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A B S T R A C T

When designing a cancer clinical trial, it is usual to assume an exponential distribution for a time-to-event
outcome such as overall survival (OS). OS is often expressed as the sum of progression-free survival (PFS) and
survival post-progression (SPP), each of which is assumed to be exponentially distributed. Then, OS does not
follow an exponential distribution any more but a gamma or hypo-exponential distribution. In this study, we
derived a sample size calculation formula for comparing OS between two treatment arms using the log-rank test
for OS following a gamma or hypo-exponential distribution. We conducted a simulation study to evaluate the
sample size and power calculation based on the gamma or hypo-exponential distribution. We found that we
could reduce the sample sizes considerably compared to when assuming an exponential distribution for OS.

In cancer clinical trials, whether a benefit in progression-free sur-
vival (PFS) translates into overall survival (OS) is controversial. OS is
the gold standard for clinical benefits in oncology [1], but PFS is often
used as a primary endpoint because it is quicker to assess and is ex-
pected to correlate with OS. Giessen et al. [2] reviewed 50 randomized
first-line trials in metastatic cancer and concluded that PFS consistently
highly correlated with OS. However, it is often observed that a sig-
nificant improvement in PFS fails to lead to a significant improvement
in OS. Booth and Eisenhauer [3] explained that the most widely cited
reason is the influence of post-progression therapy. Broglio and Berry
[4] conducted a simulation study to examine the impact of survival
post-progression (SPP) on OS by partitioning OS into PFS and SPP, i.e.,
OS=PFS + SPP. They assumed a treatment benefit in PFS and no
treatment effect on SPP. Their simulation results showed that longer
SPP resulted in a weaker correlation between the hazard ratios for PFS
and for OS and a less significant OS hazard ratio.

On the contrary, as noted in the paper by Morita et al. [5], statis-
tically significant efficacy in OS was found but not in PFS in certain
clinical trials [6,7]. Morita et al. [5] conducted similar simulations to
Broglio and Berry [4] under the different assumption that only SPP, and
not PFS, differed between treatment arms. Their simulation results
suggested that shorter PFS resulted in more statistically significant OS
benefit, which means that the OS curves depended greatly on the dif-
ference in SPP.

In both simulation studies mentioned above, OS was expressed as

the sum of PFS and SPP, each of which was assumed to be exponentially
distributed. In most clinical trials where OS is the primary endpoint,
sample size and power calculation is usually based on the assumption of
exponentially distributed OS. However, is it reasonable to assume an
exponential distribution for OS when it is the sum of two exponentially
distributed variables? In this study, we discuss issues on the sample size
and power calculation by properly considering the distribution of OS as
the sum of PFS and SPP.

Assume that PFS and SPP are independently exponentially dis-
tributed with hazard rate 1 and 2, respectively. Defining OS as the sum
of two independent variables following exponential distributions makes
the distribution of OS a gamma distribution if = =1 2 , and hypo-
exponential otherwise. The corresponding hazard function is given by
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It is obvious that the hazard functions of OS for two treatment arms
are not proportional from equation (1).

Now we derive a sample size formula when OS is assumed to follow
a gamma or hypo-exponential distribution. Let
h t f t F t and S t( ), ( ), ( ), ( )OS

k k k k be the hazard function, probability
density function, distribution function, and survival function of OS, and
let H t( )k be the distribution function of censoring time for treatment
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arm k (k=A, B). Also denote the proportion of patients assigned to arm
k by Pk. Here we assume the equal number of patients for the two arms
( = =P P 0.5A B ) and the identical distribution function for censoring
time ( = =H t H t H t( ) ( ) ( )A B ).

Schoenfeld [8] showed that the distribution of the log-rank test
statistic is asymptotically normal with unit variance and mean given by
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Therefore, the total sample size n for the log-rank test with sig-
nificance level and power 1 can be derived as
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where z denotes the × 100 percentile of the standard normal dis-
tribution. If the distributions of PFS and SPP are exponential, we can
obtain explicit forms for all functions except for H t( ) in equation (2).
We assume that the patient accrual follows a discrete uniform dis-
tribution (0, ]0 , and that censoring occurs only at the end of follow-up
time . Then, the integrand in the denominator can be expressed as a
function of t and the sample size n can be calculated using Monte Carlo
integration.

To evaluate the sample size and power based on formula (2), we
performed a simulation study. Using the “hit-or-miss” method [9] for
Monte Carlo integration, we calculated sample sizes for detecting a 3 or
6 months difference in medians of OS between two arms with = 0.05
and =1 0.8. We compared the results with the sample sizes calcu-
lated assuming exponentially distributed OS. Next, we generated OS
using the sum of PFS and SPP for as many patients as the sample sizes
calculated as described above. We generated each patient's PFS from an
exponential distribution with a median of 9 for arm A and with a
median of 6 or 3 months for arm B, and each patient's SPP from an
exponential distribution with a median of 3, 6, 9, and 12 months for
both arms. We assumed 0 equal to 12 months and about 3 times of
PFS + SPP for arm A. We estimated power of the log-rank test for OS

using the simulated data from 1000 replications.
Table 1 summarizes the sample size calculation and power simula-

tion results. Sample sizes calculated from equation (2) were much
smaller than those calculated when assuming exponentially distributed
OS. Estimated power of the log-rank test for OS following a gamma or
hypo-exponential distribution was close to assumed power of 80% or a
bit higher. The sample size calculated assuming exponentially dis-
tributed OS with a median of the sum of medians of exponentially
distributed PFS and SPP is overestimated. This is due to a larger var-
iance of an exponential distribution compared to a gamma or hypo-
exponential distribution with the same mean. Our study results imply
that we can reduce the sample size in cancer clinical trials with OS as
the primary endpoint, by properly deriving the distribution of OS from
the distributions of PFS and SPP.

We only considered that OS was expressed as the sum of in-
dependently exponentially distributed PFS and SPP. This may seem
unreasonable. However, the study by Sundar et al. [10] that evaluated
the relationship between SPP and PFS in advanced ovarian cancer
showed that increases in median PFS generally lead to little change in
SPP. Although little correlation between PFS and SPP was found in
trials of a specific cancer, we do not believe that assuming in-
dependence between PFS and SPP is too unrealistic. Still, it would be
worth trying to extend our results to more general situations. Con-
sidering that a patient can die without the occurrence of progression,
further studies may be needed to derive a mixture distribution or to
consider a multi-state model.
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Table 1
Estimated sample size for comparing overall survival (OS) between two treatment arms using log-rank test for OS following a gamma or hypo-exponential dis-
tribution (α= 0.05, β= 0.2).

Maximum follow-up time (mo) Median PFS (mo) Median SPP (mo) Gamma or Hypo-exponential Exponential Sample size ratio (C)/(D)

Arm A Arm B nA=nB (C) Power (%) nA= nB (D)

36 9 6 3 122 81.7 222 0.55
48 6 171 81.1 358 0.48
60 9 254 80.6 529 0.48
60 12 367 80.4 776 0.47

36 9 3 3 24 86.9 38 0.63
48 6 37 83.9 68 0.54
60 9 58 81.9 106 0.55
60 12 85 79.8 160 0.53
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