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Abstract

Therapeutic antibodies are often engineered or selected to have high on-target binding affinities that can be challenging to
determine precisely by most biophysical methods. Here, we explore the dynamic range of the kinetic exclusion assay
(KinExA) by exploiting the interactions of an anti-DKK antibody with a panel of DKK antigens as a model system. By tailoring
the KinExA to each studied antigen, we obtained apparent equilibrium dissociation constants (KD values) spanning six
orders of magnitude, from approximately 100 fM to 100 nM. Using a previously calibrated antibody concentration and
working in a suitable concentration range, we show that a single experiment can yield accurate and precise values for both
the apparent KD and the apparent active concentration of the antigen, thereby increasing the information content of an
assay and decreasing sample consumption. Orthogonal measurements obtained on Biacore and Octet label-free biosensor
platforms further validated our KinExA-derived affinity and active concentration determinations. We obtained excellent
agreement in the apparent affinities obtained across platforms and within the KinExA method irrespective of the assay
orientation employed or the purity of the recombinant or native antigens.
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Introduction

The kinetic exclusion assay (KinExA) is a solution-based method

to determine the concentrations of interacting binding partners and

the equilibrium dissociation constants (KD) of biomolecular interac-

tions, typically in the pM to low nM range. When applied to the

study of antigen/antibody interactions, the antigen is typically

titrated into a constant concentration of antibody binding sites, the

samples are allowed to equilibrate, and then drawn quickly through

a flow cell where free antibody binding sites are captured on antigen-

coated beads, while the antigen-saturated antibody complex is

washed away. The bead-captured antibody is then detected with a

fluorescently labeled anti-species antibody [1]. We aimed to explore

the dynamic range, versatility, and the precision of this technique

with a suitable panel of antigen/antibody interactions. We therefore

sought out a monoclonal antibody (mAb), named DS4, that was

raised against human Dickkopf protein 1 (DKK1) and cross-reacted

with other members of the DKK family with disparate affinities. Not

only did these reagents provide us with a model interaction system,

but DKK proteins have gained growing interest as therapeutic

targets due to their implication in bone disease, cancer, and

Alzheimer’s disease [2]. The human DKK protein family consists of

four members (DKK1, DKK2, DKK3, and DKK4) that each

contain two conserved cysteine-rich domains [3] and are mono-

meric, secreted glycoproteins with molecular weights of approxi-

mately 25 kDa that regulate Wnt signaling in different ways [2,4].

The solubility and elevated serum levels of DKK proteins during

some disease states make them attractive targets for antibody

therapy, notably DKK1, which is the most extensively characterized.

DKK proteins present practical challenges to biosensor-based

interaction analysis for a variety of reasons: purified preparations of

some DKK proteins were only available in limited quantity; other

DKK proteins were only available in unpurified form in

conditioned media; being glycoproteins they may be differentially

glycosylated in recombinant and native forms; and they have a high

theoretical net positive charge (ranging from +10 to +22) at neutral

pH (except DKK3, which has a theoretical net charge of 230).

Furthermore, our model mAb DS4 bound DKK1 with an

extremely slow dissociation rate constant approaching the resolution

limit of direct detection on Biacore biosensors [5,6]. The KinExA

measurements outlined in this study for DS4 binding a multi-species

panel of DKK proteins spanned a KD range from approximately

100 fM to 100 nM and, where appropriate, we corroborated them

with orthogonal measurements on label-free biosensor platforms.

We present methods to reduce antigen consumption and measure

accurate and precise affinities of a variety of DKK proteins that

differed in their available quantity and quality.

Results

The KinExA offers two different assay orientations for KD

determination
Figure 1 shows the two different assay orientations that we

employed to measure the affinity of DS4 binding a panel of eight
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DKK proteins, which included human DKK1 and its homologs

and orthologs. The ‘‘fixed antibody’’ KinExA orientation

(Figure 1A) requires beads to be coated with an interaction

partner that specifically binds the free antibody binding sites but

not the antigen-saturated antibody complex [7,8]. Typically, the

antigen is adsorption-coated on ‘‘hard’’ beads (e.g., polymethyl-

methacrylate, PMMA [1]) or covalently coupled onto functiona-

lized ‘‘hard’’ (e.g., NHS-PMMA [9]) or ‘‘soft’’ beads (e.g.,

azlactone [10] or NHS-activated sepharose [5]). Immobilization

requirements reported in the literature range from 10 mg [9] to

100 mg [11] antigen per experiment where titration curves are

typically analyzed in duplicate. Purified DKK1 and its homologs

were not available to us in the quantities required for bead coating.

We therefore modified the fixed antibody method by using a

murine anti-idiotypic (anti-Id) mAb as the bead-immobilized

capture reagent (Figure 1A). The specific anti-Id used was raised

via hybridoma technology against DS4 and was selected because it

only bound to free antibody binding sites and not to the antigen-

saturated antibody complex. A fraction of free DS4 binding sites

present in each sample was captured on the beads and detected

with a fluorescently-labeled polyclonal anti-human antibody with

minimal cross-reactivity to murine antibodies.

Figure 1B presents an alternate assay orientation [12] where a

fixed concentration of antigen is titrated with DS4 and a portion of

the free antigen in these mixtures is detected on DS4-coated beads;

we refer to this assay format as the ‘‘fixed antigen’’ orientation.

Unlike the fixed antibody orientation, where the same secondary

detection reagent is used regardless of the antigen being studied,

the fixed antigen assay requires a customized detection strategy for

every antigen. Therefore, as we explored the multi-species panel of

DKK1 and its homologs, we tailored the detection reagents to

each antigen in this assay format.

The two KinExA orientations yielded equivalent KD values
We used the fixed antibody KinExA orientation (Figure 1A) to

determine the affinity of DS4 towards purified recombinant

human DKK1. To increase the precision of the KD determination,

we performed multiple experiments, in which we titrated the

antigen into a constant antibody binding site concentration and

varied the antibody’s concentration from experiment to experi-

ment. Fixing the antibody at a concentration that is at or below the

KD will typically contain sufficient information to quantify the KD

value and give a shallow KD-controlled titration curve, while

higher antibody concentrations will enable the determination of

the active concentration of one interaction partner (antibody or

antigen) relative to the other. We refer to the ‘‘activity’’ of the

antigen as the percentage of its nominal concentration that can

exactly titrate out an equimolar concentration of previously

calibrated (i.e., ‘‘known’’) antibody binding sites, when inhibition is

examined at high enough concentrations to promote a steep

titration curve (see Materials and Methods). Such curves are often

referred to as ‘‘receptor-controlled’’ [7] in the KinExA literature,

but here we prefer the term ‘‘stoichiometry-controlled’’, to avoid

confusion when describing interactions that are not ligand/

receptor interactions. In studying human DKK1, we combined

information from five curves, which included both KD-controlled

curves and stoichiometry-controlled curves, by fitting them

globally to give a robust estimate of both the apparent KD and

the apparent active antigen concentration. In this way, we

determined that DS4 had an apparent KD of 490 fM for purified

recombinant human DKK1 (Figure 1C) and that the latter was

91% active.

To determine whether the fixed antibody and fixed antigen

assay orientations yielded similar KD values, we also analyzed the

interaction of purified recombinant human DKK1 and DS4 in the

fixed antigen orientation (Figure 1B). We found that a single-step

detection strategy, using DyLight-labeled anti-human DKK1

antibody, not only decreased the assay run time but lowered the

unspecific binding signal in the flow cell. By varying DKK1’s

concentration from experiment to experiment we generated

multiple curves and fit them globally. We thus found that the

best fit KD values determined from the fixed antibody and fixed

antigen assay orientations were identical within the 95%

confidence limits of each global fit (compare Figures 1C and 1D

and see Table 1).

Having established that both assay orientations yield equivalent

results, we determined the affinities of DS4 towards a multi-species

panel of purified recombinant DKK1 proteins using the fixed

antibody assay orientation because this allowed us to apply the

same detection strategy to all the antigens. Within the 95%

confidence limits of each fit, the antibody showed the same affinity

towards all DKK1 orthologs studied (Table 1).

We also studied the cross-reactivity of DS4 to purified

recombinant human DKK4 via both the fixed antibody and fixed

antigen assay orientations. These experiments yielded best fit KD

values in the single digit picomolar range that were identical within

the 95% confidence interval of each experiment regardless of the

assay orientation used (see Table 1). Similar results were obtained

for the interaction of purified recombinant mouse DKK4 with

DS4.

A single experiment can yield with good precision both
an accurate apparent KD and an accurate antigen activity
when one binding partner is fixed at a suitable
concentration

To assess the reproducibility, precision, and accuracy of our

KinExA-based KD determinations, we chose the mouse DKK4/

DS4 interaction as a model system due to the practical

conveniences of studying a low picomolar affinity rather than a

sub-picomolar affinity (discussed later) and the availability of a

high quality purified preparation of the mouse DKK4.

We tested purified recombinant mouse DKK4 in the fixed

antibody assay orientation, as shown in Figure 2A for an

experiment that used an antibody binding site concentration of

30 pM. Upon repeating the measurement six independent times

we obtained a mean apparent KD of 6.9 pM with a standard

deviation of 0.6 pM, indicating that the experiment was highly

reproducible. We performed six further experiments at an

antibody binding site concentration of 10 pM and fit all twelve

curves globally as shown in Figure 2B. The center and right panels

in Figure 2 show error plots for the KD and the activity correction

factor (known as the ‘‘ligand concentration multiplier’’, LCM, in

the KinExA software), respectively. The error plots show the

percent variation in a given parameter (either KD or LCM) by

fixing it and floating the other parameter in a least squares fit [7].

The optimum KD (or LCM) corresponds to the minimum in the

respective graph [1]. Globally fitting two curves obtained using

30 pM and 5 pM antibody binding sites increased the precision of

the KD determination by about twofold compared with that

obtained at 30 pM alone, irrespective of the number of 30 pM

curves included in the global analysis (compare Figure 2A to 2C);

the KD determined from the 5 pM curve alone had broad, ill-

defined bounds (Figure 2D). However, analyzing any one of the six

experiments performed with a fixed antibody concentration of

30 pM allowed both floated parameters, namely the apparent KD

and the antigen’s apparent activity, to be determined accurately,

as judged by the best fit values falling within the 95% confidence

Dynamic Range of the Kinetic Exclusion Assay
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limits of an extensive n-curve analysis (compare the error curves of

Figure 2A to those of Figure 2B or 2C), and with good precision, as

judged by the narrow bounds that spanned a range less than

twofold the parameter value (see error curves of Figure 2A). We

found that this information-rich curve could be obtained if one

works at a suitable ratio of the concentration of the fixed binding

partner over the best fit KD. This ratio is reported in the KinExA

software and we refer to it as the sweet spot ratio (which was

typically 4 to 6 in our experiments) when both floated parameters

can be determined accurately and with good precision in a single

experiment. Figure 2E indicates the location of this empirically-

determined sweet spot ratio in the context of a three-dimensional

contour plot of the bimolecular binding equation and shows the

shapes of the theoretical titration curves obtained at different ratios

of the concentration of the fixed binding partner relative to the

KD.

Unpurified antigen that was available at concentrations
several orders of magnitude above KD was amenable to
study in the fixed antibody orientation

Recombinant rhesus DKK4 was heterologously expressed in-

house by transfection of 293F cells. Since its concentration in

conditioned media was estimated to be approximately 10 mg/mL

by ELISA (data not shown), we used the crude media as the source

of the antigen and determined its affinity for DS4 using the fixed

antibody assay orientation. We first aimed for a stoichiometry-

controlled curve to determine the active concentration of rhesus

DKK4 in the media. Instead of using a known antigen

concentration, we diluted the conditioned media 1000-fold into

sample buffer containing 40 pM antibody binding sites and used

this sample to represent the top concentration of an antigen

dilution series into a background of 40 pM antibody binding sites.

We determined the rhesus DKK4 concentration to be 310 pM in

Figure 1. DKK1/DS4 interaction studied in the fixed antibody and fixed antigen assay orientations on the KinExA. (A) In the fixed
antibody orientation, a series of samples is prepared by titrating DKK into a fixed concentration of antibody binding sites. After sample equilibration,
free antibody binding sites are captured on beads and detected by a fluorescently labeled anti-species antibody. In our modified KinExA method, the
beads are coated with a murine anti-idiotypic mAb instead of antigen. (B) In the fixed antigen orientation, a series of samples is prepared by titrating
the antibody into a fixed DKK concentration. Free DKK in equilibrated samples is captured on antibody-coated beads and detected with a customized
sandwiching mAb that is fluorescently-labeled (one step detection) or unlabeled and followed by a fluorescently-labeled reagent (two step
detection); see Materials and Methods. (C) Global analysis of DS4’s interaction with human DKK1 in the fixed antibody orientation. The ‘‘unknown
ligand’’ model in the KinExA software automatically corrects the concentration of the titrated component with the best fit for its apparent activity, so
that the x-axis shows the antigen’s active concentration, rather than its nominal concentration. (D) Global analysis of DS4’s interaction with human
DKK1 in the fixed antigen orientation. For both panels C and D, the nominal concentration of the fixed binding partner is indicated per titration curve;
in panel D, the best fit binding site concentration is indicated in parentheses. The apparent KD values for panels C and D were 0.49 pM and 0.42 pM,
respectively (see Table 1).
doi:10.1371/journal.pone.0036261.g001
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the 1000-fold diluted media, which corresponded to 310 nM (or

8 mg/mL) in the undiluted media; this was in close agreement with

the estimation from ELISA. With this knowledge, we obtained a

KD-controlled curve by fixing the antibody binding site concen-

tration at 10 pM and titrating it with an appropriate concentration

range of the antigen. A global fit of both curves (Figure 3A) yielded

an apparent KD of 2.8 (0.9–7.7) pM.

Unpurified antigen that was available at concentrations
near or below KD could be studied via the fixed antigen
orientation

To investigate whether the KinExA could accurately determine

the affinity of a nanomolar binder, we studied DS4’s cross-reaction

with DKK2. Attempts to purify human and cynomolgus monkey

(cyno) DKK2 were unsuccessful and so they were available only in

unpurified form and at low concentrations in crude conditioned

media. Thus, we titrated DS4 into conditioned media that was

diluted threefold in running buffer. More than 10,000-fold higher

concentrations of DS4, relative to those used for DKK1, were

needed to saturate DKK2 at the same sample volume, consistent

with DKK2 binding with a significantly weaker affinity than

DKK1. The apparent KD values for the interaction of DS4 with

human and cyno DKK2 were determined to be 110 (56–130) nM

and 120 (82–160) nM respectively (Figure 3B). We could not

quantify the DKK2 in the conditioned media samples because the

curve was KD-controlled, suggesting that the threefold diluted

conditioned media contained #100 nM DKK2. Working with

undiluted media to estimate the antigen’s active concentration

would have required the use of at least 30 mg of DS4 and thus was

not further explored.

To verify that the KinExA method could return an accurate

affinity for a relatively weak affinity interaction without perturbing

equilibrium, we repeated the cyno DKK2 experiments at a

fourfold faster flow rate (i.e., 1.2 mL/min compared to 0.3 mL/

min) to shorten the exposure time of the equilibrated sample with

the bead. If the equilibrium was significantly perturbed over the

bead exposure times used in our experiments, we would expect the

apparent KD to differ between the two flow rates; however, the

data we obtained at different flow rates were superimposable and

the apparent KD values were identical within the error margins

(Table 1).

In order to exclude possible artifacts that may be introduced by

the complex composition of the cell culture media, we validated

the assay format using a purified His-tagged DKK with a known

KD in a background of conditioned media in which the cells were

not transfected with an expression vector (i.e., negative control

media). As the model antigen, we chose purified recombinant

mouse DKK1 because it had the same polyhistidine -tag as our

human and cyno DKK2 constructs. Titrating DS4 into a nominal

concentration of 44 pM mouse DKK1 prepared in the negative

control media that was diluted threefold in sample buffer resulted

in a sharp, stoichiometry-controlled curve several orders of

magnitude below DS4 concentrations necessary to titrate DKK2

(Figure 3B), consistent with DKK1 having a much tighter affinity

than DKK2 for DS4.

Native human DKK1 available in conditioned media of a
carcinoma cell line was amenable to a KinExA analysis

Rathanaswami et al. recently described the application of the

fixed antigen KinExA method to measure the active concentration

of an unpurified native antigen (i.e., human IL13) contained in

conditioned media and its affinity towards different antibodies

[10]. We employed this method to determine the affinity of DS4

towards unpurified native human DKK1 contained in conditioned

media from the hepatic carcinoma cell line Hep3B. We generated

both stoichiometry-controlled and KD-controlled curves by

titrating the antibody into media that was diluted 20-fold or

1000-fold respectively in sample buffer. A global fit of these two

Table 1. KinExA affinity measurements.

Antigen Source
Fixed binding partner
(nominal, pM)b % activityc Apparent KD (pM)c ng

Human DKK1 Purified antibody (0.3, 1, 10, 50) 91 (68–120) 0.49 (0.21–0.96) 5

antigen (3, 10, 50) 39 (28–52) 0.42 (0.13–0.91) 3

Unpurifieda (Hep3B cells) antigen (1/20, 1/1000) n.a.d 0.16 (0.048–0.34) 2

Mouse DKK1 Purified antibody (60, 2, 1) 25 (19–36) , 0.3 3

Rat DKK1 Purified antibody (50, 5, 0.5) 50 (42–59) 0.62 (0.43–0.92) 3

Human DKK2 Unpurified (293F cells) antigen (1/3) n.a. 110,000 (56,000–130,000) 1

Cyno DKK2 Unpurified (293F cells) antigen (1/3) n.a. 120,000e (82,000–160,000) 1

170,000f (93,000–240,000) 1

Human DKK4 Purified antibody (30, 5) 33(27–43) 3.5 (2.2–5.5) 2

antigen (40) 45 (25–63) 2.9 (1.1–5.8) 1

Rhesus DKK4 Unpurified (293F cells) antibody (40, 10) n.a. 2.8 (0.9–7.7) 2

Mouse DKK4 Purified antibody (10, 30) 47 (35–74) 5.1 (2.6–10) 12

antibody (5, 30) 46 (37–59) 4.6 (3.1–6.9) 2

aAll antigens were recombinant, except when using Hep3B cells, which express native human DKK1.
bNominal concentration in pM or dilution factor (1/x) for unpurified samples.
cBest fit (and the 95% confidence interval) as determined in the KinExA analysis software.
dNot applicable.
e0.3 mL/min sample flow rate.
f1.2 mL/min sample flow rate.
gNumber of independent experiments analyzed globally where each titration curve represents duplicate measurements.
doi:10.1371/journal.pone.0036261.t001
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Figure 2. Mouse DKK4/DS4 interaction studied at different fixed antibody concentrations. Left panel - overlay plots of the measured data
and the theoretical best fit titration curve resulting from a four-parameter equation (as defined in the KinExA software), center panel - error curves for
the best fit KD, and right panel - error curves for the best fit antigen activity correction factor (referred to in the KinExA software as the ligand
concentration multiplier, LCM). An LCM of 0.5 indicates that the antigen is 50% active. (A) Single experiment with 30 pM antibody binding sites. (B)
Global analysis of twelve independent experiments that incorporated six curves each at 10 pM and 30 pM antibody binding sites. (C) Dual-curve

Dynamic Range of the Kinetic Exclusion Assay
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curves gave an apparent KD of 160 (50–340) fM (Figure 3C). The

concentration of native human DKK1 in the undiluted media was

determined to be 1.7 (1.4–2.0) nM (or 44 ng/mL). This

corroborated an ELISA estimate of .30 ng/mL (data not shown).

Active antigen concentrations were corroborated via
stoichiometry-controlled titrations on an Octet biosensor

In order to validate our KinExA experiments using an

orthogonal label-free method, we performed Biacore analyses on

a suitable panel of DKK1, DKK2, and DKK4 proteins, thus

covering the full affinity range studied on the KinExA. In these

assays, purified recombinant antigens were flowed over immobi-

lized DS4. Since the accuracy of the observed ka (and thus the

observed KD) depends on the accuracy of the antigen’s active

concentration, the observed ka from our Biacore experiments had

to be corrected for any difference between the nominal and active

concentration, which required a separate assay for every antigen

studied (Figure 4). We thus determined the active concentration of

each antigen using a solution competition assay on an Octet

biosensor. The Octet is a label-free interferometry-based technol-

ogy equipped with disposable fiber-optic sensor tips that measures

the change in optical thickness that occurs upon the real time

binding of a solution partner to an immobilized partner on a

sensor tip. Assuming that DS4 was fully active, we determined the

activities of various DKK proteins by conducting stoichiometry-

controlled titrations on the Octet and used these values to correct

the apparent ka values obtained in our Biacore experiments

(Table 2). The Octet experiments revealed that some commer-

cially available preparations of purified antigens were mostly

inactive, as shown in Figures 4A and 4B, i.e., a carrier-free

preparation of human DKK4 appeared only 2% active. Since

antigens that were lyophilized from BSA-containing buffers

typically appeared more active than carrier-free formulations, we

opted to use the former where available for all our affinity

determinations.

The active concentrations of select antigens and DS4
were determined via a calibration-free concentration
analysis on the Biacore

Biacore instruments allow protein concentrations to be deter-

mined without relying upon a calibration curve, and thereby

eliminate the need for a standard compound, in an analysis known

as a ‘‘calibration-free concentration analysis’’ (CFCA) [13]. We

used CFCA to analyze one lot each of human DKK1, human

DKK4, and mouse DKK4. For human DKK1, the activity was

determined to be 31%–39% by Biacore (Figure 4C), compared to

39% on the Octet. For human DKK4, the Biacore assay yielded

an activity of 37%–39% while the Octet assay showed 45%.

Mouse DKK4 showed an activity of 36%; this specific lot was not

tested on the Octet but employed in our KinExA and Biacore

solution affinity measurements. Purified recombinant human and

mouse DKK2 were not amenable to our capture-based CFCA

method because their interactions with immobilized DS4 were not

sufficiently mass transport limited.

Using CFCA on amine-coupled anti-Id, we empirically verified

that DS4 was fully active, thereby corroborating the assumption

that underpinned our entire KinExA analysis.

analysis for 30 pM and 5 pM antibody binding sites and (D) individual analysis of the 5 pM curve. (E) Contour plot for the bimolecular binding
equation that shows the theoretical titration curves obtained for different ratios of the concentration of the fixed binding partner over the KD, i.e., the
[A]0/KD ratio. The empirical sweet spot ratio is indicated in violet and the bottom plane shows a color-coded projection of the fraction of unbound [A]
([A]/[A]0) as a function of [B]0/KD and [A]0/KD. The model used to create this figure is:
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Figure 3. Affinity determinations for crude antigens from conditioned media. (A) Dual-curve analysis in the fixed antibody assay
orientation of recombinant rhesus DKK4 in conditioned media of 293F cells. (B) Overlay plot of the curves obtained in the fixed antigen assay
orientation using recombinant human DKK2 (black squares) and cyno DKK2 (red circles) from conditioned media of 293F cells, each diluted threefold
with running buffer. The blue curve shows the cyno DKK2 assay performed at a fourfold higher flow rate and the green curve represents a control
titration of purified mouse DKK1 spiked into a threefold dilution of media from untransfected cells. (C) Dual-curve analysis in the fixed antigen assay
orientation of native human DKK1 in the media of a Hepatocarcinoma cell line, diluted 1000-fold (red) and 20-fold (black) with running buffer. The
apparent KD values were (A) 2.1 pM – rhesus DKK4, (B) 110 nM – human DKK2; 120 nM (red) and 170 nM (blue) – cyno DKK2, and (C) 0.16 pM –
human DKK1 (see Table 1).
doi:10.1371/journal.pone.0036261.g003
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The slow dissociation of the DKK1/DS4 complex
exceeded the dynamic range of a capture-based kinetics
assay on the Biacore

Preliminary studies on the Biacore revealed that the DKK

proteins displayed high unspecific binding to a standard CM5

chip, so we employed an ethylenediamine-blocked anti-human Fc

CM4 chip to capture DS4 in an attempt to create a surface with

less residual negative charge than an ethanolamine-blocked CM5

surface (see Materials and Methods). We determined apparent

association rate constants (ka) for all DKK1 orthologs tested

(Figure 5A and Table 2) but did not observe enough decay of the

binding signal during the allowed dissociation time to determine a

precise dissociation rate constant (kd) for these interactions. Since

their dissociation phase showed less than a 5% decrease in signal

during the allowed 30 min, according to the ‘‘5% rule’’ [14], the

kd appeared to be ,2.8561025 s21. We thus calculated an upper

limit for the individual affinities of the multi-species panel of

DKK1, but no precise affinities. The product of the KinExA-

determined ka and KD values gave an apparent kd for human

DKK1 that was about 10-fold lower than the kd limit of

2.8561025 s21 stated above. This implied that it would be

necessary to follow the dissociation for five hours on the Biacore in

order to detect a 5% signal decrease, which would require a more

stable method of immobilizing DS4, such as direct amine

coupling. While it was possible to couple DS4, we could not find

a suitable regeneration condition for it.

For the multi-species panel of DKK1 proteins, all activity-

corrected ka values were within fourfold of one another and the

inter-species variation was similar to the variation between

experiments and antigen lots (Table 2).

Figure 4. Determination of active antigen concentrations using complementary label-free methods. (A) Titration-based Octet
measurement obtained over immobilized anti-Id mAb for samples containing 1 nM DS4 binding sites titrated with a purified preparation of carrier-
free human DKK4. (B) Sharp inhibition curve obtained from the data shown in panel A showing that a nominal concentration of 50 nM human DKK4
was needed to exactly titrate out 1 nM DS4 (corresponding to an antigen activity of 2%). (C) CFCA data collected on the Biacore for a nominal
concentration of 0.1 mg/mL human DKK1 flowed at 100 mL/min (blue) and 5 mL/min (red) over a high capacity of immobilized DS4. The curve fit is
shown in black.
doi:10.1371/journal.pone.0036261.g004

Table 2. Biacore kinetic and affinity determinations on purified, recombinant antigens.

Antigen % activitya Apparent ka (M21s21)d Apparent kd (s21) Apparent KD (pM)
Apparent KD by
KinExA (pM)

Human DKK1 100 6.56106 ,2.961025e ,4.4 0.49

28 1.46107 ,2.961025e ,2.0 n.d.

39 6.96106 ,2.961025e ,4.1 0.42

Mouse DKK1 45 8.46106 ,2.961025e ,3.4 , 0.3

Rat DKK1 100 1.06107 ,2.961025e ,2.8 0.62

Human DKK2 n.d.b n.d. .0.3 140,000f 110,000

Mouse DKK2 n.d. n.d. .0.1 98,000f n.d.

Human DKK4 2.0 1.96107 1.061024 5.5 3.5

Mouse DKK4 30 2.76107 7.861025 2.9 4.6

36c n.d. n.d. 6.8 5.1

aThe ‘‘% activity’’ was determined via titration-based assays on the Octet and used to correct all ka values.
bNot determined.
cActivity determined by CFCA.
dThe apparent ka values determined via KinExA were 1.056107 M21s21 and 1.076107 M21s21 for human DKK1 and 1.46107 M21s21 and 0.806107 M21s21 for human
DKK4 in two independent experiments each.
eThe resolution limit of the assay, according to the ‘‘5% rule’’.
fMeasured in a kosmotropic buffer containing 150 mM (NH4)2SO4 instead of 150 mM NaCl.
doi:10.1371/journal.pone.0036261.t002
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Picomolar affinities for DKK4/DS4 interactions and
nanomolar affinities for DKK2/DS4 interactions were
corroborated by Biacore measurements

We also determined the affinities of DS4 towards human and

murine DKK4 by Biacore (Figure 5B and Table 2). In both cases,

there was sufficient decay in the binding signal within the allowed

30-min dissociation time to enable a precise determination of the

kinetic rate constants. While the kd values were significantly higher

for DKK4 than for DKK1, the ka values were only slightly higher

for DKK4.

The weak affinity of DS4 towards DKK2 approached the upper

limit of the KinExA’s dynamic range. Therefore, we also tested

commercially-available purified recombinant human and mouse

DKK2 proteins on the Biacore. A high unspecific binding

response concealed the specific binding response when we used

HBST as running buffer (a commonly used buffer in Biacore

assays) in which we had studied DKK1 and DKK4. To minimize

unspecific binding of our His-tagged DKK2, which had a

theoretical net charge of +23 at pH 7.0, we chose a kosmotropic

buffer, as used by other investigators when studying analytes with

high pI values [15]. Injecting DKK2 over immobilized DS4

resulted in sensorgrams that exhibited fast association and

dissociation rates (Figure 5C), so we applied an equilibrium

binding model to the binding responses and determined apparent

KD values of 140 nM for human DKK2 and 98 nM for mouse

DKK2 (Figure 5D). We verified that the binding kinetics of human

Figure 5. Kinetics and affinity determinations by Biacore. Binding kinetics of (A) human DKK1, (B) mouse DKK4, and (C) human DKK2.
Measured data in color contrast the global fits in black. Panels A and B each show a simultaneous fit of the data obtained from three different
capacity surfaces (red – low, green – medium, and blue – high; in panel A, the data are separated out by surface for clarity but were fit
simultaneously). Panel C shows data from a single surface. In each case, DKK was flowed as a threefold dilution series with nominal top
concentrations of (A) 13 nM, (B) 40 nM, and (C) 500 nM over immobilized DS4. Only the association phase was monitored for DKK1 because the
dissociation was too slow to resolve by our capture-based assay. Panel D shows an alternate analysis of the DKK2 data, using the equilibrium binding
responses. Panel E shows the inhibition of DS4 Fab with titrating levels of human DKK4 over immobilized anti-Id. See Table 2 for the extracted kinetic
rate constants and affinities. The upper cartoon depicts the assay orientation used in panels A–D while the lower cartoon refers to panel E.
doi:10.1371/journal.pone.0036261.g005
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DKK1 were identical in standard (HBST) and kosmotropic buffers

to rule out the possibility that the kosmotropic buffer altered the

DKK-binding behavior of DS4. No binding of human DKK3 to

immobilized DS4 was detectable at a nominal antigen concentra-

tion of 670 nM when tested in HBST buffer.

A Biacore solution affinity measurement corroborated
the KinExA affinity determination for the mouse DKK4/
DS4 interaction

While the binding affinity of a solution-based interaction can be

determined via a solution competition assay on the Biacore, this

method is generally unfeasible for studying very high affinity

interactions because it requires the direct detection of low

concentrations of the fixed binding partner, which may be below

the assay’s limit of detection. Accordingly, preliminary signal tests

suggested that we would not be able to measure the sub-picomolar

affinity of the DKK1/DS4 interaction in this way. To investigate

whether the Biacore could measure a solution affinity in the single

digit picomolar range, we studied the DKK4/DS4 interaction in

an orientation that resembled our fixed antibody KinExA format.

Thus, we amine-coupled an anti-Id onto a CM5 chip to detect free

DS4 Fab in samples containing a fixed concentration of Fab

equilibrated with a dilution series of mouse DKK4; the active

concentrations of both binding partners had been pre-determined

via CFCA. Within a 30-min association time, we did not obtain

enough signal above instrument noise to reliably quantify the Fab

by its real-time binding to the anti-Id surface, so we used a mouse

anti-human kappa mAb as a secondary detection reagent to

enhance the signal. The resulting signals were high enough to

obtain an inhibition curve (Figure 5E). Fitting the data to a

bimolecular binding equation using the Biacore T200 evaluation

software yielded an apparent KD of 6.8 pM and a standard error

(for the fit) of 0.5 pM. The use of a Fab-based Biacore assay thus

further corroborated our KinExA-derived KD for the DKK4/DS4

interaction obtained with the full-length IgG. A calibration curve

obtained with Fab alone (without any premixed DKK4) on the

Biacore showed that all the response values were in a linear range,

but concentrations lower than 1 pM deviated from ideal behavior

as they approached instrument noise.

Association rate constants obtained on the KinExA
agreed well with the activity-corrected values
determined by Biacore

It is also possible to measure the apparent association rate

constant (ka) of an interaction via KinExA if the active

concentrations of both binding partners are known. Using the

‘‘kinetics direct’’ method [5] as defined in the KinExA software,

we determined apparent ka values for human DKK1 (Figure 6A)

and human DKK4 (Figure 6B) binding to DS4. In these

experiments, we input the antigen’s active concentration that

had been determined previously in the KinExA-based equilibrium

measurements described above. We obtained excellent agreement

between KinExA- and Biacore-derived ka values (Table 2).

Discussion

The KinExA’s dynamic range allows discrimination
between picomolar and femtomolar binders and is
limited mainly by practical requirements of large
volumes and/or high concentrations

During the selection and maturation of therapeutic antibodies,

very high on-target binding affinities can be achieved, with KD

values in the picomolar [16] and subpicomolar [17] range.

Characterizing these tight interactions with label-free biosensors

can be challenging. The KinExA, however, enables the discrim-

ination between picomolar and femtomolar binding affinities and

provides exquisite sensitivity in resolving KD values in the single

digit picomolar range. Our results demonstrate how we exploited

the antigen-binding activities of an anti-DKK1 mAb to highlight

the wide dynamic range of the KinExA technology by measuring

affinities spanning 160 fM to 120 nM for DKK1 and DKK2,

respectively. These are among the tightest [12,17–19] and

weakest [11,20] antigen/antibody affinities reported using the

KinExA. Determination of femtomolar KD values exceeds the

dynamic range of a capture-based kinetics assay on SPR-based

biosensors such as the Biacore because the dissociation of the

antigen/antibody complex being studied approaches, or is slower

than, the dissociation of the antibody from its immobilized

capture partner. Studying femtomolar binders via KinExA often

required the fixed component to be at a low concentration (at or

below 1 pM binding sites), which introduced some practical

challenges. In studying DKK1 in the fixed antibody orientation,

we required high sample volumes (up to 60 mL for duplicate

analysis cycles) to allow sufficient capture on the bead-immobi-

lized binding partner, which resulted in up to 35 hours run time

per experiment that typically analyzed a titration series in

duplicate cycles. Moreover, judging from the association rate and

apparent affinity of DKK1, it would possibly have taken over a

week to equilibrate the samples containing 0.3 pM DS4 and the

lowest DKK1 concentration of the titration series (i.e., 15 fM).

Since antigen degradation may occur during prolonged incuba-

tion at room temperature, we compromised by incubating our

Figure 6. Association rate determination by KinExA. ‘‘Kinetics
direct’’ measurements using (A) 50 pM DS4 and 30 pM human DKK1
and (B) 100 pM DS4 and 90 pM human DKK4. The apparent ka values
were 1.056107 M21s21 for human DKK1 and 1.46107 M21s21 for
human DKK4.
doi:10.1371/journal.pone.0036261.g006
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samples for no longer than three days. This means that when

titrating antigen into 0.3 pM DS4, only the samples with

picomolar or higher DKK1 concentrations were at or ap-

proached equilibrium; the KD of the interaction is thus probably

slightly lower (i.e., the affinity is likely tighter) than determined in

this experiment. Since an ‘‘n-curve’’ analysis is based upon the

assumption that the interacting partners have the same activity in

all experiments included in the global fit, we routinely verified

this by analyzing stoichiometry-controlled curves, or in most

cases sweet spot curves, at the beginning and end of a series of

experiments. Alternatively, we aimed for a KD-controlled curve

(as in our DKK2 work, Figure 3C) or a sweet spot curve (as in our

DKK4 work, Figure 2A) in a single experiment.

The main limitation in characterizing low affinity interactions

on the KinExA is the need for high concentrations of at least one

of the binding partners, which may render an assay impractical

and/or prohibitively expensive to implement in a routine manner.

For example, to determine precise KD values above 100 nM and

kd values near 1021 s21, we needed milligram quantities of

antibody in order to saturate the antigen, as we demonstrated in

our analysis of DKK2 in the fixed antigen assay orientation. Since

the bead was coated with the same antibody as the one being

studied in solution, the efficiency of the DKK2-capture and its

subsequent detection was poor. In contrast, we were able to

determine a steady-state binding affinity for DKK2 with much less

protein (0.1 mg antibody and 2 mg antigen) using the Biacore

capture-based kinetics assay.

The choice of assay orientation employed in our KinExA-
based DKK/DS4 work was driven mainly by the available
concentrations of the respective antigens

In studying the interactions of DS4 with recombinant DKK1

and DKK4, which had apparent KD values of approximately

0.4 pM and 5 pM, we confirmed that the fixed antigen and fixed

antibody assay orientations yielded equivalent results (Figure 1 and

Table 1), consistent with observations from other investigators

[10]. Therefore, practical considerations can dictate the choice of

the assay orientation employed. In this study, we used the fixed

antibody orientation to study antigens that were available at high

concentrations, and the fixed antigen orientation when antigens

were available only at low concentrations.

An appealing feature of the fixed antibody assay orientation is

that it allows the comparison of different antigens binding to the

same antibody without changing the assay format in terms of the

bead-immobilized partner and the detection strategy. In addition,

by substituting the antigen with an anti-Id as the bead-

immobilized partner, we significantly reduced our consumption

of antigen and bypassed the need for purified antigen altogether

when we applied our anti-Id platform to the study of unpurified

antigen (as in our rhesus DKK4 work, Figure 3A). In the case of

DKK proteins, bead-immobilizing the purified commercially

available antigen would have cost $300 per experiment. In

contrast, anti-Id reagents that only bind the free antibody, once

generated, are useful in assays where unspecific antigen-antigen

interactions occur or when the antigen’s activity is compromised

or lost upon its immobilization to the bead.

The fixed antigen assay orientation requires more antigen-

specific assay development, especially in terms of the detection

strategy used. However, the ability to float both the apparent KD

and the apparent active concentration of one of the binding

partners (assuming that the other is 100% active and that the

binding stoichiometry of the interaction is known) along with the

double specificity required to capture and detect one of the

binding partners renders the KinExA particularly amenable to

studying native antigens that may only be available at a low,

constant, but unknown concentration, such as in complex media

[10]. Thereby, the KinExA bypasses the need for purifying the

studied antigens, which not only saves time but avoids the risk of

altering an antigen’s native conformation or activity. In custom-

izing the detection antibodies to suit each studied antigen in our

fixed antigen KinExA experiments, we found that mixing an

antigen-specific antibody with the fluorescent probe (DyLight-

labeled antibody or DyLight-streptavidin) reduced the detection

signal about twofold when compared to injecting the two reagents

consecutively. Taking into account sensitivity, specificity, and

assay run time, we obtained optimum results for DKK1 and

DKK4 detection with directly DyLight-labeled sandwiching

antibodies.

The use of a sweet spot concentration facilitates the
analysis of tight binders and precious samples

Our results show that fixing one binding partner four- to sixfold

above KD typically resulted in a titration curve that contained

sufficient information to estimate with good accuracy and

precision both the apparent KD and the apparent active

concentration of the unknown binding partner. This highly

informative sweet spot curve lies in the transition range between

KD-controlled and stoichiometry-controlled curves, as graphed in

the landscape plot in Figure 2E. The broadness of the sweet spot

ultimately depends on data quality. Designing an experiment that

will yield a sweet spot curve often relies on a priori knowledge of

both the apparent KD and the apparent active concentration of

the fixed binding partner. Another potential drawback of using a

sweet spot analysis is that interactions deviating from a simple

bimolecular binding model (e.g., due to sample heterogeneity or

cooperative binding) will be overlooked because the concentration-

to-KD ratio in the analysis will adjust to fit the curve steepness thus

causing an error in the result and masking the perturbation. An n-

curve analysis, however, will correctly identify this perturbation

because the curve steepness will not match the spacing between

the curves.

Nevertheless, in exploring inter-species variation within a given

DKK protein (e.g., mouse, human, and rhesus forms of DKK4),

comparing recombinant and native forms of a given DKK, or

comparing different assay orientations (i.e., fixed antigen and fixed

antibody) within the KinExA platform, we typically had a good a

priori estimate of the apparent KD. Thus, the use of a sweet spot

assay increased the information content of an experiment and

saved a significant amount of sample. While an n-curve analysis

can often increase the precision of a KD determination compared

with that from a single experiment, it relies on the assumption that

the antigen’s activity remains constant across a series of

experiments. This may not be the case if there is degradation of

the antigen from one experiment to the next, or if there is

significant lot-to-lot variability as we observed for DKK prepara-

tions; a sweet spot analysis circumvented this problem. Further-

more, working several fold above KD avoided a number of the

practical disadvantages related to working at low picomolar

concentrations, such as high sample volumes and long equilibra-

tion and run times which might result in sample deterioration.

Also, when determining a KD from a purely KD-controlled curve,

the active concentration of the titrated binding partner should be

accurately known. In contrast, KD determination with a sweet spot

assay requires only one concentration to be known, which can be

that of either the fixed or titrated component.
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Tailoring the KinExA method enables the study of a
broad range of affinities as well as sample qualities and
quantities

Our work has demonstrated that the KinExA is a highly

versatile biophysical tool that can be used to study interactions that

span a broad range of affinities and can be tailored to

accommodate the available sample quality and quantity. We were

thus able to verify the affinity of DS4 towards its native, unrefined

target protein. Furthermore, the affinity measurements were in

excellent agreement with those obtained on Biacore, for interac-

tions that fell within the dynamic range of both methods (i.e., KD

values spanning single digit pM to mid nM).

Materials and Methods

General Methods
A KinExA 3000 biosensor with standard flow cells and

polymethylmethacrylate (PMMA) beads was purchased from

Sapidyne, Inc (Boise, ID). A Biacore T200 biosensor equipped

with CM4 and CM5 research-grade sensor chips was purchased

from GE Healthcare (Piscataway, NJ). An Octet QK384 biosensor

equipped with amine-reactive and anti-murine-Fv sensor tips was

purchased from ForteBio (Menlo Park, CA). Recombinant full-

length DS4 IgG and DS4 Fab were prepared in-house from

suspension-adapted HEK293 cell (‘‘293F’’ cells, Invitrogen,

Carlsbad, CA) conditioned media, which was collected five days

after transient transfection with CMV-based expression vectors

encoding both the light and heavy chains. Purification of DS4 IgG

and DS4 Fab was performed via protein A or Ni-NTA affinity

chromatography, respectively. Murine anti-idiotype mAb raised

against DS4 and murine mAb raised against human DKK4 were

generated in-house via conventional hybridoma technology.

Purified recombinant human DKK1, DKK2, DKK3 and

DKK4, mouse DKK1, DKK2, and DKK4, rat DKK1, mouse

anti-human DKK1 mAb (clone 141119), biotinylated polyclonal

antibody raised against human DKK4, and mouse anti-poly-

histidine mAb (clone AD1.1.10) were obtained from R&D Systems

(Minneapolis, MN). Mouse anti-human kappa mAb (clone SB81.a)

was purchased from Southern Biotech (Birmingham, AL). DyLight

649 streptavidin and DyLight 649 AffiniPure polyclonals produced

in goat against human IgG (H+L) or mouse IgG (H+L) with

minimum cross-reactivity to other species were purchased from

Jackson ImmunoResearch Laboratories, Inc. (West Grove, PA).

DyLight 649 microscale antibody labeling kit and IgG elution

buffer pH 2.8 were purchased from Pierce Biotechnology (Rock-

ford, IL). Anti-DKK1 and anti-DKK4 antibodies were DyLight-

coupled following the manufacturer’s protocol. Polyclonal goat

F(ab9)2 anti-human Fc was purchased from Cappel (MP Biomed-

icals, Solon, OH). Quantification of select antigens by sandwich

ELISA was performed using DS4 as the capture antibody and a

suitable sandwiching antibody, as used for detection in KinExA

experiments performed in the fixed antigen orientation (see

below).

Theoretical pI values and charges at neutral pH were calculated

from the primary amino acid sequence using Vector NTI Advance

9 (Invitrogen). All concentrations were calculated as binding site

concentrations. Where applicable, ‘‘nominal’’ concentrations were

determined via light absorption at 280 nm; for BSA-containing

antigen preparations the manufacturer’s information was used

instead.

Preparation of in-house antigens
The complete coding regions of cyno DKK2 and rhesus DKK4

were obtained by PCR from cyno liver (DKK2) or rhesus testis

(DKK4) cDNAs (BioChain, Hayward, CA), using minimally

degenerate 59 and 39 primers, which were designed based on the

available rhesus GenBank nucleotide sequences (XM_001085254

and XM_001097758). Amplified fragments were sequence veri-

fied, and a 10-His epitope tag and stop codon were added in-frame

at the extreme C terminus by PCR. The resulting DNA fragments

were individually cloned into a CMV-based expression vector.

The cDNA containing the complete coding region of human

DKK2 was obtained from Origene (Rockville, MD). It was

sequence verified, and re-cloned into a CMV-based expression

vector which added an in-frame 10-His tag to the C-terminus. To

obtain conditioned media containing human DKK2, cyno DKK2

or rhesus DKK4, 293F cells were grown in defined serum-free

media (Freestyle Expression Media, Invitrogen) and transiently

transfected with an expression construct for the respective antigen

using 293Fectin (Invitrogen) according to the manufacturer’s

protocol. Twenty four hours after transfection, heparin (Sigma-

Aldrich, St. Louis, MO) was added at 0.1 g/L to enhance recovery

of DKK in the conditioned media [21]. Cells were allowed to

condition the media for five days, after which time the media was

collected.

Conditioned media from Hep3B cells expressing native human

DKK1 was produced by growing Hep3B cells (ATCC, Manassas,

VA) in DMEM media supplemented with 10% heat inactivated

fetal bovine serum, 100 U/mL penicillin and 100 mg/mL

streptomycin at 37uC in an atmosphere of 5% CO2. The cells

were plated at a density of 26105/cm2 and media was collected

after three days.

KinExA measurements
All KinExA experiments were performed at room temperature

(23uC) using PBS pH 7.4 with 0.01% (v/v) Tween-20 as running

buffer. Samples were prepared in running buffer supplemented

with 1 mg/mL BSA (‘‘sample buffer’’), unless stated otherwise. A

flow rate of 0.25 mL/min or 0.4 mL/min was used, unless stated

otherwise. PMMA beads were adsorption-coated with a capture

antibody (murine anti-Id mAb or DS4 for affinity determinations

in the fixed antibody and fixed antigen orientations, respectively)

to serve as the solid phase. Per experiment, 200 mg beads were

prepared at room temperature by incubating them with 30 mg

capture antibody in 1 mL PBS for 2 h with rocking and blocking

them in 10 mg/mL BSA in PBS for a further 1 h with rocking.

Blocked beads were either used immediately or stored for up to

one week at 4uC.

In the fixed antibody orientation, DS4 was prepared at a fixed

concentration, which was optimized per experiment, and titrated

with a twelve-membered twofold serial dilution of the DKK to be

tested. A sample of DS4 without any titrated DKK established the

100% signal, i.e., the signal without any inhibition. Samples were

incubated for up to 72 h at room temperature before passing them

through a flow cell that contained bead-immobilized murine anti-

Id mAb. Captured DS4 was detected with 1 mg/mL DyLight-

labeled polyclonal anti-human antibody.

Affinity determinations in the fixed antigen orientation were

performed by titrating DS4 as a twofold dilution series into a fixed

concentration (or in the case of crude antigens, a fixed dilution) of

the antigen, equilibrating the samples at room temperature, and

passing them through a flow cell that contained beads coated with

DS4. Detection of the bead-captured antigens was tailored per

antigen using 0.5 mg/mL or 1 mg/mL of a ‘‘sandwiching’’

antibody (one whose epitope did not overlap with that of the

bead-immobilized mAb) followed by a DyLight-labeled reagent.

Thus, human DKK1 was detected in two steps using mouse anti-

human DKK1 mAb followed by DyLight 649 AffiniPure goat

Dynamic Range of the Kinetic Exclusion Assay

PLoS ONE | www.plosone.org 11 April 2012 | Volume 7 | Issue 4 | e36261



anti-mouse IgG, or in a single step using DyLight-labeled mouse

anti-human DKK1 mAb. Recombinant His-tagged mouse

DKK1, human DKK2, and cyno DKK2 were each detected

using mouse anti-polyhistidine mAb followed by DyLight 649

AffiniPure goat anti-mouse IgG. Human DKK4 was detected

using biotinylated goat polyclonal anti-human DKK4 antibody

followed by DyLight-conjugated streptavidin or by DyLight-

labeled mouse anti-human DKK4 mAb.

Association rate constants of DS4 binding human DKK1 or

human DKK4 were obtained via the ‘‘kinetics direct’’ method

predefined in the KinExA software [5]. Thus, DS4 and DKK

were mixed and sample volumes of 0.25 mL (or in some

experiments, 0.5 mL) were drawn in regular time intervals

through the flow cell where free DS4 binding sites were captured

on anti-Id-coated beads and detected with DyLight-labeled

polyclonal anti-human IgG.

KinExA data were analyzed with the KinExA Pro software

versions 2.0.1.12, 2.0.1.26, and 2.1.1.28 provided by Sapidyne. To

determine the apparent KD and the apparent active concentration

of the antigen, the ‘‘affinity, unknown ligand’’ or ‘‘affinity,

standard’’ models were used to analyze data obtained in the fixed

antibody or fixed antigen orientations, respectively. The ‘‘drift

correction’’ option was used where appropriate. DS4 was assumed

to be 100% active (validation of this assumption is described in the

results). For a given interaction, multiple curves obtained in

independent experiments were analyzed using the ‘‘n-curve

analysis’’ tool to obtain global best fit values for both the apparent

KD and the apparent antigen activity. The software reports each

best fit value along with a 95% confidence interval (Sapidyne

Technote TN206R0). The apparent ka values were determined by

fitting the decrease of free antibody binding sites as a function of

time to a bimolecular binding equation using the ‘‘kinetics direct’’

analysis tool.

Titration-based active concentration measurements on
the Octet biosensor

All Octet experiments were conducted at 25uC in a running

buffer of PBS pH 7.4, 0.05% (v/v) Tween-20 and 1 mg/mL BSA,

and sample plates were agitated at 1000 rpm. An anti-Id mAb was

coupled onto amine-reactive tips that were first activated with a

freshly prepared mixture of 40 mM EDC and 10 mM sulfo-NHS

(final concentrations) in 0.1 M MES buffer pH 5.0. Excess esters

were blocked with 1 M ethanolamine HCl pH 8.5. DKK1 or

DKK4 were titrated into 1 nM or 2 nM DS4 binding sites using a

1.2-fold dilution series. These mixtures were allowed to bind the

coupled anti-Id for 30 min to detect free DS4 binding sites. The

binding of DS4 without any premixed DKK established the 100%

signal. We confirmed that neither DS4 nor DKK bound

unspecifically to the unmodified tips or the coupled anti-Id

respectively. Some samples were analyzed on duplicate tips to

verify that the assay was reproducible between tips.

Octet data were exported into Scrubber v.2.0a (BioLogic

Software Pty Ltd, Australia) for data processing and analysis. The

binding responses obtained for buffer were subtracted from those

obtained for the DKK/DS4 premixes over the coupled anti-Id.

These ‘‘blank-subtracted’’ binding responses were plotted against

the ‘‘nominal’’ antigen concentration to construct an inhibition

curve. The equivalence point of the stoichiometry-controlled

titration is thereby defined as the lowest nominal antigen

concentration that fully inhibits binding of a ‘‘known’’ concentra-

tion of DS4 binding sites. The ratio of the active concentration/

nominal concentration was expressed as a percentage to give the

antigen’s activity.

Calibration-free concentration analysis (CFCA) on the
Biacore

All CFCA experiments were conducted at 25uC on a Biacore

equipped with a CM5 sensor chip, as per the manufacturer’s

recommendations. The running buffer was HBST (10 mM

HEPES pH 7.4, 150 mM NaCl, 0.05% (v/v) Tween-20) for the

immobilization and HBST supplemented with 1 mg/mL BSA was

used for the interaction analysis. To prepare reference and

reaction surfaces appropriate for the CFCA of antigens, flow cells

1 and 2 were activated with a freshly prepared mixture of 0.2 M

EDC and 0.05 M NHS (final concentrations) for 7 min, 60 mg/

mL polyclonal goat F(ab9)2 anti-human Fc in acetate pH 5.0 was

coupled for 7 min, and excess reactive esters were blocked with

0.1 M ethylenediamine in 150 mM sodium borate pH 8.5 for

7 min. The use of ethylenediamine instead of ethanolamine (the

standard blocking reagent for amine-coupling) was intended to

yield a surface with less negative charge than that blocked with

ethanolamine. Final immobilization levels of the capture reagent

were approximately 7,000 RU. The running buffer (HBST) was

then supplemented with 1 mg/mL BSA and DS4 was captured on

flow cell 2 at a typical level of 790 RU, leaving flow cell 1 blank

(naked capture reagent) to provide a reference surface. Each

antigen tested (human DKK1, DKK2 and DKK4) was serially

diluted to typical concentrations of 1, 0.1, and 0.01 mg/mL and

injected in duplicate at flow rates of 5 mL/min and 100 mL/min

for 36 sec over flow cells 1 and 2. The capture surfaces were

regenerated with two 30-sec injections of 75 mM phosphoric acid.

Double-referenced binding responses were analyzed using the

CFCA tool in the Biacore T200 software.

To prepare appropriate reference and reaction surfaces for the

CFCA of DS4 (IgG and Fab), an irrelevant IgG or an anti-DS4

anti-Id were immobilized on flow cells 1 and 2 respectively of a

CM5 chip via amine-coupling using a standard blocking reagent

(1 M ethanolamine HCl pH 8.5). In some experiments, an

activated and blocked surface served as the reference surface.

The CFCA was performed as described above for antigens, except

that surfaces were regenerated with a 2:1 (v/v) blend of Pierce IgG

elution buffer/4 M NaCl when performing CFCA of the Fab.

Kinetic and affinity measurements on the Biacore
Kinetic assays were conducted at 25uC using CM4 sensor chips.

Ethylenediamine-blocked anti-human Fc capture surfaces were

prepared on all four flow cells using a procedure similar to that

described above. This resulted in final immobilization levels of

approximately 4000 RU per channel. Interaction analyses of DS4

with DKK1, DKK3, and DKK4 antigens were performed in

HBST running buffer supplemented with 1 mg/mL BSA.

DKK2/DS4 interactions were analyzed in a kosmotropic running

buffer (10 mM HEPES pH 7.4, 150 mM ammonium sulfate,

0.05% (v/v) Tween-20, and 1 mg/mL BSA). The reaction

surfaces were prepared by capturing DS4 onto different flow cells

at typical levels of 45, 70, and 95 RU. A flow cell without any

captured DS4 (bare capture surface) served as a reference surface.

DKK1, DKK2, and DKK4 samples from different species were

each prepared as a threefold dilution series with a top

concentration of 13 nM (DKK1), 40 nM (DKK4) or 500 nM

(DKK2) and injected at 30 mL/min typically for 3 min using a

variable dissociation time [14]. The capture surfaces were

regenerated with two 30-sec injections of 75 mM phosphoric

acid. No regeneration of the surface was performed when

analyzing human DKK2 because it completely dissociated within

a three minute- dissociation phase. Some antigens were analyzed

in duplicate independent runs to verify that the KD determination

was reproducible. Human DKK3 was injected at 67 nM and
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670 nM over DS4 captured at 110 RU in a manual run using

HBST running buffer.

Kinetic data obtained on the Biacore were processed and

analyzed in Biacore T200 evaluation software version 1.0. Double-

referenced data [22] from three different capacity reaction surfaces

were fit globally to a simple 1:1 Langmuir model with mass

transport to extract the apparent association (ka) and dissociation

(kd) kinetic rate constants, whose ratio gave the apparent

equilibrium dissociation constant (KD = kd/ka). The titration

results from the Octet solution competition assays (described

above) were used to adjust the ‘‘nominal’’ antigen concentrations

to ‘‘active’’ antigen concentrations, and thus correct the apparent

ka and KD values accordingly. The KD for the DKK2/DS4

interaction was determined using an equilibrium binding model.

Solution affinity measurement on the Biacore
Prior to determining the solution affinity of mouse DKK4

binding to DS4 Fab, the active concentrations of both reagents

were empirically determined via CFCA, as described above. To

perform a solution affinity measurement, the reaction surface was

prepared by amine-coupling an anti-Id to a CM5 chip and

blocking excess reactive esters with ethylenediamine. An activated

and ethylenediamine-blocked surface served as a reference surface.

Mouse DKK4 was titrated as a twelve-membered, twofold dilution

series with a top concentration of 700 pM into 8.3 pM DS4 Fab

and these samples were allowed to equilibrate at 25uC. Addition-

ally, a calibration curve was prepared using a twofold serial

dilution of the Fab alone. All samples were injected in triplicate

over the reference and reaction surfaces for 30 min at 10 uL/min,

followed by a two-minute injection of 15 ug/mL mouse anti-

human kappa mAb to enhance the signal. Surfaces were

regenerated with two 30-sec injections of a 2:1 (v/v) blend of

Pierce IgG elution buffer/4 M NaCl.

Single-referenced data from the enhancement step were

obtained by subtracting the reference surface responses from the

reaction surface responses and analyzed with the solution affinity

model in the Biacore T200 evaluation software. Thus, the free Fab

concentration in each sample was determined via the calibration

curve and the KD fitted to a bimolecular binding equation. For

Figure 5E, the y-axis was converted to the percentage of free DS4

Fab in order to resemble the KinExA plots.
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