of expression from our integrated cas-
settes, we introduced RFP-2xPH into our GFP-2xPH strain either
on a low-copy plasmid or into the genome at Site 2 (Fig. 3g). As
expected, there was substantially more variation in RFP-2xPH ex-
pression from the plasmid with some cells varying in fluores-
cence intensity or not expressing any detectable RFP-2xPH. This
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difference was quantifiable as a significant drop in the Pearson’s
coefficient between the red and green channels when RFP-2xPH
is expressed from a plasmid (Fig. 3h).

Integration cassettes with GFP- or RFP-tagged
localization markers for colocalization studies
While fluorescently tagging a protein can reveal positional infor-
mation, accurate identification of localization typically requires
colocalization with a compartmental marker. To facilitate this
type of work, we created a library of integration cassettes con-
taining GFP- or RFP-tagged markers for 15 subcellular locations
expressed from the RPL18B promoter (Fig. 4, a and b). The 21
markers selected were primarily well-characterized full-length
native proteins with localization confirmed in large-scale screens
(Huh et al. 2003; Chong et al. 2015). Additionally, the transmem-
brane helix of Scs2 (Scs2tmh) was used to mark the ER (Loewen
et al. 2007) and the 2xPH (Levine and Munro 2002) and preCox4
(Sesaki and Jensen 1999) markers were used for the plasma mem-
brane and mitochondria, respectively. Markers were C-terminally
tagged except in cases where that had been shown to be disrup-
tive, in which case they were N-terminally tagged (Chong et al.
2015; Fig. 4b, asterisks).

To validate the compartmental markers, we imaged strains
with GFP- and RFP-tagged versions of each marker. The GFP and
RFP cassettes were integrated at Sites 1 and 2, respectively, and
colocalization was assessed by fluorescence microscopy (Fig. 4c).
We observed both even expression levels and strong colocaliza-
tion between GFP and RFP versions of each marker. Controls with
only GFP-Scs2tmh or RFP-Scs2tmh demonstrated colocalization
was not an artifact of bleed-through between channels. While
there was some variation in marker intensities, consistent with
variable protein stabilities, intensity was consistent enough to
image all strains with the same exposure times (400 ms GFP,
800 ms RFP), streamlining microscopy. In some cases, the relative
intensities of the markers varied with either the GFP (Pil1) or RFP
(Tub1, Arc35) markers being brighter, suggesting that in some
cases one of the tags is more destabilizing or disruptive.
Together, these markers demonstrate the ease of integrating

tagged genes with the MyLO toolkit and should serve as useful
tools for future colocalization work.

Applying the toolkit for overexpression
The toolkit facilitates overexpression experiments by allowing se-
quential integration of a single cassette. Given the even expres-
sion across integration sites (Fig. 2f), the relationship between
cassette number and expression level should be linear if the cel-
lular machinery mediating expression is not limiting. To estab-
lish this relationship, we sequentially integrated 7 copies of GFP
expression cassettes driven by RPL18B, TEF2, and TDH3 promoters
at sites one through 7. Measuring the fluorescence of all strains,
including intermediates, confirmed a linear relationship with
copy number for each of the promoters used (Fig. 5a). The strains
with TDH3p and TEF2p cassettes were downward deflected and fit
better with negative second-order polynomials, indicative of
expression limitation due to factors such as transcription factor
titration or stress on protein biosynthetic machinery. This experi-
ment also showed TEF2p is 5x and TDH3p is 11x stronger than
RPL18B.

While multiple copies can be useful for gene dosage experi-
ments or metabolic engineering, localization can be disrupted by
expressing a gene with a stronger promoter. We observed such
overexpression-induced mislocalization with some compartmen-
tal markers, as all were initially TEF2p-expressed to reduce
exposure times. For example, the early endosomal Rab5 GTPase
GFP-Vps21 shifted from small puncta to larger peri-vacuolar bars
when TEF2p-expressed (Fig. 5b). Likewise, TEF2p-expressed Snf7-
GFP, a component of the endosomal sorting complexes required
for transport (ESCRT-III) complex, accumulated in larger vacuo-
lar puncta and on the vacuolar rim (Fig. 5c). In other cases, over-
expression disrupted compartmental shape. TEF2p-expression of
the target soluble N-ethylmaleimide-sensitive factor attachment
protein receptor (tSNARE) GFP-Vam3 led to modest vacuolar frag-
mentation (Fig. 5d). Strikingly, TEF2p expression of the peroxin
Pex25-GFP resulted in a shift to bars with elongated tubules that
sometimes extended from mother to daughter cells (Fig. 5e).
Further increasing expression by switching to the TDH3 promoter
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resulted in loss of the elongated tubules and formation of intense
bars. In all cases equivalent RFP-tagged markers localized simi-
larly (Supplementary Fig. 1, d–g). In contrast, other tagged pro-
teins maintained wild-type localization when overexpressed, a
subset of which we include as bright markers for the plasma
membrane, endoplasmic reticulum, and cytosol (pBBK88-93).
These experiments demonstrate that overexpression studies can
be conducted using the included promoters and homology arms.

Discussion
This work provides an expansive toolkit optimized for Cas9-
mediated introduction of tagged genes and compartmental markers
into the yeast genome. Our pCAS-gRNA vectors provide flexibility
with 5 selectable markers and the option of using common pre-
cloned gRNAs or introducing new guides by either Golden Gate
cloning or homologous recombination in yeast. Furthermore, we in-
troduce novel split selection markers, demonstrating that lineariz-
ing pCAS vectors prior to transformation and directly selecting for
their recombination boosts transformation efficiency. These pCAS
vectors are complemented by a series of integration cassette parent
vectors, simplifying the cloning of untagged and GFP-, RFP-, or HA-
tagged genes into expression cassettes, each of which can be inte-
grated at any of 7 sites. Also included is a collection of integration
vectors with GFP- or RFP-tagged compartmental markers for use in
colocalization studies. The MyLO toolkit streamlines markerless ge-
nomic manipulations (Fig. 6), seeking to approximate the ease of in-
troducing a plasmid without the associated drawbacks, to support
the rapid construction of complex strains for basic and applied
yeast research.

There is substantial variation in how the core requirements
for Cas9-based transformations, introducing Cas9 with variable
gRNAs and donor DNA, are achieved. Some approaches combine
all elements on single plasmids (Bao et al. 2015; Vyas et al. 2018)
whereas others rely on preloading a strain with either the Cas9

alone (DiCarlo et al. 2013; Jessop-Fabre et al. 2016) or, with the use
of an inducible Cas9 cassette, together with a gRNA (Degreif et al.
2018). While both approaches work well, they are either cloning
intensive or require longer transformation protocols. In contrast,
cotransforming a combined pCas9-gRNA vector with a donor, as
we and others (Laughery et al. 2015; Generoso et al. 2016) have
pursued, requires only a simple protospacer cloning step before a
one-step yeast transformation. Given the utility of this approach,
we developed a set of these vectors with a variety of markers,
though we note that Addgene contains extensions to the
Laughery et al. system and unpublished vectors from the Ellis lab
(pWS158, 171-176) that fill similar niches. The availability of mul-
tiple markers is important for marker cycling, where dropping a
selection after a transformation allows a plasmid to be lost fast
enough that every third, or in some cases second, transformation
can be done with the same selectable marker on the pCAS with-
out needing a curing step. Lastly, we simplified this pCas9-gRNA
strategy by making protospacer cloning optional, precloning
common guides, and ensuring all cloning is Golden Gate
compatible.

We found that linearization of the Cas9 vectors improved
transformations (Fig. 1). This, together with previous reports of
gap repair increasing the percent of positive colonies (Horwitz
et al. 2015), or both the number of colonies and the percent posi-
tive (Guo et al. 2018), could be explained by 2 mechanisms. First,
as previously suggested, requiring gap repair of the Cas9 vector
ensures that the cell is competent for homologous recombina-
tion, a prerequisite for efficient introduction of the donor DNA at
the target site (Horwitz et al. 2015). Consistent with the expecta-
tion of a higher frequency of positive colonies, we observed a 28%
increase in the percent of positive colonies with our split selec-
tion pCas9, relative to the circular vector. Second, the topology of
linear DNA can promote improved transformation efficiencies,
likely through increased DNA uptake (Raymond et al. 1999). Both
this work, where linearized vectors resulted in 4–7x more
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colonies than transformations with circular pCas9, and that of
Guo et al. support this mechanism as an important factor in im-
proving Cas9-based transformation efficiency. Though our sys-
tem uniquely implements an intramolecular gap repair strategy,
the extent to which this boosts transformation efficiencies rela-
tive to intermolecular repair at either the marker (Horwitz et al.
2015; Guo et al. 2018) or to nonfunctional regions flanking the
gRNA expression site (unpublished Ellis lab system; see pWS158
on Addgene) remains to be determined. Irrespective of transfor-
mation efficiency improvements, intramolecular gap repair sim-
plifies usage as only a single digested pCas9-gRNA vector is
needed for our approach, as opposed to requiring gRNA introduc-
tion on separate DNA. Collectively, there is now strong evidence
that gap repair improves CRISPR-Cas9 methods.

Our extended set of integration cassettes, ready for introduc-
ing a tagged or untagged GOI, provides a compromise between
flexibility and simplicity. The use of a Golden Gate cloning strat-
egy compatible with the modular cloning toolkit (Lee et al. 2015)
should simplify the introduction of genes from existing vectors
(see Supplementary File 2 for cloning protocols). Furthermore, it
should promote interchangeability with a recent extension of the
modular cloning toolkit capable of multiplexing and designed for
more variable markerless CRISPR-based applications (Otto et al.
2021). In contrast to these alternative systems, the MyLO kit sac-
rifices some versatility by providing prebuilt integration cassettes
ready to introduce a GOI in a limited design space, 3 promoters
with and without tags. This greatly simplifies cloning and mini-
mizes sequencing requirements. Additionally, by avoiding multi-
plexing, we were able to introduce the unique multicomponent
homology arms that allow gRNA-guided targeting of a single cas-
sette to any of 7 sites. This allows many combinations of MyLO
integration cassettes to be introduced both sequentially and re-
peatedly, without concern for clashing homology arms or the
unavailability of a specific site, a frequent concern in metabolic
engineering. Though crossover events could hypothetically occur
between our integrated cassettes, in all cases where colonies
were assayed by PCR, we observed the expected phenotype, in-
cluding after 7 rounds of sequential transformations, suggesting
the cassettes have high fidelity and stability.

The stability of our integrants is in line with previous studies
on the stability of genomic DNA. Many metabolic engineering
groups have previously observed stable expression of genes intro-
duced into the established safe harbor sites we target, and
Jessop-Fabre et al. observed that after 5 generations all isolates
tested maintained a genomically integrated GFP expression cas-
sette (Flagfeldt et al. 2009; Jessop-Fabre et al. 2016; Reider Apel
et al. 2017). Multiple instances of our integration cassettes will
share 50 and 30 homology which might impact stability. However,
based on the stability and tolerance of the >377 kb of
retrotransposon-related insertions already present in the S. cerevi-
siae genome, which frequently contain homology in the form of
long terminal repeats, the effect of homology between instances
of our cassettes should be minimal (Kim et al. 1998). Work by
Koszul et al. on a yeast strain with an 115 kb internally translo-
cated duplication further established the stability of genomic
DNA (Koszul et al. 2006). They replaced a single copy of a gene
within the duplication with URA3 and then looked for colonies on
plates with the URA3 counterselection 5-floroorotic acid, which
would have lost URA3 function. They found that even with tens
of kilobases of homology, a conversion event is only 2- to 3-times
more frequent than an inactivating URA3 point mutation. The
ability of our toolkit to provide easy access to the stability of

genomic integration represents a significant advantage over us-
ing unstable plasmids (Fig. 3, g and h).

We used the integration cassette parents to make an extended
set of GFP- and RFP-tagged compartmental markers designed to
provide the even level of expression of integrations while approx-
imating the ease of a plasmid transformation. Indeed, we found
that expression levels were exceptionally uniform between cells
with a given marker, though intensity did vary between markers
expressed from the same promoter. This variation can be
explained by other factors that affect protein abundance includ-
ing localization and interactions, codon usage, and the presence
of degradation signals (Martin-Perez and Villén 2017; Tuller et al.
2007; Varshavsky 2019). Given the comparable expression levels,
it should be possible to build tester strains with multiple morpho-
logically distinct compartments, such as the ER, endosomes, and
the plasma membrane, simultaneously tagged to rapidly identify
the localization of a new protein. Our localization system does
have the standard caveats associated with introducing second
copies of genes: essential proteins inactivated by tagging will be
possible to visualize though they may be mislocalized, and the
untagged version of some proteins may partially outcompete the
tagged version for recruitment to a given compartment. The abil-
ity to rapidly introduce a uniformly expressed compartmental
marker for colocalization should greatly facilitate localization
studies and automated image analysis.

Initial overexpression of our compartmental markers inadver-
tently yielded insights into the function of several proteins (Fig. 5,
b–e). Excess GFP-Vps21 accumulated in puncta near the vacuole,
and given that this Rab5 GTPase must be activated for membrane
recruitment, our observation suggests a bias toward Rab5 activa-
tion (Lachmann et al. 2012; Nickerson et al. 2012; Cabrera and
Ungermann 2013). While Snf7-GFP accumulated at perivacuolar
puncta consistent with previous reports (Raymond et al. 1992;
Froissard et al. 2007; Bean et al. 2015), we also observed Snf7-GFP
on the vacuolar membrane, supporting a recent report of ESCRT
function at the vacuole (Yang et al. 2021). Overexpression of
Vam3-GFP, a tSNARE that mediates vacuolar fusion (Srivastava
and Jones 1998; Lürick et al. 2015), resulted in vacuolar fragmen-
tation, suggesting that the ratio of the SNARE to other fusion
components is important for function (Alpadi et al. 2013; Lürick
et al. 2015). Lastly, increasing Pex25-GFP levels led to enlarged
peroxisomes with elongated tubules and then to intense bar-
shaped structures. These phenotypes are likely linked to the role
of Pex25 in peroxisome biogenesis (Marelli et al. 2004; Akşit and
van der Klei 2018) where Pex25 overexpression has been shown
to drive formation of juxtaposed elongated peroxisomes
(Rottensteiner et al. 2003; Tam et al. 2003; Huber et al. 2012). The
tubules are similar to those in Ogataea polymorpha lacking Dnm1,
suggesting Pex25-GFP overexpression may also block fission ma-
chinery (Smith et al. 2002; Nagotu et al. 2008; Akşit and van der
Klei 2018). Together, these results highlight the rich information
obtainable from overexpression experiments facilitated by this
toolkit.

This toolkit joins the array of methods available for overex-
pression studies. Plasmid libraries exist that contain fragmented
genomic DNA systematically expressed on high-copy 2m vectors
(Rose and Broach 1990), genes expressed from both low-copy vec-
tors (Ho et al. 2009) and 2m vectors (Magtanong et al. 2011) and
genes under the control of the galactose-inducible GAL1 pro-
moter (Gelperin et al. 2005). While largely covering the genome
and being easily transformed, these approaches suffer from copy
number variation and instability. More recently, integrated
genome-scale libraries have been made with either b-estradiol-
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inducible promoters (Arita et al. 2021) or easily swappable 50 or 30

insertions at each gene that can be used for tagging and introduc-

ing strong or inducible promoters (Yofe et al. 2016). While these 2

systems are particularly well suited for genome-wide overexpres-

sion studies, they cannot easily be applied in a new strain back-

ground. In contrast, our system can stably express any gene,

including nonyeast genes, either tagged or untagged at multiple

defined expression levels and copy numbers in any target back-

ground with little more effort than introducing a plasmid. Thus

while, ill-suited for genome-wide screens, our approach should

be valuable in many situations, particularly when a metabolic

engineer is seeking to tune expression levels.
Though the MyLO toolkit provides a strong foundation for ba-

sic CRISPR-Cas9 genome editing in yeast, making stable genomic

integrations almost as easy as introducing a plasmid, it could be

expanded in numerous ways. These expansions could include

adding new integration cassettes with multipurpose homology

arms for different sets of sites, additional promoters including

those allowing regulation of gene expression, and the inclusion of

alternative compartmental markers. Furthermore, inverting the

order of homology regions on one of the arms should allow a sin-

gle cassette to repair multiple sites enabling single-step multi-

copy introduction of a cassette, as a cassette integrated at a

single location could have the left and right homology arms re-

quired to repair cut sites introduced by Cas9 at other locations.

The pCAS vectors could also be modified to include new smaller

or higher fidelity CAS proteins and should be easily adaptable to

the method presented by Zhang et al. for multiplexing of gRNAs

(Kim et al. 2017; Casini et al. 2018; Zhang et al. 2019; Xu et al. 2021).

Indeed, the increased efficiency and simplicity of the split selec-

tion pCAS strategy could further improve current CRISPR multi-

plexing capabilities.
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