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Abstract: This study aimed to analyze the effects of pulp capping materials on gene expression
changes in primary tooth-derived dental pulp cells using next-generation sequencing. Dental pulp
cells were extracted and treated with mineral trioxide aggregate (MTA), Biodentine (BD), or TheraCal
LC (TC). Cell viability assays were performed. Total RNA was extracted and analyzed through
mRNA sequencing. Bioinformatic analysis of differential gene expression in dental pulp cells exposed
to BD or TC versus MTA was performed. MTA, BD, and TC exposure had no significant effect on
pulp cell viability (p > 0.05). Gene sets associated with inflammatory response (p = 2.94 × 10−5) and
tumor necrosis factor alpha (TNF-α) signaling via the nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-κB) pathway (p = 2.94 × 10−5) were enriched in all materials. In BD-treated cells,
Wnt/β-catenin signaling (p = 3.15 × 10−4) gene sets were enriched, whereas enrichment of interferon
gamma (IFN-γ) response (p = 3 × 10−3) was observed in TC-treated cells. In gene plot analysis,
marked increases in receptor activator of nuclear factor kappa-B ligand (RANKL) expression were
seen in TC-treated cells over time. Despite the similar cell viabilities exhibited among MTA-, BD-,
and TC-treated cells, patterns of gene networks differed, suggesting that diverse functional gene
differences may be associated with treatment using these materials.

Keywords: gene expression; mineral trioxide aggregate; Biodentine; TheraCal LC; direct pulp
capping; primary tooth

1. Introduction

Direct pulp capping (DPC) is a biological treatment used to ensure pulp vitality by sealing the pulp
exposure site with a biomaterial [1]. Previously, DPC was not recommended in primary teeth, as its
success rate was considerably low [2,3]. A previous study identified the presence of a cluster of CD34+

cells in the primary tooth pulp by microscopic analysis, and demonstrated these are undifferentiated
mesenchymal-like cells [4]. Another study suggested that the low success rate of DPC in primary
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teeth is due to the large number of undifferentiated mesenchymal stem cells in the pulp of primary
teeth [2]. These stem cells can differentiate not only into odontoblasts, but also into odontoclasts,
which may hamper pulp healing. Therefore, an ideal goal of DPC should be to promote differentiation
of undifferentiated stem cells into odontoblastic cells instead, which promote pulp regeneration via
hard tissue formation [5]. To facilitate hard tissue formation, great attention has been focused on the
interaction between pulp cells and pulp capping materials.

Recently, various pulp capping materials have been proposed for use in DPC of primary teeth [1,6,7]:
in particular, mineral trioxide aggregate (MTA) has served as the gold standard because of its excellent
antibacterial performance and biocompatibility [8]. However, long setting times and low resistance to
discoloration remain major drawbacks of MTA [9,10], which were addressed with the more recently
developed Biodentine (BD) and TheraCal LC (TC). BD is a calcium silicate cement that has a shorter
setting time and less discoloration potential compared to MTA [9,11]. TC is composed of resin
monomers and type III Portland cement. Thus, the setting time can be accelerated by light-curing.
TC releases calcium ions after light-curing and has good bioactivity [12]. These advantages have
resulted in more widespread use of BD and TC as pulp capping materials for DPC in primary
teeth [1,6,7,13].

Previous in vitro studies confirmed that MTA stimulates odontogenic differentiation, proliferation,
and mineralization of human dental pulp stem cells (hDPSCs) [14,15]. A previous microarray
study reported that MTA positively affects genetic changes in hDPSCs [16]. The study concluded
that MTA greatly influences mineralization and induces slight inflammation. In an in vitro DPC
model, BD showed the potential to preserve hDPSC proliferation, migration, and adhesion [17].
Moreover, previous studies comparing the effects of MTA and BD reported that BD accelerated hDPSC
proliferation in comparison to MTA [18,19]. TC has been shown to result in superior cell viability of
hDPSCs compared to calcium hydroxide [20]. Conversely, TC has also been reported to have low
cytocompatibility compared to MTA and BD [21]. A similar phenomenon was confirmed by another
study, which compared the cytotoxicity of resin-based sealers on hDPSCs and demonstrated that the
cell viability was significantly lower for up to 72 h when resin-based sealers were used than that in the
control group [22].

To date, several in vitro studies using real-time polymerase chain reaction (RT-PCR) have identified
specific hDPSC gene expression regarding the biological effects of pulp capping materials. Sun et al. [23]
evaluated the expression of alkaline phosphatase (ALP), collagen type I (COL1) and osteocalcin (OCN)
after BD and iRoot Fast Set exposures. They demonstrated that there were no differences in the
expression of these genes between the two materials. Yu et al. [24] evaluated an experimental
DPC material composed of antibacterial resin monomers and Portland cement, and they concluded
that the material promoted odontogenic differentiation through overexpression of odontogenic
differentiation-related markers. Furthermore, in vitro studies using RNA sequencing are increasing.
Lu et al. [25] assessed the gene expression profiles of hDPSCs and supernumerary teeth-derived
stem cells and concluded that supernumerary teeth-derived stem cells had greater potential for
cell differentiation.

Although the effects of pulp capping materials on hDPSCs are widely known, little is known about
the effect of pulp capping materials on pulp cells in primary teeth. Considering the increasing clinical
use of these materials for DPC of primary teeth, the response of human primary tooth pulp cells treated
with recently developed pulp capping materials should be examined. Therefore, the aim of this study
was to investigate the differential gene expression in BD- and TC-treated human primary tooth dental
pulp cells and to compare them with MTA-treated cells using next-generation sequencing analysis.
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2. Experimental Section

2.1. Preparation of Dental Pulp Cells from Human Primary Teeth

This study protocol was reviewed and approved (03 September 2020) by the Ethics Committee
of Kyung Hee University Dental Hospital, Kyung Hee University, Seoul, Korea (KH-DT20021).
Dental pulp samples were obtained from three primary teeth that were physiologically exfoliated from
healthy children. Briefly, pulp tissues were carefully extracted from the teeth and immediately placed
in phosphate-buffered saline (PBS) solution (WELGENE, Gyeongsan-si, Geyongsangbuk-do, Korea).
Extracted tissues were cut into small pieces and preserved in a growth medium composed of alpha
minimum essential medium (α-MEM, Gibco Invitrogen, Grand Island, NY, USA), 10% fetal bovine
serum (FBS), 100 U/mL penicillin, and 100 mg/mL streptomycin. Cells were seeded into 6-well plates
and incubated in a 37 ◦C, in 5% carbon dioxide (CO2) and humidified atmosphere. As soon as cells
became confluent, they were passaged four times using trypsin and only then used for experiments.

2.2. Material Preparation

Material preparation was performed as previously described [26]. MTA (ProRoot MTA;
Dentsply, Tulsa Dental, Tusal, OK, USA), BD (Septodont, Saint-Maur-des-Fossés, France), and TC
(Bisco, Schaumburg, IL, USA) were prepared under aseptic conditions. MTA and BD were mixed in
accordance with the manufacturers’ instructions, loaded into a polyethylene tube (5 mm diameter,
3 mm height) for molding, and allowed to set for 24 h at 37 ◦C in a humidified atmosphere. TC was
loaded into a polyethylene tube, light-cured for 120 s, and then allowed to set for 24 h at 37 ◦C in a
humidified atmosphere. Ultraviolet radiation was used for sterilization. Growth medium (50 mL) was
added to the molded materials and allowed to infuse. A 1:20 dilution of growth medium infused with
the materials was prepared before the experiments and filtered using a 0.2 µm syringe filter.

2.3. Cell Viability Assay

Cell viability was evaluated using a water-soluble tetrazolium salt assay. Donor cells were pooled,
seeded in 96-well plates (2 × 104 cells/well) in α-MEM supplemented with 10% FBS, and incubated for
24 h. Cells were then treated with a 1:20 dilution of growth medium infused with the pulp capping
materials and left to incubate for either 24 or 72 h; 10 µL tetrazolium salt reagent (EZ-CYTOX; Daeil Lab,
Seoul, Korea) was added to each well before incubating the cells at 37 ◦C for further 4 h. The optical
density (OD) was read at 450 nm using a Multiskan GO microplate spectrophotometer (Thermo Scientific,
Waltham, IL, USA). Cell viability was calculated using the formula: OD (experimental material) / OD
(control; no treatment) and presented as a percentage.

2.4. Next-Generation Sequencing

Total RNA was extracted using TRIzol ReagentTM (Invitrogen, Carlsbad, CA, USA) according
to the manufacturer’s instructions. RNA quality and quantity were measured using an Agilent
2100 bioanalyzer with an RNA 6000 Nano LapChip kit (Agilent Technologies, Amstelveen,
The Netherlands) and an ND-2000 Spectrophotometer (Thermo, Wilmington, DE, USA). All RNA
libraries were constructed using the QuantSeq 3 mRNA-Seq Library Prep Kit (Lexogen, Vienna,
Austria). Polymerase chain reaction was performed for RNA purification using PCR Mix and Enzyme
Mix 3 kit (Lexogen, Vienna, Austria). The reactions were optimized by examining the thermocycling
temperature (72–98 ◦C) and time (10–30 s), cooling temperature (10 ◦C), and the number of PCR
cycles (16 cycles). Next, high-accuracy sequencing was assessed by high-throughput, single-end 75 bp
sequencing using a NextSeq 500 (Illumina, San Diego, CA, USA).
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2.5. Identification of Differentially Expressed Genes (DEGs)

Bowtie2-build [27] was used to align the QuantSeq 3 mRNA-Seq reads to the human reference
genome. Bowtie2 indexes were generated from either genome assembly sequences or representative
transcript sequences that aligned to the genome and transcriptome. Aligned reads were used for
assembly and quantification of transcripts and identification of differential gene expression. DEGs were
determined based on the read counts using coverage in BEDtools [28]. Quantile normalization of the
read count data was performed using EdgeR within R software (R Development Core Team, Vienna,
Austria) [29].

Gene expression was determined using the ExDEGA 1.2.1.0 program (EBIOGEN, Seoul, Korea).
Only genes with greater than 2-fold change in expression compared to MTA (set as control) and with a
p-value < 0.05 were considered to be DEGs, as previously described [26]. The Database for Annotation,
Visualization, and Integrated Discovery (DAVID v6.8) (http://david.abcc.ncifcrf.gov) was used to search
for gene classification.

2.6. Bioinformatics Analysis

Hallmark gene sets were generated using gene set enrichment analysis (GSEA) 4.0.0. program [30].
The false discovery rate (FDR) was set at q < 0.05 [31]. Gene plot analyses were performed using
ExDEGA. To analyze the molecular interactions of cell proliferation, differentiation, and migration,
the Search Tool for the Retrieval of Interacting Genes (STRING) was used to generate protein-protein
interaction (PPI) networks with a 2-fold change cutoff. The minimum required interaction score was
set at a high confidence level (>0.700). The number of clusters was set at 3 for k-means clustering.

2.7. Statistical Analysis

SPSS 20.0 (SPSS, Chicago, IL, USA) software was used for statistical analysis. The Kruskal-Wallis
test and Mann-Whitney test (as post hoc analysis) were used for cell viability and the results were only
considered statistically significant if p < 0.05.

3. Results

3.1. Cell Viability

To evaluate the effect of pulp capping materials on cell viability, cells in 96-well plates were
treated with MTA, BD, and TC conditioned growth medium, and the OD of these wells was compared.
As shown in Figure 1, compared with that in MTA, cell viabilities in the BD and TC groups were not
significantly decreased (p > 0.05). With time, the cell viabilities in the presence of MTA, BD, and TC
decreased without statistical significance (p > 0.05).

3.2. DEG Identification

Scatter plot analysis showed that the DEG profiles of MTA-, BD-, and TC-treated cells were
predominantly overlapping (Figure 2). Although not statistically significant, the DEG profiles of BD-
and TC-treated cells appeared to differ the most in cells treated for 72 h. Figure 3A shows a Venn
diagram of DEGs in BD- and TC-treated cells compared to MTA-treated cells. There was an overlap of
194 DEGs between BD- and TC-treated cells, with 37 up-regulated genes, 39 down-regulated genes,
and 118 contra-regulated genes.

http://david.abcc.ncifcrf.gov
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Figure 1. Cell viability test. The cell viability under different conditions was evaluated by water-soluble
tetrazolium salt assay. There were no significant differences among different conditions both 24 and
72 h (p > 0.05). Control, no treatment.
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genes, while green plots present down-regulated genes.
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Figure 3. Gene set enrichment analysis. (A) Venn diagram analysis. (B–F) Hallmark gene set enrichment
analysis. Only gene sets with q-value < 0.05 were included. (B–F) show detailed data of the boxes with
the respective lowercase letters in (A). No significant gene sets were screened in the hallmark gene
set analysis; FDR, false discovery rate; k/K, Color bar shading from light green to black, where lighter
colors indicate more significant FDR q-value (<0.05) and black indicates less significant FDR q-values
(≥0.05).

3.3. Gene Set Enrichment Analysis (GSEA)

Figure 3B shows hallmark gene set enrichment in both BD-treated and TC-treated cells at all
treatment durations. The enriched gene sets were associated with allograft rejection, inflammatory
responses, and TNF-α signaling via the NF-κB pathway. Interestingly, these hallmark gene sets were
enriched only in contra-regulated DEGs. Table 1 shows the list of overlapping DEGs in these hallmark
gene sets. There were different levels of overlapping DEGs from BD- and TC-treated cells compared to
MTA-treated cells (except for KLRD1) over time. For example CCL5 expression in MTA-treated cells
increased over time, whereas CCL5 expression in BD- and TC-treated cells decreased over time.
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Table 1. Overlapping differentially expressed genes (DEGs) in hallmark gene sets enriched in all pulp
capping materials.

Gene Description

Normalized Fold Change (log2)

MTA BD TC

24 h 72 h G 24 h 72 h G 24 h 72 h G

CCL5 1,2,3 C-C motif chemokine
ligand 5 4.768 0.055 ↓ 0.828 3.317 ↑ 1.072 2.224 ↑

IL-18 1,2,3 Interleukin 18 1.757 3.505 ↑ 3.043 1.367 ↓ 2.863 2.496 ↓

ICOSLG 1,2,3 Inducible T-cell
co-stimulator ligand 0.000 2.846 ↑ 3.070 0.176 ↓ 1.052 0.919 ↓

MAP4K1 1
Mitogen-activated

protein kinase kinase
kinase kinase 1

2.409 1.045 ↓ 0.000 2.258 ↑ 0.031 2.740 ↑

LTB 1 Lymphotoxin beta 6.443 2.071 ↓ 2.140 4.072 ↑ 0.097 3.354 ↑

KLRD1 1 Killer cell lectin-like
receptor D1 2.177 1.035 ↓ 0.000 2.207 ↑ 0.019 0.000 ↓

CXCL6 2,3 C-X-C motif
chemokine ligand 6 1.371 0.034 ↓ 0.000 3.249 ↑ 0.038 3.392 ↑

C3AR1 2
Complement
component 3a

receptor 1
1.454 0.011 ↓ 0.000 1.185 ↑ 0.012 1.533 ↑

SELL 2 Selectin L 3.421 0.032 ↓ 0.000 2.585 ↑ 0.036 1.921 ↑

Hallmark gene sets of all pulp capping materials presented allograft rejection, inflammatory response, and TNF-α
via the NF-κB signaling pathway (Figure 3B). Hallmark gene sets: 1, allograft rejection; 2, inflammatory response;
and 3, TNF-α via the NF-κB signaling pathway. G refers to the gradient between 24 h and 72 h. ↑, (+) gradient over
time; ↓, (−) gradient over time.

Among the hallmark gene sets only enriched in TC-treated cells, xenobiotic metabolism was
identified in cells treated for 24 h (Figure 3C). TNF-α signaling via the NF-κB pathway, inflammatory
responses, and INF-γ responses were enriched in cells exposed to TC for 72 h (Figure 3D). Hallmark gene
sets only enriched in BD-treated cells at 24 h included KRAS signaling (Figure 3E). In BD-treated cells,
inflammatory responses, Wnt/β-catenin signaling, interleukin 6/Janus kinases/signal transducer and
activator of transcription proteins 3 (IL-6/JAK/STAT3) signaling, and INF-γ responses were enriched
after 72 h (Figure 3F).

3.4. Gene Plot Analysis

Several genes related to inflammatory response (TNF-α, IL-6), odontogenesis (RUNX2, MMP-13),
osteoclastogenesis (RANKL), and mineralization (BMP2, THBS1) were included in the gene plot
analysis (Figure 4). TNF-α expression increased in both BD- and TC-treated cells. IL-6 expression was
down-regulated in BD-treated cells compared to that in MTA from 24 h to 72 h. RANKL expression
decreased in BD-treated cells, whereas RANKL expression in TC-treated cells increased greatly from
24 h to 72 h. In addition, genes related to mineralization showed weak expression in both BD- and
TC-treated cells at both time points, except for Decorin (DCN) expression in BD-treated cells.

3.5. PPI Network Analysis

For the DEGs expressed in all capping materials, the PPI network contained 198 nodes and
255 edges (Figure 5A). The PPI enrichment p-value was 1.0 × 10−16. The PPI network of the DEGs in
BD-treatment only had 146 nodes and 63 edges, with p-value 0.0208 (Figure 5B). Figure 5C shows the
PPI network of the DEGs in TC treatment only, with 147 nodes, 59 edges, and p-value 2.24 × 10−7.
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4. Discussion

DPC of primary teeth is increasingly being applied in dental settings. Critical for the success of
DPC is the selection of proper pulp capping materials to promote dentin bridge formation, as well as
overlay restorations [32], which should have superior properties against bacterial penetrations [33].
Moreover, adequate bonding between the pulp capping materials and the restorations can provide
adhesive joints and thus stress relief [34]. Recent clinical studies investigating pulp capping materials
such as MTA and TC demonstrated high reliability using DPC in primary teeth [1,6,7,13].

Cell viability assays are usually performed to assess the biocompatibility of different pulp capping
materials. In this study, cell viability after exposure to different pulp capping materials was well
maintained for up to 72 h and was not affected by the type of capping material. These results are
consistent with those of previous studies, suggesting that the viability of stem cells from human
exfoliated deciduous teeth (SHED) treated with MTA and BD are similar after 72 h [35].

Scatter plots showed that the DEG profiles were similar in cells treated with the different materials.
However, considerable differences in gene expression were observed at 72 h between TC-, MTA-,
and BD-treated cells. These findings suggest that further biological differences may emerge over a
longer period of time in cells exposed to TC compared to those exposed to MTA or BD.

To thoroughly investigate the functional differences in gene expression between BD- and TC-treated
cells compared to MTA-treated cells over time, hallmark GSEA was performed. The hallmark gene
sets enriched in cells exposed to each of the materials were inflammatory response pathways and
TNF-α signaling via the NF-κB signaling pathways. The pulpal defense and repair mechanisms against
dentin-invading bacteria involve secretion of pro-inflammatory and immunomodulatory mediators by
odontoblasts into the pulp area, resulting in the activation of various immune cells [36]. NF-κB is an
important transcription factor in this mechanism [37].

Expression of CCL5, IL-18, ICOSLG, and CXCL6 overlapped in the two enriched pathways (Table 1).
Interestingly, there were differences in gene expression levels over time between MTA-treated cells
compared to BD- and TC-treated cells. This finding suggests that the biological functions of these
hallmark pathways may be different in MTA-treated cells compared to BD- and TC-treated cells.
CCL5 is a pro-inflammatory cytokine induced by NF-κB activation. In this study, MTA-treatment
resulted in decreased CCL5 expression over time. This result is consistent with that of a previous study,
suggesting that MTA has an anti-inflammatory effect via CCL5 down-regulation [38]. However, BD
and TC treatment resulted in increased CCL5 expression over time. IL-18 is also a pro-inflammatory
cytokine, and its secretion is strongly induced in pulp inflammation caused by dental caries [39].
IL-18 expression in MTA-treated cells increased over time, whereas BD and TC treatment resulted in
decreased IL-18 expression. CXCL6 is a pro-inflammatory cytokine associated with chemotactic and
pro-angiogenic activity: a human study on apical periodontitis reported that its expression originates
from inflamed gingival tissue [40], while another study reported its overexpression (fold change >100)
in the odontoblastic layer of carious teeth [41].

Wnt/β-catenin signaling has shown potential to enhance odontoblastic differentiation in
hDPSCs [42]. Interestingly, gene sets associated with Wnt/β-catenin signaling were enriched in
BD-treated cells at 72 h. This finding is consistent with a previous study on DPC in rat molars [43],
which observed more favorable treatment outcomes in molars treated with BD than with MTA. The study
reported that β-catenin expression was only observed in BD-treated rat molars and suggested that
Wnt/β-catenin signaling may be related to BD-induced reparative dentin formation.

IFN-γ mediates innate and adaptive immune responses [44] and is necessary for osteogenic
differentiation of mesenchymal stem cells [45]. A recent study reported that high concentrations of
IFN-γ positively affected dentinogenic functions in irreversible pulpitis-derived hDPSCs [46]. There is
also evidence that IFN-γ is responsible for reparative dentin formation. [47]. Our results showed
up-regulation of IFN-γ response gene sets in both BD- and TC-treated cells at 72 h.

Gene plot analysis was used to compare time-dependent gene expression changes in BD- and
TC-treated cells compared to MTA-treated cells. Among the genes related to inflammatory responses,
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the expression pattern of TNF-α and IL-6 differed. The intensity of TNF-α expression after 72 h in BD-
and TC-treated cells was similar to that in MTA-treated cells. However, IL-6 expression in BD-treated
cells was down-regulated compared to those treated with MTA alone. Similar findings were confirmed
by a study evaluating the effects of biomaterials on hDPSCs from apical papilla [48]. Interestingly,
marked increases in RANKL expression were seen in TC-treated cells over time. RANKL is associated
with osteoclastogenesis [49]. This finding confirms previous findings that TC-induced DEGs may
be involved in the biological process associated with osteoclastogenesis [26]. Resin monomers have
limited potential in promoting human dental pulp cells to differentiate into odontoclasts [50,51].
A previous in vitro study demonstrated that the odontoclastic differentiation ratios were related to resin
monomers in a dose-dependent manner [50]. Because TC is cured by light, some resin components in
the TC may be insufficiently polymerized and consequently released, thus exerting harmful effects
on dental pulp cells [52]. Other adverse effects may include increased pulpal temperature during
light-curing: temperature changes during light-curing can affect pulpal blood microcirculation [53].
Moreover, there is evidence that light-curing of pulp capping materials can cause deformation of
pulpal dentin [54]. Thus, it appears that both resin monomers and light-curing could be responsible for
the different biological effects of TC against those of MTA and BD. BMP2 expression was also found
to be highly up-regulated in BD-treated cells at 72 h, consistent with a previous study using human
osteoblast cells [55].

To understand the comprehensive gene interactions between DEGs, we performed a PPI network
analysis. As discussed, various genes identified in the same hallmark gene sets can differentially
regulate specific signaling pathways. The PPI results showed complex gene interactions involving
various cellular mechanisms. These findings support the concept that evaluation of the networks of
various genes is essential, rather than evaluation of the function of individual genes [56,57].

Several studies have compared the biological effects of pulp capping materials on pulp cells [24,58].
However, these studies were limited to evaluating the expression of specific genes based on biological
effects only. Instead, this study offers significant evidence to prove that analysis of gene-gene
interactions, especially through GSEA and PPI network analysis, can provide a deeper and more
comprehensive understanding of the effects of pulp capping materials on pulp cells.

5. Conclusions

In conclusion, this study evaluated the DEG profiles of primary tooth dental pulp cells treated with
different pulp capping materials using next-generation sequencing. DEGs in MTA-, BD-, and TC-treated
cells were largely overlapping. However, the regulation of overlapping DEGs differed among the pulp
capping materials examined. This finding can provide a new insight into the biological effects of pulp
capping materials.
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