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Abstract: Mycotoxins are well established toxic metabolic entities produced when fungi invade agri-
cultural/farm produce, and this happens especially when the conditions are favourable. Exposure
to mycotoxins can directly take place via the consumption of infected foods and feeds; humans can
also be indirectly exposed from consuming animals fed with infected feeds. Among the hundreds
of mycotoxins known to humans, around a handful have drawn the most concern because of their
occurrence in food and severe effects on human health. The increasing public health importance of
mycotoxins across human and livestock environments mandates the continued review of the relevant
literature, especially with regard to understanding their toxicological mechanisms. In particular, our
analysis of recently conducted reviews showed that the toxicological mechanisms of mycotoxins de-
serve additional attention to help provide enhanced understanding regarding this subject matter. For
this reason, this current work reviewed the mycotoxins’ toxicological mechanisms involving humans,
livestock, and their associated health concerns. In particular, we have deepened our understanding
about how the mycotoxins’ toxicological mechanisms impact on the human cellular genome. Along
with the significance of mycotoxin toxicities and their toxicological mechanisms, there are associated
health concerns arising from exposures to these toxins, including DNA damage, kidney damage,
DNA/RNA mutations, growth impairment in children, gene modifications, and immune impairment.
More needs to be done to enhance the understanding regards the mechanisms underscoring the
environmental implications of mycotoxins, which can be actualized via risk assessment studies into
the conditions/factors facilitating mycotoxins’ toxicities.

Keywords: mycotoxins; mycotoxicosis; molds; disease; health risks

Key Contribution: Mycotoxins enter the food chain due to mold infestation of crops or indirectly
through livestock. Following exposure, mycotoxins can bring about very serious human health
effects. Our analysis of recently conducted reviews showed that toxicological mechanisms associated
with mycotoxins deserve additional attention. Therefore, this review of mycotoxins’ toxicological
mechanisms involving humans, livestock, and their associated health concerns is very useful for all
stakeholders within the food supply chain.

Toxins 2022, 14, 167. https://doi.org/10.3390/toxins14030167 https://www.mdpi.com/journal/toxins

https://doi.org/10.3390/toxins14030167
https://doi.org/10.3390/toxins14030167
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/toxins
https://www.mdpi.com
https://orcid.org/0000-0001-5071-8895
https://orcid.org/0000-0002-1498-6486
https://orcid.org/0000-0002-2714-3322
https://orcid.org/0000-0003-2073-9374
https://orcid.org/0000-0003-0197-810X
https://orcid.org/0000-0003-4475-8887
https://doi.org/10.3390/toxins14030167
https://www.mdpi.com/journal/toxins
https://www.mdpi.com/article/10.3390/toxins14030167?type=check_update&version=1


Toxins 2022, 14, 167 2 of 33

1. Introduction

Mycotoxins are toxic metabolic compounds produced by some molds. Many my-
cotoxins have chemical stability and can survive the rigors encountered throughout the
food supply chain. The most common mycotoxins of concern to humans and livestock
include aflatoxins, citrinin, ochratoxins, fumonisins, patulin, zearalenone, nivalenol, de-
oxynivalenol, fumonisins, and ergot alkaloids. The production of some mycotoxins occurs
mainly in the field, while, for others, it can happen both in the field and in the postharvest
period. Health effects involving mycotoxins in humans and animals include specific dis-
eases or health issues, a weak immune system with no specificity to a particular mycotoxin,
death, and action as irritants or allergens. Certain mycotoxins have been found to be
harmful to most other microorganisms [1–3]. Some mycotoxins, such as aflatoxins and
fumonisins, interfere with protein synthesis, cause cancer, prevent particle clearance of the
lungs, damage macrophage systems, and raise sensitivity to bacterial endotoxins [2,3]. In
the food and feed industries, there has been an increase in the usage of mycotoxin-binding
agents such as bentonite clays or montmorillonite for effective adsorption and removal of
mycotoxins. However, not all mycotoxins bind to such mycotoxin-binding agents. Another
approach to control mycotoxin involves its deactivation. With yeast (Trichosporon myco-
toxinvorans), enzymes (esterase), or bacterial strains (Eubacterium BBSH 797), mycotoxin
levels can be drastically lessened before harvesting [3,4]. Some methods of mycotoxin
removal make use of physical separation, nixtamalization, heat treatment, washing, clean-
ing, milling, radiation, biological or chemical agents, and extraction with solvents [5]. In
particular, the irradiation method has been shown to have high efficacy against the growth
of mold and the presence of mycotoxins [3,4].

Mycotoxins of major toxic interest include aflatoxins, deoxynivalenol, fumonisins,
ochratoxin A, and citrinin, partly due to their increased frequency and high occurrence in
foods and feeds commonly consumed by humans and animals. The toxicities of aflatoxins,
fumonisins, deoxynivalenol, and ochratoxin A include cytotoxicity, liver cancer, kidney
cancer and damage, intestinal barrier function disruption, immune modulation, and poor
fetal development, all of which can affect humans. In general mycotoxins pose challenges
to humans and animals worldwide due to their recently increasing occurrence and their
toxicities. Mycotoxins enter the food chain due to mold infestation of crops. Mycotoxin ex-
posure can take place directly via the consumption of infected foods and feeds or indirectly
through livestock given infected feeds, particularly from milk and dairy products [2]. The
health effects of certain food-borne mycotoxins have been reported to be acute, whereby the
symptoms of severe sickness appear readily following the ingestion of foods polluted with
the mycotoxin. Some mold metabolites in foods have prolonged health effects on human
and animal, including immune deficiency and the induction of cancers [2]. Among the
hundreds of mycotoxins known to humans, around a handful have drawn the most concern
because of their occurrence in food and severe effects on human health. For instance, the
Fusarium mycotoxins are made by at least 50 Fusarium species, and they pollute the grains
of the growing cereals including wheat, maize, and millet [6–8]. Most fungi thrive well
in oxygen and in very little quantities given the diminutive sizes of their spores. The
fungi/molds consume organic materials wherever the environmental and surrounding
conditions are suitable, forming colonies and raising the amount of released mycotoxins.
The actual motivation for mycotoxin release is yet unknown, as it is not required to grow
or develop the fungi [9].

A summary of recently conducted reviews on mycotoxin toxicology involving hu-
mans and livestock, as well as control/removal strategies, is presented in Table 1. Some
researchers introduced the natural occurrence of Alternaria mycotoxins, as well as their tox-
icity, metabolism, and analytical methods [10], whereas others discussed the co-occurrence
of masked mycotoxins, as well as their sampling and extraction, and the suitability of LC–
MS/MS for accurate and precise analysis/detection [11]. Additionally, the occurrence of my-
cotoxins, their toxic effects, the detoxifying agents, their qualitative and quantitative analy-
sis (for modified mycotoxins), and the most important mycotoxins in crops/finished fish
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feed have been reported [12–17]. Consumer health safety concerns, mitigation/treatment
strategies associated with mycotoxin toxicities, and how they affect animals, foods, humans,
and plants remain very crucial [5,18]. Clearly, the body of knowledge on this subject matter
is continually growing. Our analysis of recently conducted reviews showed that toxicologi-
cal mechanisms associated with mycotoxins deserve additional attention. Understanding
the toxicological mechanisms associated with mycotoxins is crucial given the fact that
mycotoxins make the host weak, thereby providing the fungi with an increased chance to
thrive further and cause more harm. Accordingly, it is clear that the making and the release
of mycotoxins depend on the intrinsic and extrinsic environmental conditions. Thus, the
metabolites vary greatly, particularly in terms of toxic potency, which to a large extent de-
pends on the infected host and its vulnerability, defense mechanisms, and metabolism [19].
Although mycotoxins have been known for years, they are also recognized as emerging
contaminants, largely due to new discoveries/knowledge [18,20]. Given the increasing
global public health importance of mycotoxins, there is a need for continued review of the
relevant literature, to expand understanding especially as it relates to their toxicological
mechanisms. To supplement existing knowledge, therefore, this current work reviewed
mycotoxins’ toxicological mechanisms involving human, livestock, and their associated
health concerns. A succinct discourse on some mycotoxins directly involved in some types
of cancer, as well as mycotoxins’ actions on the human cellular genome, is included.

Table 1. Summary of recently conducted reviews on mycotoxin toxicology involving humans and
livestock, as well as control/removal strategies.

Objectives of Literature Review Key Sections References

This review discussed mycotoxin
toxicities from the perspective of

consumer health safety concerns, as well
as mitigation/treatment strategies

Toxicology, consumer health safety concerns, and
actions of mycotoxins; toxic effects of combined

mycotoxins exposure; major mycotoxin effects on
infants and children; complications/risks of

mycotoxin exposure at various stages of human
life; consumer health implications of mycotoxin

exposure; mitigation/removal strategies of
mycotoxin toxicities

Awuchi, Nwozo, et al. [5]

This review introduced the natural
occurrence of Alternaria mycotoxins, as
well as their toxicity, metabolism, and

analytical methods

Toxicity of Alternaria mycotoxins, metabolism of
Alternaria mycotoxins, Alternaria mycotoxin

analysis
Chen, Mao, et al. [10]

This review revisited how mycotoxins
affect animals, foods, humans, and plants,

specific to types, toxicity, prevention
measures, and strategies for
detoxification and removal

Major groups of mycotoxins: occurrence,
production, and toxicities; mycotoxin prevention,
decontamination, and detoxification approaches

Awuchi, Ondari, et al. [18]

This review discussed the co-occurrence
of masked mycotoxins, as well as their

sampling and extraction, and the
suitability of LC–MS/MS for accurate

and precise analysis/detection

Recent challenges in the analysis of mycotoxins;
analytical techniques and extraction of mycotoxins

from food samples
Iqbal [11]

This review summarized the occurrence
of mycotoxins, their toxic effects, and the

detoxifying agents with emphasis on
deoxynivalenol in pig production

Mycotoxin occurrence; mycotoxin toxicity;
mycotoxin-detoxifying agents Holanda and Kim [21]
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Table 1. Cont.

Objectives of Literature Review Key Sections References

This study reviewed the information
reported on the toxic effects of the most
relevant/studied Fusarium toxins and
their modified forms over the last few

year

Metabolism of DON, T-2, HT-2, and ZEN toxins, as
well as their modified forms Pierzgalski et al. [14]

This review comprehensively
summarized the latest (target and

nontarget) knowledge of qualitative and
quantitative analysis for modified

mycotoxins, elucidating their major
transformation mechanisms

Status of global mycotoxin contamination;
transformation of the modified mycotoxins;

analysis strategy of modified mycotoxins and
metabolites; challenges in modified mycotoxins

Lu, Qin, et al. [15]

This review summarized the occurrence
and toxicological aspects of major

Aspergillus-derived mycotoxins

Food toxicology and molecular mechanism of
mycotoxins; occurrence of Aspergillus-derived

mycotoxins in the feed and food chain; prevention
strategies of mycotoxicoses; medical aspects of

Aspergillus-derived mycotoxins

Ráduly, Szabó, et al. [17]

This review provided the most important
mycotoxins in crops/finished fish feed,
i.e., aflatoxins, fumonisins, ochratoxins,

trichothecenes, and zearalenone

Mycotoxin contamination of fish feed; aflatoxins
and their precursors; fumonisins; ochratoxin;

trichothecenes; zearalenone; co-contamination by
different mycotoxins

Oliveira and Vasconcelos [16]

This review summarized the most
predominant types of mycotoxins, the

factors affecting their production, and the
methods used for their extraction and

cleanup from foodstuffs

Types of mycotoxins; factors affecting mycotoxin
production; detection of mycotoxins Elkenany and Awad [13]

This study assessed the presence of
aflatoxigenic fungi and mycotoxins in

foods, as well as their occurrence, control,
and socioeconomic and health

implications, from a food safety and
quality perspective

Uses of fungi; cultured foods; types of
aflatoxigenic fungi; mycotoxins produced by

aflatoxigenic fungi; major groups of mycotoxins in
foods; health implications of eaten foods
contaminated by mycotoxins; economic

implications of mycotoxins in foods; prevention
and control of mycotoxins in foods

Adeyeye [12]

2. Mycotoxins and Mycotoxicosis

Mycotoxicosis is when exposure to mold substances/mycotoxins brings about poison-
ing. Mycotoxicosis can cause acute and chronic health effects to humans and livestock via
ingestion, inhalation, and contact with the skin, as well as through entering the lymphatic
system and blood stream. While acute effects manifest within 72 h of exposure, chronic ef-
fects take more than 72 h and may run into months, years, or even decades. The symptoms
and effects of mycotoxicosis depend on the type of mycotoxin, although two or more myco-
toxins may have similar effects [3]. Generally, most health effects of mycotoxins in humans
and animals in toxic doses include identifiable diseases, weak immunity without any trace
to one toxin, identifiable health problems, death, and action as allergens or irritants. A num-
ber of mycotoxins are destructive to other microbes, e.g., fungi or bacteria [22]. Mycotoxins
in stored animal feed have been suggested to be the cause of the rare phenotypical sex
changes in hens, causing them to resemble and act as if they were male [23]. Mycotoxins
have the potential for chronic and acute health effects [2,24], via inhalation and entry into
the lymphatic system and blood stream. They harm the macrophage system, impair protein
synthesis, intensify the response to bacterial endotoxin, and inhibit particle clearance of
the lungs [25]. Symptoms of mycotoxicosis are based on the type of mycotoxin, the age,
sex, and health of victims, the mycotoxin concentration, and the length of exposure [4,25].
The synergistic effects connected with many factors, e.g., diet, genetic makeup, and the
relations with different toxins, have not been studied sufficiently. Consequently, there is a
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likelihood that the vitamin deficiencies, alcohol abuse, caloric deprivation, and infectious
diseases can compound mycotoxicosis [2,25]. Mycotoxin infestation of medicinal plants
and other plant products can increase health issues in human, thus symbolizing a special
concern [26,27]. Natural occurrences of the mold toxins in herbal medicines and medicinal
plants have been reported in countries such as Spain, India, Turkey, China, and Germany,
as well as regions such as the Middle East [26,27].

In the 1990s, there were public health fears over the increased mycotoxin occurrence,
which brought about millions of dollars’ worth of mold settlements. This was a direct
result of a study conducted by the US Center for Disease Control in Cleveland, Ohio,
which provided evidence with regard to the connection between mycotoxins in pulmonary
hemorrhage in infants and the spores of Stachybotrys [28]. However, on the basis of internal
and external data reviews in 2000, the Center for Disease Control (CDC) resolved that,
due to pitfalls in some of their methodologies, the connection was not proven. The spores
of Stachybotrys in studies involving animal models have been reported to result in lung
hemorrhaging, but only when the concentration is too high. The Center of Integrative
Toxicology, Michigan State University, carried out a study which examined the cause of
damp building-related illness (DBRI), identifying Stachybotrys as a possible contributing
factor. So far, studies on animals have shown that airway exposure to Stachybotrys chartarum
can cause allergy, cytotoxicity, and inflammation in the lower and upper respiratory tracts.
Trichothecene mycotoxicosis seems to be a factor in the fundamental cause of a number
of these health effects. Findings have shown that lower doses may even cause the same
symptoms [29]. A great number of toxicologists utilize the concentration of no toxicological
concern (CoNTC) to describe the airborne concentrations of mycotoxin, which are strongly
believed not to cause harm to humans following continuous exposure across a 70 year
lifetime. Dimorphic fungi, e.g., Paracoccidioides brasiliensis and Blastomyces dermatitidis, are
believed to cause an endemic form of systemic mycoses. Between 2005 and 2011, there
was an outbreak of dog foods contaminated with aflatoxins. The residents of affected
areas became concerned about the effects of mycotoxins. Mycotoxins in fodders, including
in silage, have the potential to reduce the performance of farm animals and may even
lead to their death. Upon being eaten by cattle, many mycotoxins lessen the yield of milk.
Additionally, the release of mycotoxins in food crops affects the nutritional composition of
the foods and feeds [30].

In a study involving plant-based dietary (nutritional) supplements in 2015, the peak
concentration of mycotoxins was reported to be around 37 mg per kg specific to milk thistle-
based supplements [31]. Mycotoxins resist breakdown or decomposition during digestion,
and they remain in the meat and milk product food chain. Temperature processing, such
as freezing and cooking, may not necessarily deter all mycotoxins [32]. For instance, in
the food and feed industries, there is a common practice to remove mycotoxins by adding
binding agents, e.g., bentonite clay or montmorillonite [33], which are aimed at removing
or at least reducing the number of mycotoxins that withstand other preprocessing measures.
To reverse the adverse effects of mycotoxins, the criteria adopted to examine functionality
include (a) a low effective inclusion rate, (b) the affirmation of interaction between the
adsorbent and mycotoxin, (c) the efficiency of the active substance verified by scientific
data with evidence, (d) a high affinity to absorb mycotoxins at low concentration, (e) a
high ability to absorb a high concentration of mycotoxins, (f) environmentally friendly and
nontoxic substances, (g) proven data with all major mycotoxins in vivo, and (h) stability
over different pH levels [3,4,33]. As most mycotoxins withstand the rigors of food and feed
processing, current tactics for controlling mycotoxins have aimed at their deactivation. With
yeast (Trichosporon mycotoxinvorans), enzymes (esterase, de-epoxidase), or bacterial strains
(Eubacterium BBSH 797), mycotoxin levels can be drastically reduced before harvesting.
Other methods of mycotoxin removal make use of physical separation, nixtamalization,
heat treatment, washing, cleaning, milling, radiation, biological or chemical agents, and
extraction with solvents. In particular, the irradiation method has been shown to have high
efficacy against the growth of mold and mycotoxins [3,4,33].
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3. Mycotoxins: Their Toxicological Mechanisms and Associated Health Concerns

Fungal infestation of agricultural crops facilitates the entry of mycotoxins into the food
chain. This can be via animal feeds or direct consumption by man. In 2004, 125 individuals
lost their lives in Kenya and around 200 received treatment after consuming aflatoxin-
infested maize [28,34,35]. Their demise was mostly connected with domestically cultivated
maize which was not properly dried before storage or treated with fungicides. Due to food
insecurity at that period, farmers might have harvested maize immaturely to circumvent
burglaries from their farmyards, resulting in the grain not maturing fully and being more
vulnerable to infection by mold. Other common substrates susceptible to mycotoxigenic
fungal growth and mycotoxin release include cereals, nuts, spices (e.g., red chili, dry ginger,
and black pepper), and dried fruit [36]. Many mycotoxins have been shown to exhibit
toxicities in several ways. The toxic nature of mycotoxins can lead to various fatal diseases
in animal and human environments, due to the harmful biochemical substances released
by the molds that are able to readily colonize agricultural crops [1,3]. Fungal growths can
occur at any time, e.g., on farms, during or after harvest, in storage facilities, and in foods
that are usually stored in warm, humid, or damp environmental conditions [2,4]. Fusarium
toxins include various mycotoxins, such as trichothecenes, which are mostly connected
with fatal and chronic harmful effects in humans and animals, zearalenone, which has
not been associated with any fatality in humans or animals, and fumonisins, which affect
CNS of horses and might induce cancer in rodents. Other Fusarium mycotoxins include
beauvercin, equisetin, butenolide, and enniatins [37].

Moreover, many if not all mycotoxins have a reasonable level of chemical stability,
which enables them to survive the rigors of food processing. Generally, it is widely accepted
that there are hundreds of different mycotoxins in nature. However, the most commonly
known mycotoxins that are specifically of concern to humans and livestock include afla-
toxin, citrinin, ochratoxin, patulin, trichothecenes, zearalenone, nivalenol/deoxynivalenol,
fumonisins, and ergot alkaloids such as ergotamine [2,25,38]. In general, a single mold
species can make several mycotoxins, and many species of mold might release the same
mycotoxins. Mycotoxin types, described along with the foods in which they are mostly
found and their respective toxicities, are articulated in Table 2. Indeed, the toxicities of
these mycotoxins raise various health concerns, with carcinogenic, mutagenic, hepatotoxic,
nephrotoxic, genotoxic, and/or biotoxicological elements. Indeed, the mycotoxins covered
here include aflatoxins (aflatoxins B1, B2, G1, G2, M1, M2) [2,39], ochratoxin A [40,41],
deoxynivalenol (DON) [42], fumonisins (fumonisins B1, B2, B3, B4) [43–46], zearalenone
(ZEA), also known as F-2 mycotoxin [3,47], patulin, citrinin [38,42], ergot alkaloids [25],
and T-2, which is a trichothecene mycotoxin [48–50]. Other mycotoxins captured in Table 2
include diacetoxyscirpenol (DAS) or 4,15-diacetoxyscirpenol (DAS), also referred to as
anguidine [51–53], fusarenon X (FusX) [54–56], and nivalenol (NIV) [57,58]. In subsequent
sections, we discuss these mycotoxins in greater detail with respect to their mechanisms of
action, as well as the ailments they cause.
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Table 2. Mycotoxin types, along with the foods in which they are mostly found and their respective
toxicities.

Mycotoxin Description Foods Mostly Found Toxicities References

Aflatoxins
(aflatoxins B1, B2,
G1, G2, M1, M2)

They are produced by
several species of

Aspergillus, especially
Aspergillus parasiticus
and Aspergillus flavus,
in many commodities

Cereals (wheat,
sorghum, rice, acha,
millet, guinea corn,
corn, etc.), tree nuts
(almond, pistachio,

coconut, walnut, etc.),
oilseeds (peanut,

sunflower, cotton seeds,
soybean, and sesame),

spices (garlic, black
pepper, coriander,

turmeric, ginger, and
chili peppers), etc.

Most aflatoxins are genotoxic,
hepatotoxic, mutagenic, etc. and can
retard growth in children. AFB1 is

most toxic of all and also a very
carcinogenic toxin which has been

linked directly to many health
problems, including liver cancer, in

several animals. The understanding of
induction of mutations, DNA damage,
and metabolism in individuals with

dietary exposure to aflatoxins
contributes to the general evaluation
of their adverse effects on human and
animal health. A cross-sectional study
conducted on children within the age

of 1 to 5 years reported a striking
inverse relationship between growth

and the level of aflatoxin–albumin
adduct.

[2,39]

Ochratoxin A

Ochratoxin A (OTA) is
a toxic mycotoxin

produced by A. niger, A.
ochraceus, Penicillium

verrucosum, and A.
carbonarius

Cereals (especially
wheat and barley) and
their products, dry vine

fruits, spices, licorice,
coffee beans, wine,

grape juice, roots, meat,
(particularly pork, from
animals that consumed

infected grains), etc.

OTA is a nephrotoxin and a
carcinogen, and it has been directly

linked to tumors in the human urinary
tract, although the IARC still

considers it a possible carcinogen to
humans. It is also implicated in

various health conditions.

[40,41]

Deoxynivalenol
(DON)

DON is a trichothecene
mycotoxin produced by
fungal species such as
Fusarium graminearum

in cereals

Grains (such as wheat
and beans), spices, etc.

DON has been shown to cause acute
toxicities in humans, with the main
symptom being severe GI toxicity.

Consumption of DON-contaminated
cereals was linked to several incidents
of poisoning in China and at least one

outbreak in India.

[42]

Fumonisins
(fumonisins B1,

B2, B3, B4)

They are mycotoxins
produced by Fusarium
species, including the

section Liseola;
structurally, they are
strongly similar to
sphinganine, the

sphingolipid backbone
precursor; over 15

fumonisins have been
described to date

Grains (such as maize,
wheat, and beans),

spices, etc.

Both fumonisin and F. verticillioides
contamination in maize positively

correlates with cancer of the
esophagus in rats, as indicated by

studies. Exposure to fumonisins can
result in neural tube defects, most

likely via disrupting the biosynthesis
of sphingolipids and subsequent

sphingolipid depletion, which are
important for the functions of lipid
rafts, particularly folate processing

through folate transporters with high
affinity.

[43–46]
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Table 2. Cont.

Mycotoxin Description Foods Mostly Found Toxicities References

Zearalenone
(ZEA), also

known as F-2
mycotoxin

It is a nonsteroidal
estrogenic metabolite

produced by some
Fusarium and Gibberella

species, such as
Fusarium graminearum;

zearalenone is
distributed globally

Grains (especially
maize, rice, millet,
sorghum, rye, oats,
barley, wheat, etc.),

spices, etc.

Zearalenone can cause an increase in
the incidence of pituitary tumors and

liver cell in mice, in line with the
hormonal mode of carcinogenic
actions. Elevated serum levels of

α-zearalenol and ZEA are associated
with early puberty. ZEA’s ability to
induce hyperkeratotic papilloma in

the rat esophageal squamous
epithelium forestomach suggests its

involvement in tumor development in
the gastrointestinal tract. ZEA has

been shown to be genotoxic and also
has the ability to cause hepatocellular

adenomas in mice.

[3,47]

Patulin

It is produced by P.
expansum, Penicillium,

Paecilomyces, and
Aspergillus species

Many fruits, vegetables,
and grains, especially
apple, rotting maize,

peanuts, fig, acha, etc.

The acute symptoms of patulin
include liver, kidney toxicity, spleen
damage and toxicity, and immune

toxicity. In humans, gastrointestinal
(GI) disturbances, vomiting, and

nausea are usually reported. Patulin is
genotoxic, but its potential for

carcinogenicity is yet to be reported.

[38,42]

Citrinin

It is a mycotoxin first
reported in the mold

Penicillium citrinum; it
has been reported in

more than 12
Penicillium species and
numerous Aspergillus

species

Agricultural crops,
such as barley, oats, rye,
rice, corn, and wheat,
as well foods colored
using the Monascus

pigment

Citrinin is associated with the
yellowed rice disease reported in

Japan and also acts as nephrotoxin in
animal species.

[42]

Ergot alkaloids

The ergot alkaloids are
chemical substances

released as toxic
mixtures of alkaloids in
the sclerotia of Claviceps
species that are known
pathogenic microbes of
many species of grass

Agricultural crops,
such as barley, oats, rye,

rice, corn, and wheat

Ergot sclerotia ingestion from infected
cereals, commonly in the form of

bread made from contaminated flour,
results in ergotism, a human disease

known as St. Anthony’s fire.

[25]

T-2 T-2 is a trichothecene
mycotoxin

Grains (such as maize,
rice, millet, sorghum,
rye, oats, barley, and
wheat), spices, etc.

T-2 has lymphocytic, carcinogenic,
cytotoxic, and immunosuppressive

actions against mammalian cells. T-2
toxin induced apoptosis and

developmental toxicity in zebrafish
embryos.

[48–50]

Diacetoxyscirpenol
(DAS) or 4,15-

diacetoxyscirpenol
(DAS), also

referred to as
anguidine

It is a trichothecene
mycotoxin secondary

metabolite produced by
the Fusarium genus

Grains (such as wheat,
maize, rice, millet,

sorghum, soybean, rye,
oats, and barley),
potato, coffee, etc.

DAS inhibits the production of Ig in
the human lymphocytes stimulated by

mitogen and can cause esophageal
hyperplasia. The major adverse effects

following repeated and acute
exposure were hematotoxicity and

emesis, respectively.

[51–53]
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Table 2. Cont.

Mycotoxin Description Foods Mostly Found Toxicities References

Fusarenon X
(FusX)

FusX is one of the
trichothecenes capable
of causing cytotoxicity,

carcinogenicity, and
immunosuppressive
response in animal

models and possibly in
humans

Oats, cassava, rye,
bananas, wheat, maize,
rice, millet, sorghum,

soybean, mangoes, etc.

In vitro and in vivo, FusX initiates
apoptosis in mouse thymocytes,

which may be hypothetically
applicable to humans. It is very
cytotoxic to many cells, and it is

believed to have chromosomal effects
and to be teratogenic. Fusarenon X
has been shown to be carcinogenic,

especially to animals.

[54–56]

Nivalenol (NIV)

NIV is a trichothecene
mycotoxin, which, in

nature, is mostly
produced by species of

Fusarium

Cereals and their
products, legumes, etc.

Nivalenol, T-2 toxin, and DON were
used as bioweapons in some places

such as Laos, Cambodia, and
Afghanistan, and they were all

detected in the vegetation at affected
sites, while T-2 toxin was also detected

in the blood and urine samples of
victims. NIV can increase the rate of

induced cancer and mutation, and it is
potentially genotoxic. It causes

damage in the DNA of colon, jejunum,
stomach, bone marrow, and kidney.

[57,58]

3.1. Aflatoxins

Aflatoxins are produced by several species of Aspergillus, especially Aspergillus para-
siticus and Aspergillus flavus, in many commodities [59]. Aflatoxin generally involves four
types: aflatoxins B1, B2, G1, and G2 (AFB1, AFB2, AFG1, and AFG2, respectively). Together,
all aflatoxins are generally referred to as total aflatoxin. They are mostly connected with
the agricultural commodities farmed in tropical and subtropical regions, e.g., peanuts
(groundnuts), spices, cotton, maize, and pistachios [59,60]. Maize and groundnuts are the
most affected commodities in tropical regions such as sub-Saharan Africa, although many
agricultural commodities can be affected. Aflatoxins are well-known toxic mycotoxins
released by some molds that grow in hay, grains, decaying vegetation, and soil. Crops
frequently affected by such molds include cereals (e.g., wheat, sorghum, rice, acha, millet,
guinea corn, and corn), tree nuts (e.g., almond, pistachio, coconut, and walnut), oilseeds
(e.g., peanut, sunflower, cotton seeds, soybean, and sesame), and spices (e.g., garlic, black
pepper, coriander, turmeric, ginger, and chili peppers). Aflatoxin B1 (AFB1) is the most
toxic and a strong carcinogenic toxin directly linked to many health problems, including
liver cancer, in several animals [2,28,59]. Such mycotoxins can also be seen in animal
milk and dairy products, especially animals fed with infected feeds, such as aflatoxin M1
(AFM1) [2]. AFM1 is a product of AFB1 detoxication and is commonly found in milk
and dairy products. The main sources of aflatoxins in feeds are peanut, meal, maize, and
cottonseed meal. The World Health Organization stated that large doses of aflatoxins
can result in acute poisoning, known as aflatoxicosis, which can be life-threatening, often
through liver damage; aflatoxins have also been reported to be genotoxic, which means
that they can harm DNA and cause cancer in animals. There is sufficient evidence to show
that aflatoxins cause hepatic (liver) cancer in animals and humans.

3.1.1. Mechanisms of Action of Aflatoxins

With a focus on the carcinogenicity and mutagenicity of aflatoxins, several studies
have been carried out on aflatoxin B1, which, because of the double bond at position 8, 9, is
usually metabolized to AFB1-8,9-epoxide (its reactive form), and this can bind to cellular
macromolecules such as deoxyribonucleic acid (DNA) [61–63]. AFB-N7-guanine, a pro-
mutagenic lesion, is the main DNA adduct, and it commonly leads to G→T transversions.
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AFB-N7-guanine is detected in urine, where it serves as a biomarker for exposure in
epidemiological research. In general, AFG2 and AFB2 are less biologically active because
they do not have the 8,9 double bond. Aflatoxin G1 can be biologically activated to 8,9-
epoxide; however, it is less mutagenic compared to aflatoxin B1, showing the respective
epoxides’ stearic chemistry; AFB1-8,9-epoxide readily intercalates into the double helix
of DNA compared to aflatoxin G1, leading to the formation of higher DNA adduct levels
for any specific dose [28,60,64]. Aflatoxin M1, unlike AFM2, has the 8,9 double bond;
consequently, AFM1 can be biologically activated to 8,9-epoxide, which is reactive.

Figure 1 shows how aflatoxin exposure through the diet moves in the liver, producing
different toxicities. The main cytochrome P450 (CYP450) enzymes in human involved in the
metabolism of aflatoxins are CYP3A5, CYP1A2, and CYP3A4, and the liver is the major site
of bioactivation, although the expression of CYP3A4 in the intestine of humans suggests
that metabolism can also take place in the intestine [65–67]. The contribution of these
enzymes to the metabolism of AFB1 in affected individuals depends on the expression level
and affinity of the various enzymes; CYP3A4 may be most significant in exo-8,9-epoxide
generation, and the relative contribution of CYP3A5, which also generates the exo-8,9-
epoxide, differs individually [66]. The expression of CYP3A5 shows polymorphism and
differs according to ethnicity. Such polymorphism could have an effect on the sensitivity to
the toxic effects of aflatoxins [68]. CYP1A2 mostly results in the formation of hydroxylated
metabolites of aflatoxin M1 and aflatoxin B1-endo-8,9-epoxide, which produce no DNA
adduct. As aflatoxin crosses the placenta, interestingly, CYP3A7, a main CYP in the fetal
liver of humans, can activate aflatoxin B1 to 8,9-epoxide [61]. Aflatoxin adducts were found
in cord blood, showing that aflatoxin levels in the environment are biologically activated in
utero to the reactive metabolites [69].
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An important observation in the carcinogenicity of aflatoxins is the relationship be-
tween exposures and precise TP53 tumor suppressor gene mutation in hepatocellular
carcinoma (HCC) (liver cancer). In tumors from hepatocellular carcinoma patients in
regions where aflatoxin is endemic, who were also affected by chronic hepatitis B virus
(HBV), high incidence of a specific missense mutation, i.e., an Arg → Ser (AGG → AGT)
point mutation at codon 249, has been reported in the gene [70,71]. This kind of mutation is
very uncommon in hepatocellular carcinoma associated with hepatitis B virus in regions
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with a rare occurrence of aflatoxins, although it is not yet clear whether infection with HBV
influences the occurrence of the HCC mutation in aflatoxin endemic regions.

3.1.2. Further Information about Ailments Caused by Aflatoxins

Detoxifying the aflatoxin endo-epoxide and exo-epoxide mainly occurs via conjugation
mediated by glutathione S-transferase to reduced glutathione [3,72–74]. Furthermore, the
endo-epoxide and exo-epoxide can be nonenzymatically hydrolyzed rapidly to aflatoxin
B1-8,9-dihydrodiol, which then forms dialdehyde phenolate ions with an open ring. Di-
hydrodiol can react with the lysine’s ε-amino group in serum albumin, forming adducts
of aflatoxin–albumin, which are commonly used as biomarkers to identify exposure [72].
In an additional metabolic stage, aflatoxin aldehyde reductase has been found to catalyze
NADPH-dependent dialdehyde phenolate ion reduction to dialcohol (diol) [75]. The un-
derstanding of the induction of mutations, DNA damage, and metabolism in individuals
with dietary exposure to aflatoxins contributes to the general evaluation of their adverse
effects on human and animal health [72,73].

There were accounts of aflatoxin poisoning in human reported decades ago, although
the earlier studies appeared inconclusive regarding the causative factors [67,76]. The
affected patients presented jaundice after vomiting, anorexia, and fever, which worsened
into edema and ascites in the lower extremities. There is evidence of aflatoxin poisoning
resulting in patients presenting with low-grade fever, general malaise, anorexia, and
abdominal discomfort, as well as tachycardia. In 2004, aflatoxicosis was reported in Kenya,
a country in east Africa [34,77]. These outbreaks led to hundreds of deaths associated with
the consumption of aflatoxin-contaminated maize. An aflatoxicosis case–control study,
described as acute jaundice with no known origin, reported that levels of aflatoxins in foods
from exposed households were far above the levels from foods obtained from unexposed
households [77,78]. There were similar variations between controls and cases when blood
levels of aflatoxin biomarkers were studied [77,78]. The association of aflatoxicosis and
acute hepatitis with aflatoxin-contaminated maize has been sufficiently supported with
evidence. Aflatoxicosis is mainly reported in regions that have maize as one of their staple
foods. The aflatoxin intake levels associated with aflatoxicosis, as well as their causes of
human death, have been studied [72]. Total aflatoxin levels causing fatality risks usually
exceed 20 µg/kg (i.e., above 1 mg/day) bw per day in a normal adult. Other factors such
as co-contamination with other toxins and an impaired immune system may influence the
fatality rate. Aflatoxicosis with no fatality is also a possibility with 5–10-fold lower dosages.
Additional estimations suggest that the AFB1 total intake linked to a 50% death rate in
exposed individuals, i.e., the LD50 (median lethal dose), ranges from 0.54 to 1.62 mg/kg
body weight, which is similar to the value of median lethal dose reported for baboons,
pigs, dogs, cats, and rabbits [72]. The maximum residue level of AFM1 in milk is set to
50 ng/kg and 500 ng/kg of raw milk by the EU and the US, respectively. Consequently, the
day-to-day exposure to staple foods, through the consumption of hundreds of grams a day
and contaminated with at least 5000 µg/kg aflatoxins, could result in death in both humans
and animals. Daily consumption of foods contaminated with at least 1000 µg/kg every day
could result in aflatoxicosis. The levels of contamination found in maize, which are linked
to aflatoxicosis or death, are 10–100 times the contamination levels regularly reported in
several communities in sub-Saharan Africa. As maize being heavily contaminated with
aflatoxins results in aflatoxicosis and even death, outbreaks of aflatoxins keep occurring.
Therefore, there is a need to intensify efforts toward sensitizing people on how to avoid such
outbreaks and limit the chances of exposure to aflatoxins, along with other mycotoxins.

The IARC classification of mycotoxins based on their carcinogenicity to humans is
shown in Table 3. As the International Agency for Research on Cancer (IARC) classifies
natural aflatoxin mixtures as being carcinogenic to humans (Group 1) [71], it is noteworthy
to reiterate that aflatoxicosis can show combined effects with other infections such as HBV.
A large case–control study reported that the combined effect of HBV infection and AFB1
exposure was more consistent with an additive model than a multiplicative one [79,80].
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After an examination of plasma of cirrhosis patients, HCC patients, and controls for codon
249 AGG → AGT (the TP53 gene mutation), it was shown that the higher risk linked
to both HBV infection and 249 mutation was consistent with the multiplicative effect of
chronic HBV infection and aflatoxin exposure [81]. The risk of HCC from aflatoxin exposure
without chronic HBV infection has been difficult to assess in regions with widespread HBV
infection. Omer et al. [82] stated that there is a 1.7–3.4-fold increased risk in those exposed
to aflatoxins with no chronic HBV infection. Overall, the epidemiological evidence has
shown a specific increased HCC risk from exposure to aflatoxins in people with chronic
HBV infection, as well as considerable evidence of increased risk in people with aflatoxin
exposure without chronic infection by HBV. Information is available on the relationship
between aflatoxin exposure and liver cirrhosis. One case–control study carried out in
the Gambia, a country in west Africa, concluded that increasing the lifetime intake of
groundnut (considered one of the major grains affected by aflatoxin) was connected with
a significantly increased risk of liver cirrhosis [83]. Although most countries allow low
aflatoxin levels in peanuts and corns, some researchers have argued that these low levels
can still result in damage to the liver in individuals affected by HBV who mostly depend
on diets rich in grains, corn, and nuts. The presence of a codon 249 mutation, connected
with aflatoxin, has also been associated with a comparable degree of increased risk of liver
cirrhosis. Nevertheless, more studies, including controlled clinical studies, are required
before drawing conclusions about liver cirrhosis and aflatoxins.

Table 3. IARC classification of mycotoxins based on their carcinogenicity to humans.

IARC Classification Mycotoxin (IARC, 2012) IARC Monograph
Reference Year

Group 1: classified as carcinogenic
to human Aflatoxins B1, B2, G1, G2, M1 [84–86]

Group 2A: classified as probably
carcinogenic to human

Not seen as at the time this
study was conducted

Group 2B: classified as possibly
carcinogenic to human

Ochratoxin A, fumonisin B1,
fumonisin B2, fusarin C,

sterigmatocystin
[71,87–90]

Group 3: not classifiable as
carcinogenic to human

Deoxynivalenol, patulin,
citrinin, zearalenone,

fusarenone X
[89,91]

Group 4: probably not carcinogenic
to human

Not seen as at the time this
study was conducted

The immunomodulatory effects of aflatoxins have been studied experimentally in ani-
mals and cell models, as well as in observational studies involving farm animals [2,92,93].
Only few studies focused on the relationship between immune factors and aflatoxin ex-
posure in humans, such as that conducted in Gambia [94]. Nonetheless, children highly
exposed to aflatoxin would likely become susceptible to malaria parasitemia, although
no significant correlations were revealed with malaria infection, lymphoproliferative re-
sponses, or antibody titer to Plasmodium falciparum asexual stages. Two studies conducted
in Ghana compared the levels of aflatoxin biomarkers and peripheral blood cell subsets
involving adults [95,96]. Higher levels of aflatoxin biomarkers were associated with lower
levels of B lymphocyte antigens (CD19+ and CD3+) expressing the activation marker CD69+,
as well as lower levels of CD8+ T cells expressing granzyme A and perforin [95]. The second
study reported that higher levels of aflatoxin biomarkers were associated with lower levels
of CD19+ cells expressing CD69+ and lower levels of CD8+ cells expressing perforin [96].
Additionally, HIV patients with high levels of aflatoxin biomarkers had significantly lower
levels of CD4+ T regulatory cells and naïve CD4+ T cells in comparison to HIV patients
with lower levels of aflatoxin biomarkers [96].
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3.1.3. Aflatoxin and Child Growth Impairment

Children face chronic exposure to high aflatoxin levels in regions with endemic food
contamination. Exposure starts in utero, continuing throughout the early stages of life,
although breastfeeding offers certain respite from high intakes per day. Studies carried
out on many animals showed that exposure to aflatoxin has severe effects on development
and growth [39]. Early studies examined the association between kwashiorkor and ex-
posure to aflatoxin [76,97]. An early study linked the detection to aflatoxin in the blood
of mothers with significantly lower birth weights of female babies [98]. Another study
indicated a significant higher wasting prevalence in children that consumed cereals with
high levels of aflatoxins, in comparison with children fed cereals with lower levels of
aflatoxins [99]. Several studies have been conducted in children in west Africa with early
exposure to aflatoxins. A cross-sectional study conducted on children within the age of
1 to 5 years in Togo and Benin reported a striking inverse relationship between growth
and the level of aflatoxin–albumin adduct [39,100]. A longitudinal study conducted within
8 months reported strong negative correlations between an increase in height and the level
of aflatoxin–albumin adduct [100].

The highest aflatoxin–albumin adduct quartile was linked to an average 1.7 cm de-
crease in height in comparison with the lowest quartile. In Gambia, a correlation was
reported between aflatoxin exposure in utero and growth impairment in children within
the first 12 months of life [69]. On the basis of these findings, the consumption of aflatoxin-
contaminated foods by pregnant mothers may have significant effects on the growth and
development of children after delivery. For children in regions grossly affected by aflatoxin
contamination of food products, such as children in west and east Africa, growth impair-
ment could occur during the introduction of solid foods, when there is a high likelihood
of aflatoxin exposure. The dose–response associations between growth effects and levels
of aflatoxin biomarkers are consistent with the causal effects. The action mechanisms
through which aflatoxins might affect growth have not been fully established; however,
compromised integrity of the intestine, via alteration in barrier function due to immune
suppression or endothelial cell toxicity, is among the valid hypotheses that have to be
properly studied [72]. In regions where aflatoxin contamination is prevalent, such as south
Asia and sub-Saharan Africa, at least 7.1 million children below 5 years died in 2008 alone.
Approximately 50% of these deaths (3.55 million) were associated with poor growth and
undernutrition [101].

3.2. Ochratoxin A

Ochratoxins are mycotoxins with three forms of metabolites: ochratoxin A (OTA),
ochratoxin B (OTB), and ochratoxin C (OTC). Ochratoxin A (OTA) is a toxic mycotoxin
produced by A. niger, A. ochraceus, Penicillium verrucosum, and A. carbonarius. All ochratoxins
are released by Aspergillus and Penicillium species. OTB is the non-chlorinated form of
OTA, while OTC is the ethyl ester of OTA [40]. A. ochraceus is seen as a pollutant of
several commodities including cereals, seeds, coffee, nuts, fruits, and dry meat, as well
as beverages such as wine and beer. A. carbonarius is the major Aspergillus seen in vine
fruit; it generates toxic substances during the process of juice production [41]. Ochratoxin
A (OTA) is made by many Aspergillus and Penicillium species. OTA is among well-known
food-borne mycotoxins. The infestation of agricultural commodities, including cereals and
their products, dry vine fruits, spices, licorice, coffee beans, grape juice, roots, and wine,
occurs globally. OTA is often formed during the crop storage in facilities and is generally
known to cause some harmful effects in animals. Human exposure to OTA mostly occurs
in regions that mainly eat foods produced from wheat and barley infested with causative
fungi such as P. verrucosum and A. ochraceus. Minor sources include meat, particularly
pork, obtained from animals that consumed infected grains. Bayman and Baker [40] and
Mateo et al. [41] reported that OTA is a nephrotoxin and a carcinogen, directly linked to
tumors in the human urinary tract, although there is limited research in humans due to
confounding factors. The Joint FAO/WHO Expert Committee on Food Additives (JECFA)
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recommended a provisional tolerable weekly intake (PTWI) of ochratoxin A of 100 ng/kg
body weight per week [2,102]. The risk assessment showed that OTA’s acute toxicity
was reported in animals at lesser OTA levels than seen with long-term effects, including
carcinogenicity; therefore, this provisional tolerable weekly intake is related to acute toxicity.
Rare exposure to OTA, whereby contaminated foods are consumed once per week/month,
can lead to persistent OTA blood levels [103]. Samples of blood from healthy individuals in
Europe indicated OTA levels of 0.1 to 40 ng per mL [102]. While ochratoxin α is the main
constituent identified in urine, the parent molecule remains the main compound detected
in blood [103]. The most notable and sensitive effect of OTA is kidney damage (OTA is
a nephrotoxin), but this mycotoxin can also have harmful effects on the immune system
and fetus development [2]. Despite the clear evidence of kidney cancer and toxicity due to
exposure to OTA in animals, the relationship in humans is not clear, although impacts on
the kidney have been reported. In vivo, extensive differences in species exist in terms of the
OTA serum half-life. OTA elimination in humans goes through two phases, fast excretion
and slow clearance, with an estimated plasma half-life of 35 days.

3.2.1. Mechanisms of Action of Ochratoxin A

Exposure to OTA is known to lead to acute toxicity in the kidneys of mammals.
OTA exposure has been associated with the “Balkan endemic nephropathy”, a disease
of the kidney with a high rate of mortality in those residing close to the Danube River
tributaries in eastern Europe [104,105], although not all researchers agree on this. Allele
carriers associated with phenylketonuria might have faced protection from miscarriage
resulting from exposure to ochratoxin, suggesting a heterozygous benefit in spite of the
likelihood of severe intellectual disability in uncommon cases of hereditary exposure from
parents [104–106]. In mammals, ochratoxin A is absorbed in the GI tract and binds strongly
to plasma proteins in the blood, mostly albumin, before being distributed to kidneys, with
lower levels in the muscle, fat, and liver. Ochratoxin A is metabolized by various CYP
enzymes, depending on tissue and species. In the human cells expressing CYP enzymes,
4(R)-hydroxy-OTA is the major metabolite and is formed by CYPs 2A6, 2D6, 2C9, 2B6,
and 1A2, while of the 4(S)-hydroxy-OTA derivative is only formed by CYPs 2B6 and
2D6 [105]. Detected metabolites of OTA also include ochratoxin α and 10-hydroxy-OTA,
formed by OTA peptide bond hydrolysis, resulting in no phenylalanine moiety and, thus,
no toxicity. Moreover, OTA can be metabolized by lipoxygenase, epoxygenase, and cyclo-
oxygenase, predominantly in extrahepatic organs including the kidney, yielding reactive
oxygen species (ROS), which might cause oxidative damage.

Phenylalanine-tRNA ligase is competitively inhibited by ochratoxin A, causing protein
synthesis inhibition and inhibition of the synthesis of DNA and RNA [105]. Phenylalanine
coadministration can inhibit OTA acute toxicity in animals. DNA adduct formation by
ochratoxin A and its possible role in the induction of cancer have been studied, with hy-
potheses suggesting the OTA-induced formation of direct adducts after metabolic activation
through the phenoxy radical of OTA and indirect damage to DNA caused by the formation
of oxygen radicals [105–107]. The concentrations of OTA-specific transporters in tissues
were proposed to explain the relative sensitivities of species, target organs, and sex to the
toxicity of ochratoxin A [108]. Another selective sensitivity contributor is the albumin
binding degree that distinctly reduces OTA uptake by the transporter [109]. Mechanisms
accounting for OTA carcinogenicity and toxicity without invoking OTA DNA adduct
production have also been proposed, and they characteristically involve altering the expres-
sion of the genes that regulate cell death rates and cell proliferation rates [106]. Potential
biomarkers of effects in the targeted tissues allow developing exclusive profiles of gene
expression specific to altering OTA-induced gene expression. Genes include those involved
in cell death, cell proliferation, cellular defense, and oxidative stress [104,110–112].
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3.2.2. Toxicities of Ochratoxin A

Evidence for ochratoxin A carcinogenicity mostly comes from experimental animal
studies. Ochratoxin A is carcinogenic to mice and rats according to laboratory studies,
leading to kidney carcinomas in rats and mice, and HCC in mice [40,41]. The action
mechanism for OTA carcinogenicity is yet to be fully established. Descriptive studies
have suggested an increased risk of cancer in people who consume ochratoxin A. The
International Agency for Research on Cancer concluded that sufficient evidence exists to
classify OTA as carcinogenic to laboratory animals but there is insufficient evidence to
conclude that OTA increases the risk of cancer in humans. Therefore, the IARC classifies
OTA as Group 2B, meaning that it is possibly carcinogenic to humans [2,89].

Short-term studies of OTA toxicity in pigs, dogs, rats, and mice evaluated the dose
and timely development of progressive nephropathy. There were significant differences in
species, sex, and administration route. Other toxicities of OTA include kidney lesions in
chicken, myelotoxicities in mice, lesions of lymphoid tissues and the GI tract in hamsters,
and hepatic and cardiac lesions in rats. Pigs are believed to be most sensitive to the
nephrotoxic effects of OTA; the lowest observed level of effect (8 µg/kg body weight) was
the basis used to establish the provisional tolerable weekly intake. Occupational studies
conducted in European countries showed elevated levels of OTA in blood plasma samples
in workers predisposed to grain dust exposure [105]. A grain farmer confined in a space
contaminated with A. ochraceus suffered acute renal disease following temporary distress
of the respiratory system [113].

3.3. Deoxynivalenol (DON)

DON is a trichothecene mycotoxin produced by fungal species such as Fusarium
graminearum in cereals, such as wheat. Fusarium fungi are commonly seen in soil, where
they release various toxins. Examples include trichothecenes such as nivalenol (NIV), T-2
and HT-2 toxins, deoxynivalenol (DON), fumonisins, and zearalenone (ZEA). Fusarium
fungi and their toxins are seen in a range of cereals. Trichothecenes can have acute toxicity
in humans, resulting in rapid irritation of the skin or intestinal mucosa, leading to diar-
rhea [2]. The chronic effects in animals include immune system suppression. The JECFA
recommends 1 µg/kg bw/day PMTDI for DON on a no-observed-adverse-effect level
(NOAEL) basis for a reduction in body weight with a 100-fold safety factor and 2 year bioas-
say in mice [114]. In mice, the NOAEL is 100 µg/kg body weight per day. DON exposure
via inhalation is among the leading observation in many occupational evaluations relating
to health hazards. In wheat, Fusarium head blight caused by F. culmorum or F. graminearum
infection starts from the grain head exterior and passes into the interior. Accordingly, DON
is mostly identified in the chaff and the kernel outer layers [115,116]. Grain dusts could
have high DON concentrations and other mycotoxins in unsafe levels, which may not be
the same in kernels.

3.3.1. Mechanisms of Action of Deoxynivalenol

DON has direct toxicity through its epoxide moiety and consequently requires no
metabolic activation for exerting its biological effect. Low-level exposure to trichothecene
in animals modulates the expression of several chemokines and cytokines, which are key
immune function regulators [116,117]. DON exposure results in upregulating mRNAs
responsible for producing chemokines, cytokines, and other proteins associated with the
immune system, which can also cause gene transcription. Additionally, deoxynivalenol
modulates several mitogen-activated protein kinase (MAPK)-controlled physiological pro-
cesses, including processes controlling cell apoptosis, cell differentiation, and cell growth,
all of which are crucial for the immune response’s signal transduction [18,117]. Hence,
along with the altered expression of cytokines, MAPK expression alterations can possibly
contribute to dysregulation of the immune system and DON toxicity, as well as that of
other trichothecenes. Activating processes resulting in a ribotoxic stress response are also
connected to the DON activation of MAPK, and they are initiated by other inhibitors of
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translation, which, like deoxynivalenol, damage or bind to a specific region at the 28S rRNA
3′ end. Ribosomes play important roles in the ribotoxic stress response through functioning
as a scaffold for the interaction between several MAPKs [18,116].

The studies of DON toxicities revealed many approaches for the possible development
of valuable biomarkers to identify its properties. For instance, exposure to DON in mice
led to the upregulation of several cytokine signaling suppressors. These suppressors
impair the signaling of growth s [118]. DON-induced growth hormone axis impairment
precedes the retardation of growth in mice [119]. Oral administration of DON disturbs the
growth hormone axis through the suppression of two growth-associated proteins, IGF1
and IGFALS. Therefore, the decreased expression of IGF1 and IGFALS, along with elevated
levels of DON in urine, may serve as a potential biomarker for DON. This is illustrated in
Figure 2, demonstrating how the mechanism of DON metabolism unfolds.
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3.3.2. Toxicities of Deoxynivalenol

A few studies have reported DON carcinogenicity in experimental animals and hu-
mans. A bioassay was conducted in both sexes of B6C3F1 mice for 2 years, where they
were fed deoxynivalenol in their diet at concentrations of 10, 5, 1, or 0 mg/kg; no in-
crease in the incidence of neoplastic or pre-neoplastic lesions was reported in any tissue,
including the liver [116]. DON is not known to be carcinogenic to humans. However, in
humans, esophageal cancer was anecdotally associated with the consumption of grains
contaminated with DON-producing Fusarium species [89]. The IARC resolved that there is
insufficient evidence in experimental animals and humans to determine DON carcinogenic-
ity. Therefore, the IARC categorizes DON as Group 3, meaning that it is not classifiable as
carcinogenic to humans [89]. DON has demonstrated many toxicities in animals, such as
immunotoxicity, teratogenicity, cardiotoxicity, gastroenteritis, reduced weight gain, and
feed refusal [119–121]. DON has been shown to cause acute toxicities in humans, with the
main symptom being severe GI toxicity. Consumption of DON-contaminated cereals was
linked to several incidents of poisoning in China and at least one outbreak in India [120].
In the outbreaks, symptoms observed included fever, dizziness, headache, diarrhea, ab-
dominal pain, vomiting, nausea, and rapid onset. DON poisoning in China was associated
with DON-contaminated wheat (0.3 to 100 mg/kg DON levels) [120].
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3.4. Fumonisins

Fumonisins are mycotoxins produced by Fusarium species, including the section
Liseola. Structurally, they are strongly similar to sphinganine, the sphingolipid backbone
precursor. Fumonisins B1, B2, B3, and B4 (FB1, FB2, FB3, and FB4, respectively) are the
most common fumonisins. Over 15 fumonisins have been described to date with other
minor metabolic compounds reported, although it has not been shown whether many
occur naturally [43]. In 2015, an exceptional class of non-aminated fumonisins was reported
on Aspergillus welwitschiae-infected grapes, although their toxicology is yet to be fully
established [46]. Fumonisins are mostly found in maize and less frequently in other cereals.
The JECFA established a provisional maximum tolerable daily intake (PMTDI) of 2 µg/kg
body weight per day for fumonisins B1, B2, and B3 alone or combined [2,92,102]. This
JECFA PMTDI is based on the NOAEL for nephrotoxicity of 0.2 mg/kg body weight per day
in rodents, divided by a 100-fold safety factor; it is not based on tumorigenicity data [92].

3.4.1. Mechanisms of Action of Fumonisins

Figure 3 shows the action mechanisms involving the breakdown of fumonisins. In
particular, fumonisins exhibit their actions via various mechanisms, most of which are fully
established, whereas others are either still under establishment or yet to be explored. The
genotoxicity of FB1 is not fully understood, although in vitro studies showed that fumon-
isin B1 induced chromosomal aberrations and micronuclei [71,122,123]. The damage to the
DNA may be due to the stimulation of lipid peroxidation and oxidative damage, which is
consistent with the increase in malondialdehyde adducts and DNA oxidative damage of
kidney and liver in rats and with lipid peroxidation in vivo after treatment of FB1 [124,125].
Liver carcinogenesis induced by fumonisin proceeds via the stages of initiation and pro-
motion similarly to genotoxins, and it is time- and dose-dependent [126]. Fumonisin B1
disrupts the de novo synthesis of sphingolipids by inhibiting ceramide synthase, leading
to several effects on cell functions and signaling pathways which depend on ceramide,
complex sphingolipids, sphingoid base 1-phosphates, and sphingoid bases [127], including
effects on mitosis and apoptosis, thereby possibly aiding carcinogenesis via altering the bal-
ance of cell replication and death [123]. The disruption of sphingolipid metabolism results
in changes in the ratio of sphinganine to sphingosine, with an increase in the concentration
of sphinganine in tissue, closely correlating with the in vivo carcinogenicity and toxicity
of fumonisins [128]. Disrupted synthesis of fatty acids, phospholipids, and cholesterols,
and their interaction with ceramide are thought to play an important role in the altered
differential growth patterns of hepatocytes during the promotion of liver cancer [129]. In
experimental animals, the role of hepatocytes in immunomodulation was thought to be via
changes in the levels of cytokine, in vivo and in vitro, as well as via effects on responses to
antibody vaccines in pigs infected with fumonisin B1 [123,125,128,130].

3.4.2. Toxicities of Fumonisins

Studies have shown that contamination with both fumonisins and F. verticillioides in
maize positively correlates with cancer of the esophagus in rats [35,45,71,131]. A study
reported that the urinary ratio of sphinganine to sphingosine increased significantly in
males that consumed more than 110 µg FB1/kg body weight per day [132,133]. Nev-
ertheless, subsequent studies reported no relationship between ratios of sphinganine to
sphingosine or sphingoid bases in urine and plasma and individual exposure to fumonisins,
showing that these biomarkers may be insufficient and insensitive for monitoring human
exposure to fumonisins [134–136]. There are synergistic interactions between FB1 and
AFB1 in liver cancer development [133,137,138]. Considering these interactions, the co-
contamination of fumonisins and aflatoxins in foods, and the occurrence of both myctoxins
in populations with high HBV infection prevalence, fumonisins could play a plausible
role in HCC [45,139]. The IARC placed FB1 and FB2 in Group 2B, classified as possibly
carcinogenic to humans [71,89].



Toxins 2022, 14, 167 18 of 33

Toxins 2022, 14, x FOR PEER REVIEW 19 of 35 
 

 

3.4.1. Mechanisms of Action of Fumonisins 
Figure 3 shows the action mechanisms involving the breakdown of fumonisins. In 

particular, fumonisins exhibit their actions via various mechanisms, most of which are 
fully established, whereas others are either still under establishment or yet to be explored. 
The genotoxicity of FB1 is not fully understood, although in vitro studies showed that 
fumonisin B1

 

induced chromosomal aberrations and micronuclei [71,122,123]. The dam-
age to the DNA may be due to the stimulation of lipid peroxidation and oxidative damage, 
which is consistent with the increase in malondialdehyde adducts and DNA oxidative 
damage of kidney and liver in rats and with lipid peroxidation in vivo after treatment of 
FB1 [124,125]. Liver carcinogenesis induced by fumonisin proceeds via the stages of initi-
ation and promotion similarly to genotoxins, and it is time- and dose-dependent [126]. 
Fumonisin B1 disrupts the de novo synthesis of sphingolipids by inhibiting ceramide syn-
thase, leading to several effects on cell functions and signaling pathways which depend 
on ceramide, complex sphingolipids, sphingoid base 1-phosphates, and sphingoid bases 
[127], including effects on mitosis and apoptosis, thereby possibly aiding carcinogenesis 
via altering the balance of cell replication and death [123]. The disruption of sphingolipid 
metabolism results in changes in the ratio of sphinganine to sphingosine, with an increase 
in the concentration of sphinganine in tissue, closely correlating with the in vivo carcino-
genicity and toxicity of fumonisins [128]. Disrupted synthesis of fatty acids, phospholip-
ids, and cholesterols, and their interaction with ceramide are thought to play an important 
role in the altered differential growth patterns of hepatocytes during the promotion of 
liver cancer [129]. In experimental animals, the role of hepatocytes in immunomodulation 
was thought to be via changes in the levels of cytokine, in vivo and in vitro, as well as via 
effects on responses to antibody vaccines in pigs infected with fumonisin B1 
[123,125,128,130]. 

 
Figure 3. The action mechanisms involving the breakdown of fumonisins. The red line indicates that 
both Sphinganin and Ceramide synthases are needed for dihydroceraminde. The upward-facing 
arrow beside MDA (malndialdehyde), shows it increases lipid per oxidation; The upward-facing 
arrow beside carcinogenesis shows the chances of its occurrence increases with ceramide presence. 

  

Figure 3. The action mechanisms involving the breakdown of fumonisins. The red line indicates that
both Sphinganin and Ceramide synthases are needed for dihydroceraminde. The upward-facing
arrow beside MDA (malndialdehyde), shows it increases lipid per oxidation; The upward-facing
arrow beside carcinogenesis shows the chances of its occurrence increases with ceramide presence.

3.4.3. Neural Tube Defects and Fumonisins

Studies conducted on animals showed that exposure to fumonisins can result in neural
tube defects, most likely via disrupting the biosynthesis of sphingolipids and subsequent
sphingolipid depletion, which are important for the function of lipid rafts, particularly
folate processing through folate transporters with high affinity [44,140]. Neural tube defects
usually feature reduced levels of folate, and disruption of the cell membrane caused by
fumonisins may result in reduced absorption of folate via impairment of the membrane
folate receptors [141]. The elevation of sphingoid base 1-phosphates caused by exposure to
fumonisins is associated with neural tube defects [142].

3.5. Zearalenone (ZEA)

Zearalenone, also known as F-2 mycotoxin, is a nonsteroidal estrogenic metabolite
produced by some Fusarium and Gibberella species, such as Fusarium graminearum [3,47].
ZEA may occur along with DON, especially in maize, rice, millet, sorghum, rye, oats, barley,
wheat, etc. Zearalenone is distributed globally [143]. Dietary sources of human exposure
per day are estimated to be between 1 ng/kg and 30 ng/kg body weight [143,144]. The
JECFA established a PMTDI of 0.5 µg/kg body weight per day for ZEA; this estimate was
due to the NOAEL for hormonal effects in pigs [145]. ZEA was demonstrated to have
hormonal and estrogenic effects, resulting in infertility following high amounts of ingestion,
especially in pigs. Fumonisins are associated with esophageal cancer in humans and with
kidney and liver toxicity in animals.

3.5.1. Mechanisms of Action of Zearalenone

Figure 4 shows the action mechanisms involving zearalenone (ZEA). In particular,
ZEA is metabolized in pigs during intestinal tissue absorption. Importantly, the metabolism
of ZEA involves the reduction of its 6-keto group, leading to α-zearalenol and β-zearalenol
formation and, upon additional reduction, α-zearalanol and β-zearalanol, all of which can
be conjugated to glucuronic acid [145,146]. In vitro studies on liver microsomes suggested
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that the high rate of α-zearalenol production in comparison to β-zearalenol in humans and
pigs is important due to the higher relative estrogenicity of the former in comparison to
zearalenone [147]. Thus, α-zearalenol formation may be a contributing step to bioactivation
of the ZEA estrogenic effects. Zearalenone and its metabolic derivatives may bind to
receptors of estrogen, leading to several changes to binding nucleus elements responsive to
estrogens. Additionally, zearalenone is a competing substrate for enzymes involved in the
metabolism and synthesis of steroids; thus, it could be an endocrine disruptor. Zearalenone
can bioactivate the pregnane X receptor through recruiting coactivators and displacing
corepressors [148]. Consequently, zearalenone may have wide effects on the expression of
genes by modifying the activities of nuclear transcription factors.
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3.5.2. Toxicities of Zearalenone

Zearalenone can cause an increase in the incidence of pituitary tumors and liver cells
in mice, in line with the hormonal mode of its carcinogenic actions [89,149]. Elevated
serum levels of α-zearalenol and ZEA are associated with early puberty [42]. The IARC
placed ZEA in Group 3, i.e., not classifiable as carcinogenic to humans. A high incidence of
esophageal cancer is found in regions with a high contamination of mycotoxins, including
zearalenone, and ZEA’s ability to induce hyperkeratotic papilloma in the rat esophageal
squamous epithelium forestomach suggests its involvement in tumor development in the
gastrointestinal tract [150]. In the treatment of cultured mouse bone marrow and Vero
cells with ZEA, ZEA induced micronuclei formation, as well as induced genotoxicity and
clastogenicity [151]. ZEA has the ability to attack DNA [42].

In C3hAvyfB mice, ZEA induced mammary tumors [152], but further studies are
required to determine whether ZEA has the ability to induce cancer or has carcinogenic
effects on some specific organs such as steroidal estrogens and diethylstilbestrol [153]. In
female mice, zearalenone was reported to induce hepatocellular adenomas [42]. ZEA was
reported to cause damage to Bacillus subtilis DNA, showing DNA adducts in the liver and
kidney of female mice [154]. ZEA has been shown to be genotoxic, with the ability to cause
hepatocellular adenomas in mice [123,153]. Zearalenone was reported to be both genotoxic
and carcinogenic by affecting hormonal activities in several animals [155]. Zearalenone
could induce modifications in the reproductive systems and organs of several experimental
animals, including rats, mice, and various domesticated animals [42,156]. Zearalenone
was found to be carcinogenic in mice and capable of causing hepatocellular adenomas and
pituitary tumors [153].
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3.6. Other Essential Mycotoxins
3.6.1. Patulin

Patulin is released by P. expansum, Penicillium, Paecilomyces, and Aspergillus species.
Penicillium expansum is mostly reported to occur in many moldy fruits and vegetables and
grains, especially rotting maize, peanuts, apple, fig, acha, etc. [38,155,157]. Fermentation is
known to destroy patulin; consequently, it is not in fermented apple beverages, e.g., cider.
Patulin has not been found to be a cancer-causing agent; however, it was found to harm the
immune system of animals [155]. The European Community in 2004 set limits to patulin
concentrations in food products; currently, these are 10 µg/kg for apple-related products
(apple juice inclusive) for infants and children, 50 µg/kg in fruit juice, and 25 µg/kg in
products of solid apples intended for straight intake for adults [155,157]. Although patulin
is commonly detected in decaying apple and its products, it also occurs in many fruits,
grains (mostly cereals and legumes), and other common foods. The major dietary sources
of patulin in human are apple and its juices made from contaminated fruits [2]. The acute
symptoms of patulin include liver and kidney toxicity, spleen damage and toxicity, and
immune toxicity. In humans, gastrointestinal (GI) disturbances, vomiting, and nausea
are usually reported. Patulin is genotoxic, but the potential for carcinogenicity is yet to
be reported.

Patulin has a precursor, known as 6-methylsalicylic acid; together, they are deriva-
tives of acetyl-CoA, making them polyketides and possible carcinogens [42]. Patulin and
6-methylsalicylic acid can cause gene mutations in various cells of mammals [158]. A
15 month subcutaneous patulin administration two times per week indicated malignant
tumor cell development in the administration area, showing the carcinogenic effect of
patulin [42]. Patulin has also shown toxicity in mice born to mothers given patulin; deaths
were reported in both females and males. Patulin is teratogenic, carcinogenic, and muta-
genic, and it can cause injuries to the intestine, as well as impair cellular DNA in humans
and bacteria, leading to cancer and tumor development [42,159]. It has been suggested that
patulin toxicity in intestinal cells occurs by inactivating the active site of protein tyrosine
phosphatase (PTP). PTP is an important regulator of the function of the intestinal epithelial
barrier. The PTP active site has a cysteine residue (Cys215) required for phosphatase activi-
ties. However, sulfhydryl reacting compounds, e.g., acetaldehyde, reduce transepithelial
resistance (TER) via covalently modifying the PTP’s Cys215, which may result in intestinal
cell damage and eventually cause stomach and intestinal cancers [18,35,159].

3.6.2. Citrinin

Citrinin is a mycotoxin first seen in the mold Penicillium citrinum. It has been reported
in more than 12 Penicillium species and numerous Aspergillus species. In 2003, Bennett
and Klich reported that citrinin is associated with the yellowed rice disease reported in
Japan, and it also acted as a nephrotoxin in all tested animal species. Although citrinin is
connected to several agricultural crops, such as barley, oats, rye, rice, corn, and wheat, as
well foods colored using the Monascus pigment, its total implication for humans is not yet
known. Citrinin is reported to work synergistically with OTA in impairing RNA synthesis
in murine kidney [25].

3.6.3. Ergot Alkaloids

Ergot alkaloids are chemical substances released as toxic mixtures of alkaloids in
the sclerotia of Claviceps species that are known pathogenic microbes of many species of
grasses. Ergot sclerotia ingestion from infected cereals, commonly in the form of bread made
from contaminated flour, results in ergotism, a human disease known as St. Anthony’s
Fire [25]. The two forms of ergotism are convulsive, which has effects on the central
nervous system (CNS), and gangrenous, which is known to affect blood supply to the
extremities. Ergot alkaloids induce ergotism and low nerve fever, with strong effects
on fertility in humans [160,161]. Bennett and Klich reported that modern grain cleaning
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methods have significantly reduced ergotism as a human disease; however, it is still an
important veterinary problem [25].

3.6.4. Trichothecene Mycotoxins
T-2 Mycotoxin

T-2 is a trichothecene mycotoxin that has lymphocytic, carcinogenic, cytotoxic, and
immunosuppressive actions against mammalian cells [50,162]. It can induce breaks in
lymphocyte DNA in vitro and in vivo. When fibroblast cells are treated with T-2 combined
with 3H-thymidine, there is unscheduled synthesis of DNA [49,162]. T-2 toxin has cellular
effects on the culture models of primary hepatic cells of chickens [163]. T-2 toxin induced
apoptosis and developmental toxicity in zebrafish embryos [48]. The susceptibility to T-2
of immature animals and newborns can be compared to that of adults; it can cause dermal
toxicities and edema via direct attack on capillary vessels. T-2 induced liver injuries in New
Zealand rabbits, and it has also been shown to induce intestinal injury [164,165]. In vitro,
T-2 can reduce the response to mitogens in human lymphocytes [156].

Diacetoxyscirpenol (DAS)

Diacetoxyscirpenol (DAS) or 4,15-diacetoxyscirpenol (DAS), also known as anguidine,
is a trichothecene mycotoxin secondary metabolite produced by the Fusarium genus, which
has been shown to be toxic to animals and humans. DAS inhibits the production of Ig in
human lymphocytes stimulated by mitogen and can cause esophageal hyperplasia [52,53].
There is insufficient information on the toxicokinetics and toxicity of DAS in farm and
experimental animals. As a result, human chronic and acute health-based guidance values
(HBGV) are estimated using data generated from DAS clinical trials as an anticancer
agent following intravenous administration in cancer patients, as well as using hazard
characterization after exposure via the oral route. The major adverse effects following
repeated and acute exposure were hematotoxicity, with the NOAEL for DAS being 65 µg/kg
body weight, and emesis, with the NOAEL of DAS being 32 µg per kg body weight [51].
A 0.65 µg/kg bw tolerable daily intake (TDI) and a 3.2 µg/kg bw acute reference dose
(ARfD) have been established for DAS [51]. The highest average chronic and acute dietary
exposures in the Europe were noted to be 0.49 and 0.8 µg/kg bw/day, respectively; these
values pose no health concerns to humans. There is limited information regarding the
effects of DAS on pigs, dogs, poultry, chicken, etc. [51]. More studies are required to firmly
establish whether DAS has more toxicities beyond what is currently known.

Fusarenon X (FusX)

Fusarenon X (FusX) is a trichothecene capable of causing cytotoxicity, carcinogenicity,
and immunosuppressive response in animal models and possibly in humans. It has
been shown to be toxic to several types of cells, including murine thymocytes, gastric
epithelial cells, and lymphocytes, along with a high toxicity to human hepatoblastoma
cells [54,56,166]. In vitro and in vivo, FusX initiates apoptosis in mouse thymocytes, which
may be hypothetically applicable to humans [53,55]. Fusarenon X has been shown to
be carcinogenic, especially to animals [54]. It is very cytotoxic to many cells; it is also
believed to have chromosomal effects and to be teratogenic. FusX can be genotoxic even
at low levels [55]. Additionally, with regard to genome science, FusX is a quick one-step
transcription activator-like effector assembly system [167]. The FusX TALE Base Editor
has been studied and reported for quick mitochondrial DNA programming of zebrafish
disease and human cell models in vivo and in vitro, respectively, [56].

Nivalenol (NIV)

Nivalenol (NIV) is a trichothecene mycotoxin, which, in nature, is mostly produced
by species of Fusarium. Nivalenol, T-2 toxin, and DON were used as bioweapons in
some places such as Laos, Cambodia, and Afghanistan, and they were all detected in the
vegetation at sites affected, while the T-2 toxin was also detected in the blood and urine
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samples of victims [58]. NIV can increase the rate of induced cancer and mutation. It also
played a role in the exchange of sister chromatids in the cells of Chinese hamsters and
could cause DNA damage, which makes nivalenol potentially genotoxic [52,53].

NIV causes changes in several biological pathways, of which the NF-κB (nuclear
factor kappa-light-chain-enhancer of activated B cells) pathway is the most common and
possibly significant. NF-κB, a transcription factor, is seen in nearly every cell in humans,
and it regulates the expression of its target genes through binding to specific genomic DNA
(gDNA) motifs on regulatory elements [57]. NIV can change cytokine expression and induce
IL-8 secretion; MCP-1/CCL2 is another factor affected by NIV [57]. NIV can cause reduced
CCL2 secretion and, consequently, reduced monocyte mobility. This shows that NIV is
immunosuppressive. NF-κB and NIV interact to influence cells [168]. While DON induces
the secretion of immunorelevant messenger molecules called chemokines, NIV inhibits
their secretion [169]. Furthermore, NIV upregulates the expression of proinflammatory
genes in macrophages, showing mixed effects on various types of cells, even at a cytotoxic
level. Another NIV cytotoxic mechanism is cytotoxic apoptosis, which indicates that NIV
could be more toxic than DON, its usually co-occurring mycotoxin, via inducing DNA
damage/apoptosis [170]. NIV also changes the proliferation rate of human leukocytes in a
dose-dependent manner. Lower concentrations improve the proliferation of leukocytes,
while higher concentrations reduce their proliferation in a dose-dependent manner [171].
Nivalenol affects the genes of Chinese hamster V79 (CHO) cells through a slight increase
in the frequencies of sister chromatid exchange and chromosomal aberrations [57]. It led
to DNA damage in mice and in Chinese hamster V79 cells. In mice fed intraperitoneally
with 3.7 mg nivalenol/kg body weight or orally with 20 mg/kg body weight, there was
DNA damage in the colon, jejunum, stomach, bone marrow, and kidney [57]. The DNA in
the liver and thymus was unaffected. In DNA-damaged organs, upon histopathological
examination, no necrotic changes were observed. Acute toxicity of NIV induces toxicities
of lymphoid organs and bone marrow. Prolonged exposure can cause leukopenia and
erythropenia. It was observed in mice that NIV increased serum IgA presence, accompanied
by changes in immunopathology in kidneys analogous to IgA nephropathy in humans;
in mice and rats, NIV exhibited toxicity with leukopenia and growth retardation with
dosages as little as 0.7 mg/kg body weight per day [57]. Lethal doses depend on the
administration/intake route. As NIV is often given with feed, the oral administration
LD50 (19.5 mg/kg body weight per day and 38.9 mg/kg bw per day in rats and in mice,
respectively) could serve as the standard. The subcutaneous (SC), intraperitoneal, and
intravenous LD50 ranges from 7 to 7.5 mg/kg body weight per day [57]. Nivalenol chronic
toxicity can result in leukopenia [55,163]. In the presence of AFB1, nivalenol enhances
AFB1-induced hepatocarcinogenesis.

4. Some Mycotoxins Are Directly Involved in Some Types of Cancer
4.1. Breast Cancer

There has been conflicting information about the association between breast cancer
and ZEA [172,173]. A study done in north Africa reported a likely role of α-zearalanol
(α-ZAL) in the development of breast cancer [173]. α-Zearalanol can originate from the
metabolism of ZEA or from the consumption of foods; however, it is not yet an entirely
characterized vector as α-zearalanol is also seen in meat when used in cattle for promoting
growth [174]. Its diastereomers zearalanol (ZAN) and β-zearalanol (β-ZAL) are α-ZAL
metabolites formed after human ingestion. Additionally, α-zearalanol can be conjugated
with sulfonic acid or glucuronic acid [173]. ZEA is structurally similar to estradiol, a
hormone; thus, it exerts affinity toward estrogen receptors and may affect fertility in
livestock and humans. Various in vivo estrogenic potential effects have been reported
for zearalenol and its metabolic compounds. In order to take this these differences into
account, ZEA molar potency factors (relative potency factors (RPFs)) were estimated and
applied to estimates for exposure to various ZEA metabolites. RPFs were molecularly
administered for ZEA and its metabolic compounds (reference 1.0) according to the EFSA
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CONTAM Panel recommendation, with α-zearalenol (α-ZEL) RPF 60 and α-zearalanol
RPF 4.0 [175]. All these discoveries suggest that ZEA and its metabolic compounds could
play key roles in the cancer of reproductive organs in animals and humans [42,172]. ZEA is
carcinogenic in mice, where it causes pituitary tumors and hepatocellular adenomas [154].
More epidemiological studies and clinical assessments are required to establish whether
mycotoxins such as zearalenol have a potential role in breast cancer in humans and animals.

4.2. Liver Cancer (Hepatic Cancer)

Aflatoxins such as AFB1, AFB2, AFG1, AFG2, and AFM1 are characterized as Group 1
carcinogens [85,86]. According to the IARC report, aflatoxins are annotated as medium-
priority agents with possible consideration for future evaluation regarding additional
sites of cancer [176]. Several studies have confirmed the link between aflatoxins and
increased risk of hepatic cancer. Consumption of aflatoxin-contaminated foods has also
been linked with a high risk of liver cancer [177]. Studies conducted in animals reported
the carcinogenic effects of AFB1 and AFG1, in contrast with AFG2 and AFB2, where
insufficient evidence on carcinogenicity exists. The organ most targeted by aflatoxins is the
liver, with liver damage reported in fish, nonhuman primates, rodents, and poultry given
AFB1. During mitosis, AFB1 induces genetic recombination, point mutations, and genetic
instability in mammalian cells at molecular levels. AFB1 causes mutagenicity via a direct
action of genotoxicity [85,178]. Aflatoxin B1 is converted to aflatoxin-8,9-epoxide (highly
reactive and unstable form) through cytochrome P450 (CYP450) oxidation, which can bind
to proteins (e.g., albumin) or DNA [42,179,180]. Aflatoxin-8,9-epoxide reactions with DNA
molecules results in the formation of the aflatoxin-N7-guanine-adduct, which leads to G:C
to T:A transversion mutations during DNA replication [181,182]. If the mutations take
place in tumor suppressor genes or oncogenes (vital cancer-related genes), they may result
in increased abnormal cell proliferation, leading to cancer development.

Aflatoxins are linked to the incidence of HCC in low-income and middle-income
nations, through consuming agricultural crops mostly produced using subsistence farm-
ing [183,184]. The association between aflatoxins and liver cancer has been mostly studied
with respect to HCC, suggesting that various causes of different liver cancer subtypes, e.g.,
unspecific PLC, cholangiocarcinoma, and HCC, may explain the heterogeneous results
from different studies [177]. Factors that influence the risk of liver cancer include obesity
(or overweight), consumption of alcohol, liver cirrhosis, chronic use of oral contraceptives
with high estroprogestative agents, consumption of foods contaminated with aflatoxins,
chronic hepatitis B/C, and smoking. Synergistic effects of aflatoxin exposure and HBV
infection may be described by a virus-induced increase in CYP450, converting aflatoxin to
its reactive metabolic compound [177].

Statistically, no significant association was reported between FB1 exposure and HCC.
FB1 can alter protein synthesis and, in vitro, can inhibit DNA synthesis in intestinal cells
in high concentrations [185,186]. A bioassay in rats reported FB1 hepatotoxicity and
hepato-carcinogenicity [187]. There is a recommendation for a high evaluation priority for
FB1 due to substantial emerging information after the previous evaluation by the IARC
Monographs [176]. There is evidence for ceramide synthase inhibition in individuals who
consumed corn-based foods high in FB1 [188]. Urinary fumonisin B1 can be used for
assessing current FB1 exposure in population-based studies. Additionally, the elevation of
phosphorylated sphingoid bases in embryonic fibroblasts of FB1-treated mice is associated
with increased histone lysine acetylation and reduced histone deacetylase activities [88,189].
Ceramide synthase inhibition by FB exposure leads to increased serum levels of sphin-
golipids, which can serve as a biomarker for mycotoxin exposure [127,190]. As a result
of a lack of validated biomarkers for FB1 exposure, based on rodents, a 128 min serum
half-life in humans was allometrically projected; few studies in humans have studied
HCC’s association with FB1 [190–192].



Toxins 2022, 14, 167 24 of 33

4.3. Cervical Cancer

It has been hypothesized that zearalenol can induce genital cancer in humans, as it
has estrogenic activities in several animal models, and it also forms DNA adducts in the
genitalia of rats, mice, and other animals, including horses [172,184]. Zearalenone may
have wide effects on gene expression by modifying the activities of nuclear transcription
factors. ZEA can attack the DNA. More quality studies are required to firmly establish the
relationship between cervical cancer and ZEA, as well as other mycotoxins.

5. Actions of Mycotoxins on Human Cellular Genome: A Primer

AFB1 and OTA are the most toxic mycotoxins to animals and humans. AF1 is the
most carcinogenic mycotoxin and can penetrate cell membranes, subsequently attaching to
DNA where it causes genomic modifications. AFB1 is liposoluble and is absorbed from
exposure sites in the blood stream [193–196]. As outlined in previous sections, aflatoxins
are metabolized by CYP450 enzymes, once they enter cells, to the unstable and highly
reactive aflatoxin-8,9-epoxide, which then binds to DNA or protein molecules for more
stability [197,198]. As soon as aflatoxin-8,9-epoxide is highly bound to DNA, it results in
the formation of aflatoxin-N7-guanine, which causes GC–TA transversion mutations. The
cell cycle is directly affected via effects on the P53 gene that encodes the tumor suppressor
protein, which inhibits cancer and tumor development [199].

Citrinin is among the strongest nephrotoxins to animals, and its toxicity levels vary
according to species. In rodent kidneys, citrinin acts synergistically with OTA to interfere
with and suppress RNA synthesis. Citrinin inhibits the expression of cytokines and re-
duces interleukin-4 in T-helper type 1, possibly leading to increased risk of allergies in
human [200]. At high concentrations, citrinin is genotoxic toward cultured human lympho-
cytes [201]. Citrinin is a nephrotoxin that imposes oxidative stress and causes nephropathy,
as well as increases the mitochondrial membrane permeability [202].

Ochratoxin targets the kidney. OTA is nephrotoxic to humans and animals, and it is
considered a potent hepatotoxin, carcinogen, immune suppressant, and teratogen [203].
OTA interrupts cellular physiology in several ways, but its primary effects are often linked
to enzymes involved in phenylalanine metabolism by inhibiting enzymes involved in
phenylalanine-tRNA complex synthesis. OTA can inhibit the production of mitochondrial
ATP, as well as stimulate lipid peroxidation.

FB1 is carcinogenic and hepatotoxic, while it can also cause liver apoptosis and
possibly esophageal cancer [204]. It disrupts sphingolipid metabolism by inducing lipid
peroxidation which alters the cell membrane, resulting in cell deaths via apoptosis. FB1 can
also inhibit DNA synthesis and protein synthesis, especially at high concentrations [186]. It
exhibits its carcinogenic activities via 3H-thymidine incorporation. Fumonisin exposure
in animals contributes to neural tube defects, and it has been hypothetically suggested to
have similar effects in humans. Several cases of spina bifida and anencephaly in Texas,
USA, were associated with fumonisin-contaminated corn-based foods [205]. The IARC
classifies fumonisins as Group 2B, i.e., possibly carcinogenic to humans (refer to Table 3). In
general, mycotoxin removal from foods and feeds has some challenges, which means that
their presence is a serious health concern [206]. Trichothecenes have been shown to have
multiple inhibitory activities on eukaryotes by inhibiting DNA synthesis, mitochondrial
function, RNA synthesis, and protein synthesis, as well as by affecting cell membrane
and cell division [207,208]. Trichothecene mycotoxins induced programmed cell death
responses in affected cells, and they could decrease downstream gene products, activate
protein kinase with mitogens, and initiate the ribotoxic stress response [209].

6. Concluding Remarks and Future Prospects

Understanding the mycotoxins’ toxicological mechanisms associated with humans
and animals still remains an important aspect of public health and environmental con-
cern. Through this synthesis, we have learned more about the mycotoxins’ toxicological
mechanisms associated with humans and livestock. In particular, we have deepened our
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understanding about how the mycotoxins’ toxicological mechanisms impact on the human
cellular genome. For emphasis, the major mycotoxins associated with foods, humans,
and livestock, including aflatoxins, citrinin, ochratoxins, fumonisins, patulin, zearalenone,
nivalenol, deoxynivalenol, fumonisins, and ergot alkaloids, must be taken very seriously.
We also demonstrated that a number of these mycotoxins can be carcinogens, nephrotoxins,
mutagens, etc., as they can retard human growth and wellbeing. While both aflatoxin
B1 and ochratoxin A remain among the very toxic mycotoxins associated with animals
and humans, it should also be noted that majority of mycotoxins generally exhibit potent
toxicities to different degrees. Nonetheless, the risks of liver cancer, breast cancer, cervical
cancer, esophageal cancer, etc. remain a very serious global concern, as they have been
linked to exposure to mycotoxins such as aflatoxins, ochratoxins, zearalenone, fumonisins,
citrinin, and deoxynivalenol. DNA damage, kidney damage, DNA and RNA mutations,
growth impairment in children, gene modifications, and immune impairment, as well as
the inhibition of DNA synthesis, mitochondrial function, RNA synthesis, protein synthesis,
and cell division, have also been linked to exposure to mycotoxins.

An area that has not been fully captured in this contribution is the quantitative infor-
mation about the transition of mycotoxins from animal feeds to meat, milk, eggs, or other
edible parts of livestock and poultry, and this should be the direction of a future review
study. Considering that animal products are potentially contaminated by mycotoxins in
feed, the toxicity of human foods is apparently dependent on their concentration. Another
area that requires additional review synthesis is knowledge underscoring how some my-
cotoxins particularly fusarium toxins are able to cause food/feed intake reductions and
to understand this phenomenon is needful, especially the potential effects (of mycotoxins
food/feed intake). Further studies are required to establish the mechanisms underlying the
environmental implications of mycotoxins in the course of affecting humans and animals.
More risk assessment studies are also required, especially in evaluating the factors and
conditions that facilitate the toxicities of mycotoxins.
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