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Background: The incidence of papillary thyroid carcinoma (PTC) is high and increasing

worldwide. Although prognosis is relatively good, it is important to select the minority

of patients with poorer prognosis to avoid side effects associated with unnecessary

over-treatment in low-risk patients; this requires accurate prognostic predictions.

Materials and Methods: Six PTC expression datasets were obtained from

the gene expression omnibus (GEO) database. Level 3 mRNA expression and

clinicopathological data were obtained from The Cancer Genome Atlas Thyroid Cancer

(TCGA–THCA) database. Through integrated analysis of these datasets, highly reliable

differentially-expressed genes (DEGs) between tumor and normal tissue were identified

and lasso Cox regression was applied to identify DEGs related to the progression-free

interval (PFI) and to establish a prognostic gene signature. The performance of a

five-gene signature was evaluated based on a Kaplan–Meier curve, receiver operating

characteristic (ROC), and Harrell’s concordance index (C-index). Multivariate Cox

regression analysis was used to identify factors associated with PTC prognosis. Finally,

a prognostic nomogram was established based on the TCGA-THCA dataset.

Results: A novel five-gene signature was established to predict the PTC PFI, which

included PLP2, LYVE1, FABP4, TGFBR3, and FXYD6, and the ROC curve and C-index

showed good performance in both training and validation datasets. This could classify

patients into high- and low-risk groups with distinct PFIs and differentiate PTC tumors

from normal tissue. Univariate Cox regression revealed that this signature was an

independent prognostic factor for PTC. The established nomogram, incorporating the

prognostic gene signature and clinical parameters, was able to predict the PFI with high

efficiency. The gene signature-based nomogram was superior to the American Thyroid

Association (ATA) risk stratification to predict PTC PFI.

Conclusions: Our study identified a five-gene signature and established a prognostic

nomogram, which were reliable in predicting the PFI of PTC; this could be beneficial for

individualized treatment and medical decision making.
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INTRODUCTION

The incidence of thyroid cancer is highest among endocrine
tumors, and has been increasing over the past 20 years; it
is now the eighth-most commonly diagnosed cancer in the
world (1). Differentiated thyroid cancer accounts for the most
prevalent thyroid cancer and among this type, thyroid papillary
cancer (PTC) and follicular thyroid cancer have relatively good
prognoses with long term survival rates higher than 90% (2).
Further, PTC accounts for ∼85% of thyroid cancers and by
2030, it will rank fourth among the most common malignant
tumors in the United States (3, 4). A variety of risk factors
such as radiation are associated with the onset of differentiated
thyroid cancer. Moreover, exposure to ionizing radiation during
childhood or adolescence can lead to the development of PTC.
Iodine deficiency and Hashimoto’s thyroiditis were also reported
to be associated risk factors for thyroid cancer (5).

The BRAF V600E mutation is the most common mutation in
PTC. RASmutations are also common, especially in the follicular
variant of PTC, which is relatively indolent. TERT promoter
mutations are reported to be predictive of a worse prognosis
for PTC. Although the incidence of thyroid cancer continues to
rise, its mortality rate remains low. However, the mechanisms
underlying PTC recurrence remain unknown.

Secondary surgery for PTC recurrence results in surgical
trauma and a higher risk of recurrent laryngeal nerve injury
for patients. Further, 77% of PTC recurrence occurs within 5
years post-surgery (6). Lobectomy or total thyroidectomy is
the main treatment for this disease and regular postoperative
neck ultrasound examination and the detection of TSH and
thyroglobulin levels are the major means to monitor recurrence
in patients with postoperative PTC. In addition, patients at a
high risk of recurrence and with aggressive tissue subtypes might
require radioactive iodine (131I) remnant ablation. Postoperative
thyroid cancer patients also undergo routine TSH inhibition
therapy to inhibit tumor recurrence and improve prognosis.
However, long-term subclinical hyperthyroidism caused by TSH
inhibition might lead to a variety of potential side effects
such as osteoporosis, atrial fibrillation, cardiac insufficiency,
and increased risk of fracture and heart disease in elderly
patients (7). Therefore, the challenge for PTC therapy lies in the
balance between side effects due to treatment and benefits to
patients. Accordingly, the accurate assessment of postoperative
PTC prognosis is critical to ensure that low-risk patients are not
over-treated, but that high-risk and advanced patients receive
necessary and more aggressive therapeutics. The American
Thyroid Association (ATA) currently recommends using TNM
staging to predict mortality and have also proposed a system to
estimate the risk of recurrence (8).

With advances in gene chips and high-throughput
sequencing, an increasing number of studies has shown
that gene signatures based on mRNA expression levels has great
potential to predict PTC prognosis. Choi et al. established a
12-gene predictive model (including BCC8, CHI3L1, CLCNKA,
FAM155B, GABRG1, LUM, MRO, MT1G, MT1H, SELV, SLC4A4,
and TMEM92) that might accurately predict nodal metastasis
in PTC using data from The Cancer Genome Atlas Thyroid

Cancer (TCGA THCA) dataset (9). Moreover, using the TCGA
dataset, Lin et al. proposed a seven-gene prognostic signature
(including AGTR1, CTGF, FAM3B, IL11, IL17C, PTH2R, and
SPAG11A) based on immune-related genes that might predict
the prognosis of PTC (10). Thus, further exploration of public
databases such as gene expression omnibus (GEO) and TCGA
could reveal additional genes associated with PTC prognosis to
establish a reliable prognostic prediction model. Such models
combined with clinical pathological parameters might ultimately
represent powerful tools to predict PTC prognosis and guide
individualized postoperative treatment.

In this study, we integrated six PTC datasets from the
GEO database and the TCGA-THCA dataset to identify
reliable differentially-expressed genes (DEGs) in PTCs. Further,
univariate Cox survival analysis and lasso Cox regression
analysis were performed to identify DEGs associated with the
progression-free interval (PFI) of PTC, and we proposed a
prognostic gene prediction model using gene expression and
clinical data from the TCGA-THCA dataset. The molecular
mechanisms underlying the gene prediction models were also
studied. The potential of this model to differentiate malignant
thyroid nodules from normal tissue was also explored. We
further applied multivariate Cox survival analysis to identify
independent risk factors associated with PTC prognosis. Finally,
a nomogram was established combining the gene prediction
model with clinical pathological parameters to predict disease
outcome. Overall, our new model and nomogram might provide
a powerful tool to predict PTC prognosis.

MATERIALS AND METHODS

Gene Expression and Clinical Data
mRNA expression data and related clinical data for PTC were
searched and downloaded fromGEO (https://www.ncbi.nlm.nih.
gov/geo/). The keywords “Thyroid cancer,” “Thyroid carcinoma,”
and “PTC” were used for retrieval. Studies based on “Homo
sapiens” described as “Expression profiling by array” were
included for the next round of screening. Studies involving
only cases of “follicular thyroid cancer” or “undifferentiated
thyroid cancer” were excluded. Studies focusing only on
“cell lines” and “xenografts” were also excluded. Finally, six
gene expression microarray datasets (GSE5364, GSE29265,
GSE33630, GSE35570, GSE38545, GSE60542) were chosen and
downloaded for DEG analysis. The selected datasets all met the
following criteria: (1)contained human thyroid tissue samples;
(2) contained tumor and non-tumor thyroid tissue control
samples; (3) contained at least 40 samples. The probes were
matched to the gene symbols using the annotation file provided
by the manufacturers. The median ranking value was used
to calculate the expression value if a single gene symbol
was matched by multiple probes. The expression data were
normalized based on the Robust Multi-array Average (RMA).

Harmonized RNA sequencing data (HTSeq-counts and
HTSeq-FPKM) and associated clinical information for thyroid
carcinoma (THCA) were downloaded from TCGA (https://
portal.gdc.cancer.gov/, up to June 30, 2019) using TCGAbiolinks
R package (11), which included 507 cases, 510 tumor samples,
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and 58 normal tissue samples. After removing five cases
without corresponding tumor samples, two cases with the
pathological diagnosis of poorly differentiated oncocytic
carcinoma or follicular carcinoma, five cases with a history of
neoadjuvant therapy, eight samples of metastasis, 495 cases with
corresponding tumor tissues and clinical information and 58
normal thyroid tissue samples were ultimately included in the
study. Mutation and copy number alteration data were obtained
from Cbioportal (http://www.cbioportal.org/) (12). Information
regarding BRAF-like and RAS-like classification proposed by
TCGA and was obtain from the official TCGA publication (13).

Integrated Analysis of Microarray Datasets
and Identification of DEGs
For the GEO datasets, DEGs between tumor and normal tissues
were identified using the LIMMA package from R software
(14). For the TCGA dataset, DEG analysis was applied using
TCGAbiolinks in R with harmonized RNA sequencing data in
the form of HTSeq-counts following the official instruction (11).
The cutoff value was set to | Log2FC (fold-change) | >1, p <

0.05, and false discovery rate (FDR) < 0.05. Integrated analysis
of DEGs identified based on six GEO datasets was applied using
the robust rank aggregation (RRA) method-based R package
“RobustRankAggreg”; p < 0.05 was considered statistically
significant. The intersection between integrated DEGs fromGEO
datasets and DEGs of the TCGA-THCA dataset was identified
to obtain reliable DEGs indicative of PTC. Gene ontology and
KEGG enrichment analyses were applied to explore the potential
biological processes, cellular components, molecular functions,
and significantly relevant signaling pathways associated with
the DEGs using DAVID (https://david.ncifcrf.gov/) (15). p <

0.05 was considered statistically significant. The significantly
relevant signaling pathways were visualized using Cytoscape
v3.7.1 (https://cytoscape.org/).

Survival Analysis and Establishment of
Prognostic Gene Signature
Recurrence and metastasis after initial surgery are the main
factors associated with poor outcomes for patients with PTC.
Meanwhile, considering the relatively good prognosis and the
extremely low risks associated with overall survival, the PFI was
chosen as the primary endpoint in this study. All follow-up data
were derived from TCGA Pan-Cancer clinical data (16). The
TCGA-THCA dataset was used to determine whether the DEGs
were associated with the PFI. Normalized gene expression data
in the form of Transcripts Per Million (TPM) were transformed
based on the base-2 logarithm for further survival analysis. Three
cases with follow-up ≤30 days were excluded from the survival
analysis. A total of 492 TCGA cases with a follow-up >30 days
were randomly and equally divided into a training dataset and
a validation dataset. The expression levels of DEGs were then
analyzed in the entire TCGA dataset using a univariate Cox
proportional hazards regression model. DEGs with a p < 0.05
were considered statistically significant and included for further
analysis. The training dataset was then used to construct the
prognostic gene model. Lasso penalized Cox regression analysis

was performed to select prognostic genes associated with the PFI
and to construct a prognostic gene signature for patients with
PTC based on a linear combination of the regression coefficients
derived from the lasso Cox regression model coefficients (β)
multiplied by normalized mRNA expression levels. X-Tile
software was used to determine the optimal cut-off value of the
gene signature (17). Patients were then divided into low- and
high-risk groups accordingly. Kaplan–Meier analysis, the area
under the (AUC) of the receiver operating characteristic (ROC)
curve, and Harrell’s concordance index were used to evaluate
the performance of the prognostic gene signature. The validation
and entire datasets were used for validation. The performance
of the gene signature was also compared with the previously
defined seven-gene signature proposed by Lin et al. (10). Risk
scores for each case were calculated using the same formula
and the optimal cut-off value for each dataset was determined
using X-Tile software. The performance of the gene signature
to differentiate PTC tissues from normal tissues was also tested
based on the AUC of the ROC curve.

Identification of Independent Prognostic
Parameters for PTC
To identify independent prognostic parameters for PTC
associated with the PFI and to validate the independent
prognostic value of the gene signature, univariate and
multivariate Cox regression analyses were performed based
on the prognostic gene signature and clinical parameters,
including BRAF V600E mutation status, RAS mutation status,
TERT mutation status, TERT expression level, age, histological
type, aggressive subtypes, T stage, N stage, M stage, AJCC stage,
residual tumor status, extrathyroidal extension, tumor size,
multifocality, and the anatomic site of tumors based on the entire
TCGA dataset. Parameters with p < 0.25 based on univariate
analysis were further included in the multivariate Cox regression
analysis. p < 0.05 was considered statistically significant.

Building and Validation of a Predictive
Nomogram
After testing for collinearity, independent prognostic parameters
and relevant clinical parameters were included to construct
a prognostic nomogram to predict 1-, 2-, 3-, 4-, and 5-
year progression-free survival for PTC patients in the entire
TCGA dataset using a stepwise Cox regression model. Kaplan–
Meier analysis, AUC of the ROC curve, Harrell’s concordance
index, and a calibration plot comparing predicted progression-
free survival and observed survival were used to evaluate the
performance of the prognostic nomogram. Harrell’s concordance
index was calculated to assess the discrimination of the
nomogram based on a bootstrap method with 1,000 replicates.
The calibration curve of the nomogram was plotted to compare
predicted progression-free survival with observed survival rates.
Based on the total points of the nomogram, patients were
divided into two or three groups according to the optimal cut-
off values determined by X-Tile. Kaplan–Meier analysis was used
to plot the survival curves for groups with different risk levels of
disease progression.
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Statistical Analysis
Statistical analysis was performed using R software v3.4.3 and
GraphPad Prism v8.01 (https://www.graphpad.com). A χ2 test
or Fisher’s exact test was used to analyze categorical variables.
A Student’s t-test was used to analyze continuous variables
for paired samples. One-way ANOVA tests were used to
analyze multiple groups of continuous variables. Univariate and
multivariate Cox regression analyses were performed for survival
analysis. Hazard ratios (HRs) and 95% confidence intervals (CIs)
were calculated to identify DEGs associated with progression-free
survival. P < 0.05 was considered statistically significant unless
otherwise indicated.

RESULTS

Identification of DEGs
This study was carried out based on the flowchart shown
in Figure 1. The detailed information regarding the six
GEO datasets included in this study is shown in Table 1.
In GSE35570, GSE33630, GSE5364, GSE60542, GSE58545,

and GSE29265 datasets, a total of 1554, 807, 222, 731,
753, and 558 DEGs, respectively, were identified between
tumor and normal thyroid tissues (Supplementary Figure 1).
A total of 321 DEGs including 178 upregulated and 143
downregulated genes were identified after the integrated
analysis of the GEO datasets using the RRA method. The
top 20 upregulated and downregulated DEGs identified

by integrated analysis are shown in Figure 2A. In the

TCGA-THCA dataset, a total of 2,264 DEGs including 912

upregulated and 1352 downregulated genes were identified
(Supplementary Figure 1). Finally, a total of 295 reliable DEGs
including 158 upregulated and 137 downregulated genes were
identified based on the intersection between GEO and TCGA
results (Figure 2B, Supplementary Table 1). Hierarchical
cluster analysis showed that the 295 differential genes had
significantly different expression patterns between tumor and
non-tumor tissues, which could distinguish these tissue types
(Figure 2C, Supplementary Figure 2). Functional enrichment
analysis of DEGs were showed in Supplementary Figure 3,
Supplementary Table 2.

FIGURE 1 | Flowchart presenting the process of establishing the five-gene signature and prognostic nomogram for papillary thyroid carcinoma (PTC).
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TABLE 1 | Details of the GEO datasets included in this study.

Datasets References Platform Sample size

(Tumor/Control)

Application

GSE35570 (18) [HG-U133_Plus_2] Affymetrix Human Genome

U133 Plus 2.0 Array

116 (65/51) Identification of DEGs

GSE33630 (19) [HG-U133_Plus_2] Affymetrix Human Genome

U133 Plus 2.0 Array

94 (49/45) Identification of DEGs

GSE60542 (20) [HG-U133_Plus_2] Affymetrix Human Genome

U133 Plus 2.0 Array

63 (33/30) Identification of DEGs

GSE5364 (21) [HG-U133A] Affymetrix Human Genome

U133A Array

51 (35/16) Identification of DEGs

GSE58545 (22) [HG-U133A] Affymetrix Human Genome

U133A Array

45 (27/18) Identification of DEGs

GSE29265 Contributed by Dom et al. (19) [HG-U133_Plus_2] Affymetrix Human Genome

U133 Plus 2.0 Array

40 (20/20) Identification of DEGs

Identification of PFI-Related DEGs and
Establishment of a Five-Gene Prognostic
Signature
The PFI was chosen as the primary endpoint in this study. A
total of 492 TCGA cases with a follow-up period >30 days
were included in survival analysis. The included cases were
randomly and equally divided into a training dataset and a
validation dataset. The baseline characteristics of the patients
are shown in Table 2. The entire TCGA dataset was utilized to
discover DEGs associated with the PFI of PTC using a univariate
Cox regression model. A total of 50 DEGs were identified as
associated with the PFI (Figure 3). A prognostic gene signature
composed of five genes was then developed based on the training
dataset using the lasso Cox penalized regressionmodel, including
proteolipid protein 2 (PLP2), transforming growth factor
beta receptor type 3 (TGFBR3), lymphatic vessel endothelial
hyaluronic acid receptor 1 (LYVE1), FXYD domain-containing
ion transport regulator 6 (FXYD6), and fatty acid-binding
protein, adipocyte (FABP4) (Supplementary Figure 4). Among
these DEGs, PLP2 (upregulated) with a HR > 1 was considered
an oncogene, whereas TGFBR3, LYVE1, FXYD6, and FABP4 (all
downregulated) with HRs< 1 were considered tumor suppressor
genes. The risk score was equal to [(0.06066) × normalized
expression value of PLP2] – [(0.35719) × normalized expression
value of TGFBR3] – [(0.19667)× normalized expression value of
LYVE1] – [(0.10089) × normalized expression value of FXYD6]
– [(0.01634) × normalized expression value of FABP4]. A risk
score for each case was then calculated according to the formula.
X-Tile software was used to determine the optimal cut-off of the
risk score. Patients in the training dataset were then divided into
high- and low-risk groups accordingly (cut-off value = −1.24).
The Kaplan–Meier survival curve revealed significantly worse
prognosis in the high-risk group (p < 0.0001) (Figure 4D). Next,
the prognostic value of the five-gene prognostic signature was
assessed based on the time-dependent ROC and C-index. The
AUCs of the 1-, 2-, 3-, and 4-year risk scores for PFI prediction
were 0.783, 0.783, 0.764, and 0.728, respectively (Figure 4A).
The C-index of the risk score was 0.734 (95% CI, 0.653–0.815).
Further, the expression of the five genes changed gradually along

with the increase in the risk score (Figure 4G). In general, the
results indicated good performance for the five-gene signature in
predicting the PFI of PTC.

Validation of the Performance of the
Five-Gene Prognostic Signature in
Predicting PFI
The validation and entire TCGA datasets were then used to
validate the performance of the five-gene prognostic signature in
predicting PFI. A risk score for each case was calculated using the
same formula. The optimal cut-off value was also determined for
each dataset using X-Tile software. Patients in each dataset were
then divided into high- and low-risk groups accordingly. Kaplan–
Meier survival curves revealed that PFIs were significantly
distinct between high- and low-risk groups in both datasets
(Figures 4E,F). Specifically, patients in the high-risk groups had
notably poorer prognosis than those in the low-risk groups. The
prognostic predictive power of the five-gene signature was then
assessed based on the time-dependent ROC and C-index. In
the validation dataset, the AUCs for 1-, 2-, 3-, and 5-year PFI
prediction based on the gene signature were 0.584, 0.602, 0.619,
and 0.593, respectively, and the C-index of the gene signature was
0.603 (95% confidence interval(CI): 0.484, 0.722) (Figure 4B).
In the entire TCGA dataset, the AUCs for 1-, 2-, 3-, 4-, and
5-year PFI prediction based on the gene signature were 0.662,
0.674, 0.679, 0.666, and 0.648, respectively, and the C-index of
the gene signature was 0.667 (95% CI: 0.593, 0.741) (Figure 4C).
The performance of the five-gene signature was also compared
with the previously defined seven-gene signature proposed by
Lin et al. The five-gene signature had a comparable prognostic
value (C-index, 0.667 vs. 0.632) (Supplementary Figures 5A–E).
The distributions of the risk scores and gene expression data are
shown in Figures 4H,I. Collectively, validation results indicated
that the five-gene signature had good performance in predicting
the PFI of PTC patients.

The gene expression levels of the five genes were explored in
the TCGA dataset (Figures 5A–E). The performance of the five-
gene signature in differentiating normal thyroid tissue from PTC
tissue was evaluated in the GEO and TCGA datasets based on
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FIGURE 2 | Identification of differentially-expressed genes (DEGs) between tumor tissues and normal tissues in papillary thyroid carcinoma (PTC). (A) The heatmap

presenting the top 20 upregulated and downregulated DEGs in PTC after integrated analysis of the six GEO datasets using the robust rank aggregation (RRA)

method. (B) From this, 295 reliable DEGs including 158 upregulated and 137 downregulated genes were identified based on the intersection between GEO and

TCGA results. The upregulated DEGs are shown in red while the downregulated DEGs are shown in blue. The value of Log2FC was presented in each column. (C) A

representative heatmap of TCGA-THCA dataset revealed that the 295 reliable DEGs have significantly different expression patterns between tumor and non-tumor

tissues, which can distinguish these tissue types.
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TABLE 2 | Baseline characteristics of patients in the TCGA-THCA dataset.

Clinical features Training dataset Validation dataset Entire TCGA dataset P-value

N 247 245 492

Follow-up time (day) 1240.09 ± 989.21 1213.29 ± 1003.87 1226.74 ± 995.61 0.956

Risk score −1.35 ± 0.45 −1.31 ± 0.43 −1.33 ± 0.44 0.512

Age 46.50 ± 15.70 48.03 ± 16.00 47.26 ± 15.85 0.565

PFI 0.993

Progression-free 222 (89.88%) 221 (90.20%) 443 (90.04%)

Progression 25 (10.12%) 24 (9.80%) 49 (9.96%)

BRAF V600E 0.896

Wildtype 96 (38.87%) 104 (42.45%) 200 (40.65%)

Mutant 142 (57.49%) 135 (55.10%) 277 (56.30%)

NA 9 (3.64%) 6 (2.45%) 15 (3.05%)

RAS mutation 0.962

Wildtype 209 (84.62%) 209 (85.31%) 418 (84.96%)

Mutant 29 (11.74%) 30 (12.24%) 59 (11.99%)

NA 9 (3.64%) 6 (2.45%) 15 (3.05%)

TERT mutation 0.906

Wildtype 229 (92.71%) 222 (90.61%) 451 (91.67%)

Mutant 16 (6.48%) 19 (7.76%) 35 (7.11%)

NA 2 (0.81%) 4 (1.63%) 6 (1.22%)

TERT expression 0.05 ± 0.18 0.07 ± 0.28 0.06 ± 0.24 0.660

Sex 0.857

Male 69 (27.94%) 63 (25.71%) 132 (26.83%)

Female 178 (72.06%) 182 (74.29%) 360 (73.17%)

Histological type 0.895

Thyroid Papillary

Carcinoma—Classical/usual

181 (73.28%) 169 (68.98%) 350 (71.14%)

Thyroid Papillary Carcinoma—Follicular

(≥ 99% follicular patterned)

49 (19.84%) 52 (21.22%) 101 (20.53%)

Thyroid Papillary Carcinoma—Tall Cell

(≥ 50% tall cell features)

15 (6.07%) 19 (7.76%) 34 (6.91%)

Others 2 (0.81%) 5 (2.04%) 7 (1.42%)

T 0.967

T1 75 (30.36%) 67 (27.35%) 142 (28.86%)

T2 76 (30.77%) 85 (34.69%) 161 (32.72%)

T3 84 (34.01%) 83 (33.88%) 167 (33.94%)

T4 12 (4.86%) 9 (3.67%) 21 (4.27%)

NA 0 (0.00%) 1 (0.41%) 1 (0.20%)

N 0.874

N0 104 (42.11%) 120 (48.98%) 224 (45.53%)

N1 29 (11.74%) 29 (11.84%) 58 (11.79%)

N1a 44 (17.81%) 44 (17.96%) 88 (17.89%)

N1b 41 (16.60%) 31 (12.65%) 72 (14.63%)

NA 29 (11.74%) 21 (8.57%) 50 (10.16%)

M 0.737

M0&Mx 241 (97.57%) 241 (98.37%) 482 (97.97%)

M1 6 (2.43%) 3 (1.22%) 9 (1.83%)

NA 0 (0.00%) 1 (0.41%) 1 (0.20%)

AJCC stage 0.915

Stage I 133 (53.85%) 146 (59.59%) 279 (56.71%)

Stage II 24 (9.72%) 26 (10.61%) 50 (10.16%)

(Continued)
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TABLE 2 | Continued

Clinical features Training dataset Validation dataset Entire TCGA dataset P-value

Stage III 57 (23.08%) 51 (20.82%) 108 (21.95%)

Stage IV 32 (12.96%) 21 (8.57%) 53 (10.77%)

NA 1 (0.40%) 1 (0.41%) 2 (0.41%)

Residual tumor 0.855

R0 184 (74.49%) 191 (77.96%) 375 (76.22%)

Rx 13 (5.26%) 17 (6.94%) 30 (6.10%)

R1 31 (12.55%) 20 (8.16%) 51 (10.37%)

R2 3 (1.21%) 1 (0.41%) 4 (0.81%)

NA 16 (6.48%) 16 (6.53%) 32 (6.50%)

Extrathyroidal extension 0.959

None 165 (66.80%) 160 (65.31%) 325 (66.06%)

Minimal (T3) 62 (25.10%) 70 (28.57%) 132 (26.83%)

Moderate or Advanced (T4) 9 (3.64%) 8 (3.27%) 17 (3.46%)

NA 11 (4.45%) 7 (2.86%) 18 (3.66%)

Multifocality 0.980

Unifocal 130 (52.63%) 128 (52.24%) 258 (52.44%)

Multifocal 113 (45.75%) 111 (45.31%) 224 (45.53%)

NA 4 (1.62%) 6 (2.45%) 10 (2.03%)

Anatomic site 0.666

Unilateral 197 (79.76%) 183 (74.69%) 380 (77.24%)

Isthmus 13 (5.26%) 9 (3.67%) 22 (4.47%)

Bilateral 35 (14.17%) 50 (20.41%) 85 (17.28%)

NA 2 (0.81%) 3 (1.22%) 5 (1.02%)

the ROC analysis. The AUCs of the gene signature based on the
TCGA, GSE5364, GSE29265, GSE33630, GSE35570, GSE58545,
and GSE60542 datasets were 0.962, 0.943, 0.938, 0.979, 1.000,
0.977, and 0.959, respectively, indicating its potential diagnostic
value (Figure 5F). The relationship between the 5-gene signature,
transcriptome profiles and mutational profiles (BRAF, RAS,
EIF1AX, NTRK3-fusion, NTRK1-fusion, RET-fusion and BRAF-
fusion) of PTC were also analyzed and presented in Figure 5G.

Evaluation of Prognostic Factors
Associated With the PFI in PTC
Patients (376/492) from the entire TCGA-THCA dataset with
complete clinical information including BRAF V600E and
RAS mutation status, TERT mutation status, TERT expression
level, sex, age, histological type, TNM stage, residual tumor,
extrathyroidal extension, tumor size, multifocality, and the
anatomic site of tumors were included to identify prognostic
factors (Table 3). Details of exclusion from the further analysis
of each case are listed in Supplementary Table 3. Univariate and
multivariate Cox regression analyses were applied to identify
prognostic factors associated with the PFI in PTC. Univariate
analysis showed that risk score, age, TERT mutation status, TERT
expression level, T stage, N stage, M stage, AJCC stage, and the
largest dimension of the neoplasm were significantly associated
with the PFI (p < 0.05) (Table 4). Parameters associated with P-
values < 0.25 based on univariate analysis were further included
in the multivariate Cox regression analysis. Multivariate analysis

revealed that risk score (p = 0.0077) and RASmutation status (p
= 0.0129) were independent risk factors (Table 5).

Building and Validation of a Prognostic
Nomogram
A prognostic nomogram to predict the 1-, 2-, 3-, 4-, and 5-year
PFI of PTC patients was established based on the 376 patients
with complete clinical information from the TCGA-THCA
dataset using the stepwise Cox regression model (Figure 6A).
Risk score, age, RAS mutation status, tumor size, aggressive
subtype, N stage, and M stage were parameters included in the
nomogram. The AUCs for the 1-, 2-, 3-, 4-, and 5-year PFI
were 0.7480, 0.7097, 0.7550, 0.7761, and 0.7627, respectively
(Figure 6B). The C-index was 0.7600 (95% CI, 0.6759, 0.8440).
The patients were then divided into two or three groups
associated with different levels of risk based on the cut-off
value determined by X-Tile software. Groups with a lower risk
score were associated with better prognosis (Figures 6D,E). The
calibration curve further revealed that the nomogram had good
performance in predicting the PFI of PTC patients (Figure 6C).
When the risk of progression was less than 0.15, the nomogram
might overestimate the risk but when the risk of progression is
greater than 0.15, the nomogram might underestimate the risk.

To compare the prognostic performance of the gene
signature-based nomogram to the currently available risk
stratification system, the estimated risk of tumor recurrence
based on the 2009 American Thyroid Association guidelines
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FIGURE 3 | Expression profiles and the forest plot of hazard ratio (HR) showing the prognostic values of the 50 differentially-expressed genes (DEGs) associated with

progression-free interval of papillary thyroid carcinoma (PTC).

for each case was retrieved from the TCGA integrated genomic
data of PTC (16). For this, 346 cases with complete clinical
information for the nomogram and sufficient information for
ATA risk stratification from the entire TCGA-THCA dataset
were included to compare prognostic performances. The AUCs
to predict the 1-, 2-, 3-, 4-, and 5-year PFI for the nomogram
were 0.7778, 0.7200, 0.7688, 0.7892, and 0.7621 respectively

(Figures 7A–E). In contrast, the AUCs for 1-, 2-, 3-, 4-, and 5-
year PFI prediction based on ATA risk stratification were 0.6986,
0.6154, 0.6409, 0.6608, and 0.6636, respectively. The C-index of
the nomogram was 0.7747 (95% CI, 0.6870–0.8625), whereas the
C-index of ATA risk stratification was 0.6377 (95% CI, 0.5601–
0.7153), we also compare the prognostic performance of the
nomogram with the 2015 version of modified risk stratification
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FIGURE 4 | Evaluation of the performance of the five-gene prognostic model in the training dataset and confirmation based on the validation dataset and the entire

TCGA-THCA dataset. (A) The time-dependent receiver operating characteristic (ROC) for 1-, 2-, 3-, and 4-year progression-free interval (PFI) predictions for the

(Continued)
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FIGURE 4 | five-gene signature in the training dataset. (B) The time-dependent ROC for 1-, 2-, 3-, and 5-year PFl predictions for the five-gene signature in the

validation dataset. (C) The time-dependent ROC for 1-, 2-, 3-, and 4-year PFI predictions for the five-gene signature in the entire TCGA-THCA dataset. (D) The

Kaplan–Meier survival curves of the five-gene signature. Patients from the training dataset were stratified into two groups according to the optimal cutoff values for the

risk scores calculated by X-Tile software. (E) The Kaplan-Meier survival curves of the five-gene signature. Patients from the validation dataset were stratified into two

groups according to the optimal cutoff values for the risk scores calculated by X-Tile software. (F) The Kaplan–Meier survival curves of the five-gene signature.

Patients from the entire TCGA-THCA dataset were stratified into two groups according to the optimal cutoff values for the risk scores calculated by X-Tile software.

(G) Relationship among the risk score (upper), survival status of patients in different groups (middle), and the expression profiles of the five prognostic genes (bottom)

in the training dataset. (H) Relationship among the risk score (upper), survival status of patients in different groups (middle), and the expression profiles of the five

prognostic genes (bottom) in the validation dataset. (I) Relationship among the risk score (upper), survival status of patients in different groups (middle), and the

expression profiles of the five prognostic genes (bottom) in the entire TCGA-THCA dataset.

proposed by the American Thyroid Association (Noted that
modification involving lymph node size is not included) (8).
The MACIS score was also used as control. The risk score had
the highest C-index (0.7747 vs. 0.6449 and 0.6507) indicating a
superior prognostic value (Supplementary Figures 6A–E). The
results indicated that the gene signature-based nomogram was
superior to ATA risk stratification and MACIS in predicting the
PFI of PTC.

The performance of the gene signature-based nomogram
was further explored in different subgroups of BRAF-like
and RAS-like PTCs proposed by TCGA (13). In compare
with the ATA risk stratification and the previously defined
seven-gene signature, the gene signature-based nomogram
had the best prognostic performance in all the subgroups
(Supplementary Figures 7B–G). The performance of both gene
signatures was limited in the RAS-like subgroup indicating
the potential role of RAS mutation as an independent
prognostic factor.

Clinical Relevance of the Gene Signature
The relationships between the gene signature and clinical
parameters were then analyzed. In terms of tumor stage, patients
with stage III and IV PTC had significantly higher risk scores
than patients with stage I and II disease (Figure 7F). The risk
scores of patients with lymph node metastasis were higher than
those for patients without lymph node metastasis; however, this
was not statistically significant (Figure 7G). In terms of mutation
status, patients with the BRAF V600E mutation had significantly
higher risk scores than those without this alteration, whereas risk
scores were comparable between patients with and without RAS
mutations (Figures 7H,I). Patients with TERT mutation also had
significantly higher risk scores than the wildtype. But the TERT
expression level was comparable between high-risk and low-
risk group (Figures 7J,K). We further explored the difference
of the 5-gene signature between BRAF-like, RAS-like and the
Others proposed by TCGA. The risk scores were comparable
between BRAF-like group and RAS-like group. But the BRAF-
like group has significant higher risk score than the Others
(Supplementary Figure 7A).

DISCUSSION

The incidence of PTC is high and increasing worldwide, resulting
in a heavy disease burden on a global scale. Although the
prognosis of PTC is relatively good, patients with recurrent PTC
still suffer from additional surgical trauma and are at higher risk

of surgical complications such as recurrent laryngeal nerve injury
(2). In contrast, PTC patients with low recurrence risk suffer from
long-term subclinical hyperthyroidism caused by unnecessary
postoperative TSH inhibition therapy, which can lead to multiple
potential side effects such as osteoporosis, atrial fibrillation, and
cardiac insufficiency. Traditional clinicopathological parameters
such as TNM staging can predict the mortality associated
with PTC, but it is difficult to accurately estimate the risk
of recurrence (8). The ATA recurrence risk stratification can
predict the risk of recurrence for thyroid cancer, but the accuracy
needs to be further improved. Moreover, it does not reflect
the biological progression of PTC. The accurate prediction of
prognosis for patients with PTC will help to select patients
that could benefit from more aggressive treatments including a
wider range of surgical treatments, I131 treatment, and a higher
degree of TSH inhibition. It also allows patients with a low risk
of recurrence to avoid unnecessary I131 treatment and TSH
inhibition therapy. Therefore, treatment can be individualized
to improve PTC prognosis and improve patient quality of life.
Gene signatures can be quantified by standardized detection
means, vary with the biological progression of the tumor, and can
dynamically reflect prognosis as the patient’s condition changes
using such approaches. Thus, it might be more accurate and
convenient to predict patient prognosis and risk of recurrence.
In addition, these prognostic genes could play an important
role in the progression of PTC and might represent potential
targets to inhibit recurrence and metastasis. Combined with

the detection of tumor-associated exosomes and circulating
tumor cells (CTCs), the real-time detection of disease recurrence
and response to treatment in patients with PTC after tumor

resection can be achieved. Because these prognostic genes are
closely related to the development of this disease, they are also
potential markers for differential diagnosis and the evaluation

of biological characteristics of tumors. Active surveillance of
thyroid papillary microcarcinoma is currently advocated (23).
Predicting the biological characteristics of tumors based on gene
signatures through fine needle aspiration could make active
surveillance safer. Further, PTC is a highly heterogeneous disease
and tumor progression involves a complex network comprising
multiple signaling pathways. Therefore, the combination of
multiple genes can more accurately reflect the biological
characteristics and prognosis of PTC, rather than a single marker.

Nomograms are widely used in oncology to evaluate clinical
prognosis as they integrate multiple prognostic determinants
including molecular biology and clinicopathological parameters
to estimate the individual numerical probabilities of clinical
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FIGURE 5 | Expression level of the five genes in papillary thyroid carcinoma (PTC) and the mutation landscape of PTC. (A–E) Show the mRNA expression levels of the

five genes in the PTC tumor tissues and normal tissues of the TCGA-THCA dataset. (F) Receiver operating characteristic (ROC) curve showing the performance of the

five-gene signature in differentiating normal thyroid tissue from PTC tissue in the GEO and TCGA datasets. (G) The relationship among the 5-gene signature,

transcriptome profiles and mutational profiles (BRAF, RAS, EIF1AX, NTRK3-fusion, NTRK1-fusion, RET-fusion and BRAF-fusion) of PTC. Data were obtained from the

cBioPortal for Cancer Genomics (https://www.cbioportal.org). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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TABLE 3 | Baseline characteristics of patients included for the evaluation of

prognostic factors and establishment of nomogram.

Clinical features Mean + SD

Follow-up time (day) 1258.24 ± 968.52

Risk Score −1.30 ± 0.45

Age 47.19 ± 15.59

N (%)

PFI

Progression-free 338 (89.89%)

Progression 38 (10.11%)

BRAF V600E

Wildtype 143 (38.03%)

Mutant 233 (61.97%)

RAS mutation

Wildtype 333 (88.56%)

Mutant 43 (11.44%)

TERT mutation

Wildtype 344 (91.49%)

Mutant 32 (8.51%)

TERT expression 0.06 ± 0.16

Sex

Male 101 (26.86%)

Female 275 (73.14%)

Histological type

Thyroid Papillary

Carcinoma—Classical/usual

270 (71.81%)

Thyroid Papillary Carcinoma—Follicular

(≥ 99% follicular patterned)

71 (18.88%)

Thyroid Papillary Carcinoma—Tall Cell

(≥ 50% tall cell features)

28 (7.45%)

Others 7 (1.86%)

T

T1 109 (28.99%)

T2 121 (32.18%)

T3 129 (34.31%)

T4 17 (4.52%)

N

N0 187 (49.73%)

N1 54 (14.36%)

N1a 74 (19.68%)

N1b 61 (16.22%)

M

M0&Mx 370 (98.40%)

M1 6 (1.60%)

AJCC stage

Stage I 210 (55.85%)

Stage II 38 (10.11%)

Stage III 85 (22.61%)

Stage IV 43 (11.44%)

Residual tumor

R0 313 (83.24%)

Rx 20 (5.32%)

R1 40 (10.64%)

(Continued)

TABLE 3 | Continued

Clinical features Mean + SD

R2 3 (0.80%)

Extrathyroidal extension

None 255 (67.82%)

Minimal (T3) 107 (28.46%)

Moderate or Advanced (T4) 14 (3.72%)

Neoplasm largest dimension(cm) 2.81 ± 1.58

Multifocality

Unifocal 204 (54.26%)

Multifocal 172 (45.74%)

Anatomic site

Unilateral 294 (78.19%)

Isthmus 18 (4.79%)

Bilateral 64 (17.02%)

Patients from the entire TCGA-THCA dataset without complete clinical information

were excluded.

events (24). Accordingly, personalized medicine can be achieved.
Compared to a conventional staging system, nomograms might
predict prognosis more accurately and are easier for patients
to understand. Therefore, they could contribute to clinical
decision making.

In this study, 321 reliable DEGs in PTC were identified
based on the integrated analysis of GEO and TCGA datasets.
Survival analysis revealed that 50 DEGs were closely associated
with the PFI of PTC. A novel five-gene signature was then
established using lasso-Cox regression analysis to predict the PFI
of PTC based on a training dataset (TCGA dataset). Among
these genes, PLP2 was upregulated and positively associated
poorer survival, whereas LYVE1, FABP4, TGFBR3, and FXYD6
were downregulated and identified as tumor suppressor genes.
The five-gene signature was able to classify patients into groups
with distinct PFIs and was an independent prognostic factor for
PTC. Patients in the high-risk group had a significantly poorer
prognosis than patients in the low-risk group. The prognostic
performance of the five-gene signature was also confirmed based
on the validation dataset and the entire TCGA dataset using
AUC and C-index parameters. The five-gene signature also had
good performance in differentiating PTC tissues from normal
tissues. Moreover, a prognostic nomogram was established based
on the five-gene signature and clinical pathological parameters to
predict the 1-, 2-, 3-, 4-, and 5-year PFI of PTC.

Among this five-gene signature, two were previously reported
to be associated with PTC. LYVE1 acts as a hyaluronic acid
transporter and is involved in the catabolism of lymphatic
endothelial cells and transport of substances (25). It is also
considered a marker of lymphatic vessels (26). The upregulated
expression of LYVE1 in tumor tissues indicates tumor-associated
lymphangiogenesis and was reported to be associated with
worse prognosis in breast cancer, renal cancer, and lung cancer
(27–29). LYVE1 might also play a tumor suppressor role.
In hepatocellular carcinoma, its expression was demonstrated
to decrease progressively from cirrhotic nodules to cancer
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TABLE 4 | Unadjusted univariate analysis.

Exposure Statistics PFI

Risk score −1.30 ± 0.45 4.15 (1.88, 9.16) 0.0004

BRAF V600E

Wildtype 143 (38.03%) 1.0

Mutant 233 (61.97%) 0.99 (0.51, 1.91) 0.9679

RAS mutation

Wildtype 333 (88.56%) 1.0

Mutant 43 (11.44%) 1.91 (0.84, 4.34) 0.1232

TERT mutation

Wildtype 344 (91.49%) 1.0

Mutant 32 (8.51%) 3.25 (1.49, 7.11) 0.0031

TERT expression 0.06 ± 0.16 6.30 (2.25, 17.61) 0.0004

Sex

Male 101 (26.86%) 1.0

Female 275 (73.14%) 0.78 (0.39, 1.55) 0.4830

Age 47.19 ± 15.59 1.02 (1.00, 1.04) 0.0449

Age

≤55 years 264 (70.21%) 1.0

>55 years 112 (29.79%) 2.31 (1.22, 4.38) 0.0101

Histological type

Thyroid Papillary

Carcinoma—Classical/usual

270 (71.81%) 1.0

Thyroid Papillary

Carcinoma—Follicular (≥ 99%

follicular patterned)

71 (18.88%) 0.76 (0.29, 1.98) 0.5763

Thyroid Papillary

Carcinoma—Tall Cell (≥ 50%

tall cell features)

28 (7.45%) 2.16 (0.83, 5.62) 0.1135

Others 7 (1.86%) 0.00 (0.00, Inf) 0.9966

Aggressive subtype

No 347 (92.29%) 1.0

Yes 29 (7.71%) 2.30 (0.90, 5.92) 0.0834

T

T1 109 (28.99%) 1.0

T2 121 (32.18%) 2.59 (0.84, 8.05) 0.0989

T3 129 (34.31%) 3.78 (1.28, 11.17) 0.0162

T4 17 (4.52%) 5.51 (1.38, 22.10) 0.0160

N stage

N0 187 (49.73%) 1.0

N1 189 (50.27%) 2.20 (1.11, 4.36) 0.0238

N1b

No 315 (83.78%) 1.0

Yes 61 (16.22%) 2.07 (0.97, 4.40) 0.0585

M

M0&Mx 370 (98.40%) 1.0

M1 6 (1.60%) 5.36 (1.64, 17.52) 0.0055

AJCC stage

Stage I 210 (55.85%) 1.0

Stage II 38 (10.11%) 1.22 (0.35, 4.28) 0.7574

Stage III 85 (22.61%) 2.72 (1.26, 5.87) 0.0108

Stage IV 43 (11.44%) 4.20 (1.79, 9.86) 0.0010

(Continued)

TABLE 4 | Continued

Exposure Statistics PFI

Residual tumor

R0 313 (83.24%) 1.0

Rx 20 (5.32%) 1.36 (0.32, 5.73) 0.6719

R1 40 (10.64%) 1.74 (0.72, 4.18) 0.2183

R2 3 (0.80%) 3.21 (0.43, 23.74) 0.2541

Extrathyroidal extension

None 255 (67.82%) 1.0

Minimal (T3) 107 (28.46%) 1.62 (0.84, 3.15) 0.1524

Moderate or Advanced (T4) 14 (3.72%) 1.72 (0.40, 7.33) 0.4666

Neoplasm largest

dimension

2.81 ± 1.58 1.23 (1.03, 1.46) 0.0209

Neoplasm largest dimension

≤2 cm 146 (38.83%) 1.0

>2 cm 230 (61.17%) 3.32 (1.39, 7.96) 0.0070

Multifocality

Unifocal 204 (54.26%) 1.0

Multifocal 172 (45.74%) 0.92 (0.48, 1.76) 0.7958

Anatomic site

Unilateral 294 (78.19%) 1.0

Isthmus 18 (4.79%) 0.47 (0.06, 3.46) 0.4598

Bilateral 64 (17.02%) 1.01 (0.42, 2.43) 0.9798

tissues (30, 31). In prostate cancer, LYVE1 was found to be
downregulated and associated with the relapse of localized
prostate cancer (32). Its downregulation was also identified in
ovarian cancer and was associated with poorer survival (33). In
PTC, current study results suggested that the downregulation of
LYVE1 is associated with worse prognosis. In accordance with
our study, LYVE1was previously reported to be downregulated in
PTC tumors based on microarrays and this result was confirmed
by qPCR and IHC (34). However, Gao et al. reported that the
expression of steroid receptor coactivator-1 (SRC-1), a potential
oncogene, is positively associated with LYVE1 and associated
with lymphatic metastasis in PTC (35). Thus, the role of LYVE1
in PTC and its relationship with lymph node metastasis remains
to be elucidated.

FABP4 is a lipid transporter in adipocytes that binds long-
chain fatty acids and retinoic acid, presenting these molecules
to their receptors in the nucleus (36). In accordance with the
results of our study, FABP4 was identified as a tumor suppressor
in multiple cancers. In colorectal cancer, FABP4 was found to
be downregulated and its upregulation inhibited the migration,
invasion, and proliferation of cancer cells (37). In lung cancer,
it was determined that the expression of FABP4 can be induced
by the transcriptional activity of PPARγ , mediating lipolysis
and tumor growth suppression (38). Further, in invasive breast
cancer, the loss of FABP4 expression is associated with a higher
risk of progression (39). In contrast, FABP4 plays an oncogenic
role in hepatocellular carcinoma, promoting proliferation and
migration via downregulation of the HIF1 pathway (40). In
ovarian cancer, FABP4 was identified as a key regulator of

Frontiers in Endocrinology | www.frontiersin.org 14 November 2019 | Volume 10 | Article 790

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Wu et al. Five-Gene Signature Predicts PTC Progression

TABLE 5 | Multivariate cox regression analysis.

Exposure Non-adjusted Adjust I Adjust II Adjust III

Risk score 4.15 (1.88, 9.16) 0.0004 3.39 (1.59, 7.24) 0.0016 3.39 (1.59, 7.24) 0.0016 3.01 (1.34, 6.76) 0.0077

BRAF V600E

Wildtype 1.0 1.0 1.0 NA

Mutant 0.99 (0.51, 1.91) 0.9679 0.87 (0.45, 1.70) 0.6911 0.76 (0.38, 1.49) 0.4183 NA

RAS mutation

Wildtype 1.0 1.0 1.0 1.0

Mutant 1.91 (0.84, 4.34) 0.1232 2.23 (0.97, 5.13) 0.0585 1.97 (0.84, 4.59) 0.1188 4.22 (1.36, 13.11) 0.0129

TERT mutation

Wildtype 1.0 1.0 1.0 1.0

Mutant 3.25 (1.49, 7.11) 0.0031 2.40 (1.02, 5.63) 0.0442 2.11 (0.87, 5.11) 0.0993 1.09 (0.36,3.26) 0.8782

TERT expression 6.30 (2.25, 17.61) 0.0004 5.29 (1.46, 19.10) 0.0111 6.39 (1.70, 23.97) 0.0060 4.57 (0.67,31.19) 0.1210

Sex

Male 1.0 1.0 1.0 NA

Female 0.78 (0.39, 1.55) 0.4830 0.95 (0.47, 1.93) 0.8824 0.96 (0.47, 1.97) 0.9137 NA

Age 1.02 (1.00, 1.04) 0.0449 1.00 (0.97, 1.03) 0.7877 1.00 (0.97, 1.03) 0.8325 0.98 (0.94,1.03) 0.4590

Age

≤55 years 1.0 1.0 1.0 1.0

>55 years 2.31 (1.22, 4.38) 0.0101 1.36 (0.62, 2.97) 0.4390 1.37 (0.62, 3.03) 0.4352 1.88 (0.52,6.82) 0.3346

Histological type

Thyroid Papillary

Carcinoma—

Classical/usual

1.0 1.0 1.0 1.0

Thyroid Papillary

Carcinoma—Follicular (≥

99% follicular patterned)

0.76 (0.29, 1.98) 0.5763 0.83 (0.32, 2.19) 0.7105 0.87 (0.33, 2.28) 0.7746 0.40 (0.10, 1.63) 0.1995

Thyroid Papillary

Carcinoma—Tall Cell (≥

50% tall cell features)

2.16 (0.83, 5.62) 0.1135 1.62 (0.60, 4.38) 0.3456 1.38 (0.50, 3.83) 0.5323 0.16 (0.00, Inf) 1.0000

Others 0.00 (0.00, Inf) 0.9966 0.00 (0.00, Inf) 0.9965 0.00 (0.00, Inf) 0.9970 0.00 (0.00, Inf) 0.9963

Aggressive subtype

No 1.0 1.0 1.0 1.0

Yes 2.30 (0.90, 5.92) 0.0834 1.68 (0.63, 4.50) 0.3040 1.41 (0.52, 3.88) 0.5013 9.44 (0.00, Inf) 0.9999

T

T1 1.0 1.0 1.0 1.0

T2 2.59 (0.84, 8.05) 0.0989 2.52 (0.77, 8.23) 0.1244 2.24 (0.69, 7.26) 0.1801 0.86 (0.17, 4.35) 0.8519

T3 3.78 (1.28, 11.17) 0.0162 2.52 (0.79, 8.11) 0.1199 2.24 (0.71, 7.14) 0.1712 1.55 (0.28, 8.59) 0.6152

T4 5.51 (1.38, 22.10) 0.0160 2.14 (0.44, 10.47) 0.3486 1.74 (0.36, 8.44) 0.4922 0.99 (0.07, 14.88) 0.9949

N stage

N0 1.0 1.0 1.0 1.0

N1 2.20 (1.11, 4.36) 0.0238 1.71 (0.77, 3.79) 0.1859 1.72 (0.78, 3.78) 0.1756 2.00 (0.74, 5.36) 0.1704

N1b

No 1.0 1.0 1.0 1.0

Yes 2.07 (0.97, 4.40) 0.0585 1.30 (0.48, 3.51) 0.6030 1.67 (0.62, 4.50) 0.3072 2.12 (0.69, 6.54) 0.1896

M

M0&Mx 1.0 1.0 1.0 1.0

M1 5.36 (1.64, 17.52) 0.0055 4.20 (1.12, 15.76) 0.0335 4.33 (1.14, 16.49) 0.0315 2.32 (0.25, 21.83) 0.4628

AJCC stage

Stage I 1.0 1.0 1.0 1.0

Stage II 1.22 (0.35, 4.28) 0.7574 1.31 (0.34, 5.13) 0.6959 1.18 (0.30, 4.61) 0.8120 1.20 (0.19, 7.39) 0.8449

Stage III 2.72 (1.26, 5.87) 0.0108 2.98 (1.07, 8.30) 0.0366 2.46 (0.88, 6.85) 0.0847 2.25 (0.62, 8.20) 0.2194

Stage IV 4.20 (1.79, 9.86) 0.0010 4.55 (1.52, 13.63) 0.0068 4.07 (1.31, 12.59) 0.0149 1.56 (0.31, 7.79) 0.5910

(Continued)

Frontiers in Endocrinology | www.frontiersin.org 15 November 2019 | Volume 10 | Article 790

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Wu et al. Five-Gene Signature Predicts PTC Progression

TABLE 5 | Continued

Exposure Non-adjusted Adjust I Adjust II Adjust III

Residual tumor

R0 1.0 1.0 1.0 1.0

Rx 1.36 (0.32, 5.73) 0.6719 0.96 (0.22, 4.14) 0.9539 0.92 (0.21, 3.98) 0.9111 0.96 (0.16, 5.87) 0.9650

R1 1.74 (0.72, 4.18) 0.2183 1.19 (0.48, 2.94) 0.7067 1.19 (0.48, 2.95) 0.7042 1.02 (0.37, 2.80) 0.9669

R2 3.21 (0.43, 23.74) 0.2541 5.14 (0.43, 61.82) 0.1970 3.62 (0.30, 44.06) 0.3137 7.06 (0.33, 152.03) 0.2119

Extrathyroidal extension

None 1.0 1.0 1.0 1.0

Minimal (T3) 1.62 (0.84, 3.15) 0.1524 1.11 (0.54, 2.28) 0.7797 1.02 (0.49, 2.12) 0.9525 0.70 (0.22, 2.28) 0.5583

Moderate or Advanced

(T4)

1.72 (0.40, 7.33) 0.4666 0.61 (0.12, 2.96) 0.5378 0.62 (0.13, 3.00) 0.5484 1.19 (0.10, 13.84) 0.8887

Neoplasm largest dimension 1.23 (1.03, 1.46) 0.0209 1.12 (0.94, 1.34) 0.2008 1.12 (0.92, 1.35) 0.2577 0.81 (0.56, 1.17) 0.2586

Neoplasm largest dimension

≤2cm 1.0 1.0 1.0 1.0

>2cm 3.32 (1.39, 7.96) 0.0070 3.22 (1.33, 7.76) 0.0093 2.90 (1.20, 7.01) 0.0185 3.73 (0.82, 16.98) 0.0880

Multifocality

Unifocal 1.0 1.0 1.0 NA

Multifocal 0.92 (0.48, 1.76) 0.7958 0.80 (0.41, 1.57) 0.5154 0.94 (0.47, 1.86) 0.8554 NA

Anatomic site

Unilateral 1.0 1.0 1.0 NA

Isthmus 0.47 (0.06, 3.46) 0.4598 0.51 (0.07, 3.74) 0.5040 0.49 (0.07, 3.66) 0.4896 NA

Bilateral 1.01 (0.42, 2.43) 0.9798 0.79 (0.32, 1.93) 0.6016 1.00 (0.40, 2.48) 0.9975 NA

Adjust I model adjust for: Age, Sex, and AJCC Stage. Adjust II model adjust for: Age, Sex, AJCC Stage, and Risk Score. Adjust III model adjust for parameters with P < 0.25 based on

univariate analysis.

metastasis and was associated with poorer prognosis (41). FABP4
was also previously reported to convert T4 to T3 in adipocytes,
mediating adaptive thermogenesis (42). In PTC, it was found
that FABP4 is downregulated and partially mediates the tumor-
suppressive effect of PROX1 (43). In our study, FABP4 was found
to be associated with a short PFI in PTC. The tumor suppressor
effect of FABP4 in PTC and its molecular mechanisms deserve
further investigation.

The roles of PLP2, TGFBR3, and FXYD6 in PTC have
not yet been reported. PLP2 is a membrane protein of the
endoplasmic reticulum (44). It was found to be highly expressed
in glioma cells and positively associated with tumor grade
and poorer prognosis. PLP2 mediates tumor proliferation,
invasion, and metastasis via the p38/ERK pathway (45).
In breast cancer, PLP2 is the direct target of the tumor
suppressor MiR-422a (46). Further, its upregulation promotes
the proliferation of breast cancer cells. PLP2 also plays
an oncogenic role in melanoma (47, 48). The upregulation
of PLP2 in melanoma, caused by miR-664 downregulation,
enhances the proliferation and metastasis of melanoma via
the PI3K/AKT pathway. In hepatocellular carcinoma, an
amplitude-modulated electromagnetic field was reported to
inhibit the proliferation of cancer cells via PLP2 downregulation
(49). However, its role in PTC has not yet been reported.
As PLP2 was also found to be highly expressed in PTC
and associated with poor prognosis in this study, its role
in PTC and the underlying molecular mechanisms deserve
further attention.

TGFBR3, also known as betaglycan, can bind TGF-beta.
It functions as a co-receptor of TGFBR2 and also activates
downstream signaling pathways in a non-canonical manner
(50). Although its role in PTC has not yet been reported,
it functions as a tumor suppressor in multiple cancers. For
example, TGFBR3 was found to be downregulated in prostate
cancer via a loss of heterozygosity at its encoding genomic
locus and epigenetic regulation (51, 52). The downregulation
of TGFBR3 also promotes the invasion and progression of
prostate cancer, as well as upregulation of the prostate stem
cell marker CD133 (53). In non-small cell lung cancer, TGFBR3
is also downregulated and promotes cancer cell migration and
invasion (54). In breast cancer, decreased TGFBR3 expression
was correlated with the loss of heterozygosity of its gene locus
and was associated with shorter recurrence-free survival and
enhanced tumor invasion, metastasis, and angiogenesis (55).
In pancreatic cancer, TGFBR3 is the target of exosomal miR-
501-3p and inhibits tumor formation and metastasis (56).
Similar tumor suppressor functions for TGFBR3 have also been
reported for renal cell carcinoma, endometrial carcinoma, and
bladder carcinoma, among others (57, 58). In breast cancer
and melanoma, loss of TGFBR3 in dendritic cells results in
altered Treg cell infiltration and the suppression of antitumor
immunity, indicating its potential role in the tumor immune
microenvironment (59).

FXYD6, located at the plasma membrane, is a member of
that FXYD family, which regulates the Na+/K+-ATPase (60).
FXYD6 plays an important role in sensory organs such as the
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FIGURE 6 | Validation of the nomogram in predicting progression-free interval (PFI) of papillary thyroid carcinoma (PTC) in the TCGA-THCA dataset. (A) A prognostic

nomogram predicting 1-, 2-, 3-, 4-, and 5-year PFI of PTC. Aggressive subtypes include hobnail, tall cell and columnar. (B) Time-dependent ROC showing the 1-, 2-,

3-, 4-, and 5-year PFI predictions of PTC for the nomogram. (C) The calibration plot for internal validation of the nomogram. The Y axis represents the actual PFI while

the X axis represents the predicted PFI. (D,E) The Kaplan–Meier survival curves of the nomogram. Patients from the TCGA-THCA dataset were stratified into two or

three groups of different levels of risk according to the optimal cutoff values for the nomogram calculated by X-Tile software.
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FIGURE 7 | Clinical relevance of the five-gene signature and the prognostic nomogram. (A–E) The prognostic performance of the five-gene prognostic model, the

gene signature-based nomogram, and the 2009 version of American Thyroid Association (ATA) risk stratification of recurrence. (F,G) The distribution of the five-gene

risk score based on different AJCC stages and N stages in the TCGA-THCA dataset. (H–J) The distribution of the five-gene risk score based on different mutation

status of BRAF V600E, RAS and TERT in TCGA-THCA dataset. (K) The expression level of TERT in high-risk and low-risk group of TCGA-THCA dataset. *p < 0.05,

**p < 0.01, ***p < 0.001, ****p < 0.0001.
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inner ear and is associated with various mental illnesses such as
Alzheimer’s disease (61, 62). In cancer, FXYD6 was identified as
positively associated with chemotherapy sensitivity in advanced
colorectal cancer (63). FXYD6 was also found to be upregulated
in cholangiocarcinoma and hepatocellular carcinoma (64, 65).
The upregulation of this marker in hepatocellular carcinoma
promotes the migration and proliferation of cancer cells via the
Src–ERK pathway (65). FXYD6 was also found to be upregulated
in osteosarcoma and was identified as the direct target of miR-
372-3p and microRNA-137 (66). Accordingly, the upregulation
of FXYD6 reverses the tumor suppressing effects of thesemiRNAs
in osteosarcoma (67, 68). Despite this evidence, the role of FXYD6
in PTC and other tumors remains unknown. In our study,
the downregulation of FXYD6 was identified in PTC and was
associated with worse prognosis. In addition to that in PTC,
FXYD6 was also downregulated in tumor tissues of most cancer
types with a |log2FC| > 1 based on TCGA expression data from
GEPIA (http://gepia.cancer-pku.cn), including adrenocortical
carcinoma, bladder urothelial carcinoma and breast invasive
carcinoma, among others. Whether FXYD6 exerts a tumor
suppressor role in these tumors and its molecular mechanisms
deserves further study.

To the best of our knowledge, a prognostic model based on
these five genes and the associated nomogram have not been
reported to date. Our predictive model is based on the expression
level of a limited number of genes, which is more economical and
clinically practical than whole genome sequencing. Further, our
nomogram combined with gene prognostic prediction models
and clinicopathological parameters could provide clinicians with
a convenient and accurate method to assess the prognosis of
patients with PTC after surgery. The graphical scoring system is
easy for patients to understand and is helpful to make medical
decisions, thereby enabling individualized treatment.

However, our current research has some limitations. First,
the main source of clinical information for our dataset was
the TCGA database. The majority of patients were from North
America, and thus, caution should be taken when expanding our
results to patients of other ethnicities. Further, protein expression
levels of the DEGs also require further investigation. Their
role in the pathogenesis and progression of PTC depends on
further experimental studies to elucidate the associatedmolecular
mechanisms. The establishment and validation of the nomogram
was also based on the TCGA database, and thus it is necessary to
validate the clinical information and gene expression data using

external datasets in future studies. Finally, the 2009 version of
ATA risk stratification were used as the primary reference of
evaluation in the current study since the publicly available TCGA
data does not include information about the size of lymph nodes.
Prospective study is required to further validate the performance
of the five-gene signature and the associated nomogram using the
latest version of ATA risk stratification.

CONCLUSION

In our study, we established a five-gene signature and developed
a prognostic nomogram in combination with prognosis-related
clinical pathological parameters to predict the PFI of PTC. The
five DEGs are closely related to the progression and prognosis of
PTC and are thus also potential therapeutic targets. The predicted
nomogram proved to be reliable in predicting the PFI of PTC and
might thus be beneficial for individualized treatment andmedical
decision making.

DATA AVAILABILITY STATEMENT

The datasets analyzed for this study can be found in the
Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/)
and TCGA (https://portal.gdc.cancer.gov/).

AUTHOR CONTRIBUTIONS

ZL and QL: conception and design. MW and HY: development
of methodology. MW and XL: analysis and interpretation of
data. MW: writing of the manuscript. ZL and QL: review of the
manuscript. ZL: study supervision.

FUNDING

This research was supported by the National Nature
Science Foundation of China (2015, 81572459) and
the CAMS Innovation Fund for Medical Sciences
(CIFMS) (2016-12M-3-005).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fendo.
2019.00790/full#supplementary-material

REFERENCES

1. Antonelli A, La Motta C. Novel therapeutic clues in thyroid carcinomas:

the role of targeting cancer stem cells. Med Res Rev. (2017) 37:1299–317.

doi: 10.1002/med.21448

2. Cabanillas ME, McFadden DG, Durante C. Thyroid cancer. Lancet. (2016)

388:2783–95. doi: 10.1016/S0140-6736(16)30172-6

3. Carling T, Udelsman R. Thyroid cancer. Ann Rev Med. (2014) 65:125–37.

doi: 10.1146/annurev-med-061512-105739

4. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian

LM. Projecting cancer incidence and deaths to 2030: the unexpected burden

of thyroid, liver, and pancreas cancers in the United States. Cancer Res. (2014)

74:2913–21. doi: 10.1158/0008-5472.CAN-14-0155

5. Ferrari SM, Fallahi P, Elia G, Ragusa F, Ruffilli I, Paparo SR, et al.

Thyroid autoimmune disorders and cancer. Semin Cancer Biol. (2019).

doi: 10.1016/j.semcancer.2019.05.019. [Epub ahead of print].

6. Durante C, Montesano T, Torlontano M, Attard M, Monzani F, Tumino

S, et al. Papillary thyroid cancer: time course of recurrences during

postsurgery surveillance. J Clin Endocrinol Metab. (2013) 98:636–42.

doi: 10.1210/jc.2012-3401

7. Biondi B, Cooper DS. Subclinical Hyperthyroidism. N Engl J Med. (2018)

378:2411–9. doi: 10.1056/NEJMcp1709318

Frontiers in Endocrinology | www.frontiersin.org 19 November 2019 | Volume 10 | Article 790

http://gepia.cancer-pku.cn
https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
https://www.frontiersin.org/articles/10.3389/fendo.2019.00790/full#supplementary-material
https://doi.org/10.1002/med.21448
https://doi.org/10.1016/S0140-6736(16)30172-6
https://doi.org/10.1146/annurev-med-061512-105739
https://doi.org/10.1158/0008-5472.CAN-14-0155
https://doi.org/10.1016/j.semcancer.2019.05.019
https://doi.org/10.1210/jc.2012-3401
https://doi.org/10.1056/NEJMcp1709318
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Wu et al. Five-Gene Signature Predicts PTC Progression

8. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov

YE, et al. 2015 American Thyroid Association management guidelines

for adult patients with thyroid nodules and differentiated thyroid cancer:

the American Thyroid Association guidelines task force on thyroid

nodules and differentiated thyroid cancer. Thyroid. (2016) 26:1–133.

doi: 10.1089/thy.2015.0020

9. Choi KY, Kim JH, Park IS, Rho YS, Kwon GH, Lee DJ. Predictive gene

signatures of nodal metastasis in papillary thyroid carcinoma. Cancer

Biomark. (2018) 22:35–42. doi: 10.3233/CBM-170784

10. Lin P, Guo YN, Shi L, Li XJ, Yang H, He Y, et al. Development of a prognostic

index based on an immunogenomic landscape analysis of papillary thyroid

cancer. Aging. (2019) 11:480–500. doi: 10.18632/aging.101754

11. Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al.

TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA

data. Nucleic Acids Res. (2016) 44:e71. doi: 10.1093/nar/gkv1507

12. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al.

Integrative analysis of complex cancer genomics and clinical profiles using

the cBioPortal. Sci Signal. (2013) 6:pl1. doi: 10.1126/scisignal.2004088

13. Cancer Genome Atlas Research Network. Integrated genomic

characterization of papillary thyroid carcinoma. Cell. (2014) 159:676–90.

doi: 10.1016/j.cell.2014.09.050

14. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers

differential expression analyses for RNA-sequencing and microarray studies.

Nucleic Acids Res. (2015) 43:e47. doi: 10.1093/nar/gkv007

15. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis

of large gene lists using DAVID bioinformatics resources. Nat Protoc. (2009)

4:44–57. doi: 10.1038/nprot.2008.211

16. Liu J, Lichtenberg T, Hoadley KA, Poisson LM, Lazar AJ, Cherniack

AD, et al. An integrated TCGA pan-cancer clinical data resource to

drive high-quality survival outcome analytics. Cell. (2018) 173:400–16.e11.

doi: 10.1016/j.cell.2018.02.052

17. Camp RL, Dolled-Filhart M, Rimm DL. X-tile: a new bio-informatics tool

for biomarker assessment and outcome-based cut-point optimization. Clin

Cancer Res. (2004) 10:7252–9. doi: 10.1158/1078-0432.CCR-04-0713

18. Handkiewicz-Junak D, Swierniak M, Rusinek D, Oczko-Wojciechowska

M, Dom G, Maenhaut C, et al. Gene signature of the post-chernobyl

papillary thyroid cancer. Eur J Nucl Med Mol Imaging. (2016) 43:1267–77.

doi: 10.1007/s00259-015-3303-3

19. Dom G, Tarabichi M, Unger K, Thomas G, Oczko-Wojciechowska M,

Bogdanova T, et al. A gene expression signature distinguishes normal tissues

of sporadic and radiation-induced papillary thyroid carcinomas. Brit J Cancer.

(2012) 107:994–1000. doi: 10.1038/bjc.2012.302

20. Tarabichi M, Saiselet M, Tresallet C, Hoang C, Larsimont D, Andry

G, et al. Revisiting the transcriptional analysis of primary tumours

and associated nodal metastases with enhanced biological and statistical

controls: application to thyroid cancer. Brit J Cancer. (2015) 112:1665–74.

doi: 10.1038/bjc.2014.665

21. Yu K, Ganesan K, Tan LK, Laban M, Wu J, Zhao XD, et al. A

precisely regulated gene expression cassette potently modulates metastasis

and survival in multiple solid cancers. PLoS Genet. (2008) 4:e1000129.

doi: 10.1371/journal.pgen.1000129

22. Rusinek D, Swierniak M, Chmielik E, Kowal M, Kowalska M,

Cyplinska R, et al. BRAFV600E-associated gene expression profile:

early changes in the transcriptome, based on a transgenic mouse

model of papillary thyroid carcinoma. PLoS ONE. (2015) 10:e0143688.

doi: 10.1371/journal.pone.0143688

23. Sakai T, Sugitani I, Ebina A, Fukuoka O, Toda K, Mitani H, et al. Active

surveillance for T1bN0M0 papillary thyroid carcinoma. Thyroid. (2019)

29:59–63. doi: 10.1089/thy.2018.0462

24. Balachandran VP, Gonen M, Smith JJ, DeMatteo RP. Nomograms in

oncology: more than meets the eye. Lancet Oncol. (2015) 16:e173–80.

doi: 10.1016/S1470-2045(14)71116-7

25. Banerji S, Ni J, Wang SX, Clasper S, Su J, Tammi R, et al. LYVE-1, a

new homologue of the CD44 glycoprotein, is a lymph-specific receptor for

hyaluronan. J Cell Biol. (1999) 144:789–801. doi: 10.1083/jcb.144.4.789

26. Majumder M, Xin X, Lala PK. A practical and sensitive method of

quantitating lymphangiogenesis in vivo. Lab Invest. (2013) 93:779–91.

doi: 10.1038/labinvest.2013.72

27. Hunter S, Nault B, Ugwuagbo KC,Maiti S, MajumderM.Mir526b andMir655

promote tumour associated angiogenesis and lymphangiogenesis in breast

cancer. Cancers. (2019) 11:E938. doi: 10.3390/cancers11070938

28. Schraml P, Athelogou M, Hermanns T, Huss R, Moch H. Specific immune cell

and lymphatic vessel signatures identified by image analysis in renal cancer.

Modern Pathol. (2019) 32:1042–52. doi: 10.1038/s41379-019-0214-z

29. Li P, Cong Z, Qiang Y, Xiong L, Tang L, Zhang Y, et al. Clinical significance

of CCBE1 expression in lung cancer. Mol Med Rep. (2018) 17:2107–12.

doi: 10.3892/mmr.2017.8187

30. Colombat M, Paradis V, Bieche I, Dargere D, Laurendeau I, Belghiti J,

et al. Quantitative RT-PCR in cirrhotic nodules reveals gene expression

changes associated with liver carcinogenesis. J Pathol. (2003) 201:260–7.

doi: 10.1002/path.1451

31. Llovet JM, Chen Y, Wurmbach E, Roayaie S, Fiel MI, Schwartz M,

et al. A molecular signature to discriminate dysplastic nodules from

early hepatocellular carcinoma in HCV cirrhosis. Gastroenterology. (2006)

131:1758–67. doi: 10.1053/j.gastro.2006.09.014

32. Latil A, Bieche I, Chene L, Laurendeau I, Berthon P, Cussenot O, et al.

Gene expression profiling in clinically localized prostate cancer: a four-gene

expression model predicts clinical behavior. Clin Cancer Res. (2003) 9:5477–

85.

33. Gao Y, Liu X, Li T, Wei L, Yang A, Lu Y, et al. Cross-validation of genes

potentially associated with overall survival and drug resistance in ovarian

cancer. Oncol Rep. (2017) 37:3084–92. doi: 10.3892/or.2017.5534

34. Kim HS, Kim DH, Kim JY, Jeoung NH, Lee IK, Bong JG, et al. Microarray

analysis of papillary thyroid cancers in Korean. Korean J Intern Med. (2010)

25:399–407. doi: 10.3904/kjim.2010.25.4.399

35. Gao B, Guo L, Luo D, Jiang Y, Zhao J, Mao C, et al. Steroid

receptor coactivator-1 interacts with NF-kappaB to increase VEGFC

levels in human thyroid cancer. Biosci Rep. (2018) 38:BSR20180394.

doi: 10.1042/BSR20180394

36. Tirosh A, Calay ES, Tuncman G, Claiborn KC, Inouye KE, Eguchi K,

et al. The short-chain fatty acid propionate increases glucagon and FABP4

production, impairing insulin action in mice and humans. Sci Transl Med.

(2019) 11:eaav0120. doi: 10.1126/scitranslmed.aav0120

37. Zhao D, Ma Y, Li X, Lu X. microRNA-211 promotes invasion and migration

of colorectal cancer cells by targeting FABP4 via PPARγ. J Cell Physiol. (2019)

234:15429–37. doi: 10.1002/jcp.28190

38. Hua TNM, Kim MK, Vo VTA, Choi JW, Choi JH, Kim HW, et al.

Inhibition of oncogenic Src induces FABP4-mediated lipolysis via PPARγ

activation exerting cancer growth suppression. EBioMedicine. (2019) 41:134–

45. doi: 10.1016/j.ebiom.2019.02.015

39. Mathis C, Lascombe I, Monnien F, Bittard H, Kleinclauss F, Bedgedjian I, et al.

Down-regulation of A-FABP predicts non-muscle invasive bladder cancer

progression: investigation with a long term clinical follow-up. BMC Cancer.

(2018) 18:1239. doi: 10.1186/s12885-018-5137-4

40. Laouirem S, Sannier A, Norkowski E, Cauchy F, Doblas S, Rautou PE,

et al. Endothelial fatty liver binding protein 4: a new targetable mediator in

hepatocellular carcinoma related to metabolic syndrome. Oncogene. (2019)

38:3033–46. doi: 10.1038/s41388-018-0597-1

41. Gharpure KM, Pradeep S, Sans M, Rupaimoole R, Ivan C,Wu SY, et al. FABP4

as a key determinant of metastatic potential of ovarian cancer. Nat Commun.

(2018) 9:2923. doi: 10.1038/s41467-018-04987-y

42. Shu L, Hoo RL, Wu X, Pan Y, Lee IP, Cheong LY, et al. A-FABP

mediates adaptive thermogenesis by promoting intracellular activation of

thyroid hormones in brown adipocytes. Nat Commun. (2017) 8:14147.

doi: 10.1038/ncomms14147

43. Choi D, Ramu S, Park E, Jung E, Yang S, Jung W, et al. Aberrant

activation of notch signaling inhibits PROX1 activity to enhance the

malignant behavior of thyroid cancer cells. Cancer Res. (2016) 76:582–93.

doi: 10.1158/0008-5472.CAN-15-1199

44. Timms RT, Duncan LM, Tchasovnikarova IA, Antrobus R, Smith DL, Dougan

G, et al. Haploid genetic screens identify an essential role for PLP2 in the

downregulation of novel plasma membrane targets by viral E3 ubiquitin

ligases. PLoS Pathog. (2013) 9:e1003772. doi: 10.1371/journal.ppat.1003772

45. Chen YH, Hueng DY, TsaiWC. Proteolipid Protein 2 overexpression indicates

aggressive tumor behavior and adverse prognosis in human gliomas. Int J Mol

Sci. (2018) 19:E3353. doi: 10.3390/ijms19113353

Frontiers in Endocrinology | www.frontiersin.org 20 November 2019 | Volume 10 | Article 790

https://doi.org/10.1089/thy.2015.0020
https://doi.org/10.3233/CBM-170784
https://doi.org/10.18632/aging.101754
https://doi.org/10.1093/nar/gkv1507
https://doi.org/10.1126/scisignal.2004088
https://doi.org/10.1016/j.cell.2014.09.050
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1038/nprot.2008.211
https://doi.org/10.1016/j.cell.2018.02.052
https://doi.org/10.1158/1078-0432.CCR-04-0713
https://doi.org/10.1007/s00259-015-3303-3
https://doi.org/10.1038/bjc.2012.302
https://doi.org/10.1038/bjc.2014.665
https://doi.org/10.1371/journal.pgen.1000129
https://doi.org/10.1371/journal.pone.0143688
https://doi.org/10.1089/thy.2018.0462
https://doi.org/10.1016/S1470-2045(14)71116-7
https://doi.org/10.1083/jcb.144.4.789
https://doi.org/10.1038/labinvest.2013.72
https://doi.org/10.3390/cancers11070938
https://doi.org/10.1038/s41379-019-0214-z
https://doi.org/10.3892/mmr.2017.8187
https://doi.org/10.1002/path.1451
https://doi.org/10.1053/j.gastro.2006.09.014
https://doi.org/10.3892/or.2017.5534
https://doi.org/10.3904/kjim.2010.25.4.399
https://doi.org/10.1042/BSR20180394
https://doi.org/10.1126/scitranslmed.aav0120
https://doi.org/10.1002/jcp.28190
https://doi.org/10.1016/j.ebiom.2019.02.015
https://doi.org/10.1186/s12885-018-5137-4
https://doi.org/10.1038/s41388-018-0597-1
https://doi.org/10.1038/s41467-018-04987-y
https://doi.org/10.1038/ncomms14147
https://doi.org/10.1158/0008-5472.CAN-15-1199
https://doi.org/10.1371/journal.ppat.1003772
https://doi.org/10.3390/ijms19113353
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Wu et al. Five-Gene Signature Predicts PTC Progression

46. Zou Y, Chen Y, Yao S, Deng G, Liu D, Yuan X, et al. MiR-422a weakened

breast cancer stem cells properties by targeting PLP2. Cancer Biol Ther. (2018)

19:436–44. doi: 10.1080/15384047.2018.1433497

47. Ding Z, Jian S, Peng X, Liu Y, Wang J, Zheng L, et al. Loss

of MiR-664 expression enhances cutaneous malignant melanoma

proliferation by upregulating PLP2. Medicine. (2015) 94:e1327.

doi: 10.1097/MD.0000000000001327

48. Sonoda Y, Warita M, Suzuki T, Ozawa H, Fukuda Y, Funakoshi-Tago M,

et al. Proteolipid protein 2 is associated with melanomametastasis.Oncol Rep.

(2010) 23:371–6. doi: 10.3892/or_00000645

49. Zimmerman JW, Pennison MJ, Brezovich I, Yi N, Yang CT, Ramaker R, et al.

Cancer cell proliferation is inhibited by specific modulation frequencies. Br J

Cancer. (2012) 106:307–13. doi: 10.1038/bjc.2011.523

50. Vander Ark A, Cao J, Li X. TGF-β receptors: In and beyond TGF-β signaling.

Cell Signal. (2018) 52:112–20. doi: 10.1016/j.cellsig.2018.09.002

51. Chaib H, Cockrell EK, Rubin MA, Macoska JA. Profiling and verification

of gene expression patterns in normal and malignant human prostate

tissues by cDNA microarray analysis. Neoplasia. (2001) 3:43–52.

doi: 10.1038/sj.neo.7900126

52. Turley RS, Finger EC, Hempel N, How T, Fields TA, Blobe GC. The

type III transforming growth factor-beta receptor as a novel tumor

suppressor gene in prostate cancer. Cancer Res. (2007) 67:1090–8.

doi: 10.1158/0008-5472.CAN-06-3117

53. Sharifi N, Hurt EM, Kawasaki BT, Farrar WL. TGFBR3 loss and consequences

in prostate cancer. Prostate. (2007) 67:301–11. doi: 10.1002/pros.20526

54. Finger EC, Turley RS, Dong M, How T, Fields TA, Blobe GC. TbetaRIII

suppresses non-small cell lung cancer invasiveness and tumorigenicity.

Carcinogenesis. (2008) 29:528–35. doi: 10.1093/carcin/bgm289

55. Dong M, How T, Kirkbride KC, Gordon KJ, Lee JD, Hempel N, et al. The type

III TGF-β receptor suppresses breast cancer progression. J Clin Invest. (2007)

117:206–17. doi: 10.1172/JCI29293

56. Yin Z, Ma T, Huang B, Lin L, Zhou Y, Yan J, et al. Macrophage-derived

exosomal microRNA-501–3p promotes progression of pancreatic ductal

adenocarcinoma through the TGFBR3-mediated TGF-β signaling pathway. J

Exp Clin Cancer Res. (2019) 38:310. doi: 10.1186/s13046-019-1313-x

57. Nishida J, Miyazono K, Ehata S. Decreased TGFBR3/betaglycan expression

enhances the metastatic abilities of renal cell carcinoma cells through TGF-

β-dependent and -independent mechanisms. Oncogene. (2018) 37:2197–212.

doi: 10.1038/s41388-017-0084-0

58. Liu XL, Xue BX, Lei Z, Yang DR, Zhang QC, Shan YX, et al. TGFBR3 co-

downregulated with GATA3 is associated withmethylation of the GATA3 gene

in bladder urothelial carcinoma. Anat Rec (Hoboken). (2013) 296:1717–23.

doi: 10.1002/ar.22802

59. Hanks BA, Holtzhausen A, Evans KS, Jamieson R, Gimpel P, Campbell

OM, et al. Type III TGF-β receptor downregulation generates an

immunotolerant tumor microenvironment. J Clin Invest. (2013) 123:3925–40.

doi: 10.1172/JCI65745

60. Delprat B, Schaer D, Roy S, Wang J, Puel JL, Geering K. FXYD6 is a novel

regulator of Na,K-ATPase expressed in the inner ear. J Biol Chem. (2007)

282:7450–6. doi: 10.1074/jbc.M609872200

61. George AJ, Gordon L, Beissbarth T, Koukoulas I, Holsinger RM,

Perreau V, et al. A serial analysis of gene expression profile of the

Alzheimer’s disease Tg2576 mouse model. Neurotox Res. (2010) 17:360–79.

doi: 10.1007/s12640-009-9112-3

62. Chang S, Fang K, Zhang K, Wang J. Network-based analysis of schizophrenia

genome-wide association data to detect the joint functional association

signals. PLoS ONE. (2015) 10:e0133404. doi: 10.1371/journal.pone.0133404

63. Lu X, Pan J, Li S, Shen S, Chi P, Lin H, et al. Establishment of a

predictive genetic model for estimating chemotherapy sensitivity of colorectal

cancer with synchronous liver metastasis. Cancer Biother Radiopharm. (2013)

28:552–8. doi: 10.1089/cbr.2012.1431

64. Chen X, Sun M, Hu Y, Zhang H, Wang Z, Zhou N, et al. FXYD6

is a new biomarker of cholangiocarcinoma. Oncol Lett. (2014) 7:393–8.

doi: 10.3892/ol.2013.1727

65. Gao Q, Chen X, Duan H, Wang Z, Feng J, Yang D, et al. FXYD6: a

novel therapeutic target toward hepatocellular carcinoma. Protein Cell. (2014)

5:532–43. doi: 10.1007/s13238-014-0045-0

66. Yang Z, Chen Y, Fu Y, Yang Y, Zhang Y, Chen Y, et al. Meta-analysis of

differentially expressed genes in osteosarcoma based on gene expression data.

BMCMed Genet. (2014) 15:80. doi: 10.1186/1471-2350-15-80

67. Xu SY, Xu PF, Gao TT. MiR-372–3p inhibits the growth and metastasis of

osteosarcoma cells by targeting FXYD6. Eur Rev Med Pharmacol Sci. (2018)

22:62–9. doi: 10.26355/eurrev_201801_14101

68. Li ZM, Zhang HY, Wang YX, Wang WB. MicroRNA-137

is downregulated in human osteosarcoma and regulates cell

proliferation and migration through targeting FXYD6. J

Drug Target. (2016) 24:102–10. doi: 10.3109/1061186X.2015.

1057149

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2019 Wu, Yuan, Li, Liao and Liu. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Endocrinology | www.frontiersin.org 21 November 2019 | Volume 10 | Article 790

https://doi.org/10.1080/15384047.2018.1433497
https://doi.org/10.1097/MD.0000000000001327
https://doi.org/10.3892/or_00000645
https://doi.org/10.1038/bjc.2011.523
https://doi.org/10.1016/j.cellsig.2018.09.002
https://doi.org/10.1038/sj.neo.7900126
https://doi.org/10.1158/0008-5472.CAN-06-3117
https://doi.org/10.1002/pros.20526
https://doi.org/10.1093/carcin/bgm289
https://doi.org/10.1172/JCI29293
https://doi.org/10.1186/s13046-019-1313-x
https://doi.org/10.1038/s41388-017-0084-0
https://doi.org/10.1002/ar.22802
https://doi.org/10.1172/JCI65745
https://doi.org/10.1074/jbc.M609872200
https://doi.org/10.1007/s12640-009-9112-3
https://doi.org/10.1371/journal.pone.0133404
https://doi.org/10.1089/cbr.2012.1431
https://doi.org/10.3892/ol.2013.1727
https://doi.org/10.1007/s13238-014-0045-0
https://doi.org/10.1186/1471-2350-15-80
https://doi.org/10.26355/eurrev_201801_14101
https://doi.org/10.3109/1061186X.2015.1057149
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles

	Identification of a Five-Gene Signature and Establishment of a Prognostic Nomogram to Predict Progression-Free Interval of Papillary Thyroid Carcinoma
	Introduction
	Materials and Methods
	Gene Expression and Clinical Data
	Integrated Analysis of Microarray Datasets and Identification of DEGs
	Survival Analysis and Establishment of Prognostic Gene Signature
	Identification of Independent Prognostic Parameters for PTC
	Building and Validation of a Predictive Nomogram
	Statistical Analysis

	Results
	Identification of DEGs
	Identification of PFI-Related DEGs and Establishment of a Five-Gene Prognostic Signature
	Validation of the Performance of the Five-Gene Prognostic Signature in Predicting PFI
	Evaluation of Prognostic Factors Associated With the PFI in PTC
	Building and Validation of a Prognostic Nomogram
	Clinical Relevance of the Gene Signature

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


