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Drugs that treat chronic obstructive pulmonary disease by antag-
onizing the M3 muscarinic acetylcholine receptor (M3R) have had a
significant effect on health, but can suffer from their lack of
selectivity against the M2R subtype, which modulates heart rate.
Beginning with the crystal structures of M2R andM3R, we exploited
a single amino acid difference in their orthosteric binding pockets
using molecular docking and structure-based design. The resulting
M3R antagonists had up to 100-fold selectivity over M2R in affinity
and over 1,000-fold selectivity in vivo. The crystal structure of the
M3R-selective antagonist in complex withM3R corresponded closely
to the docking-predicted geometry, providing a template for further
optimization.
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While G protein-coupled receptors (GPCRs) are excellent
therapeutic targets (1), many GPCR drugs lack selectivity

(2). An example are drugs targeting the muscarinic acetylcholine
receptor (MR) family, which comprises five subtypes (3–5). Al-
though potent anticholinergics have been developed, most have
little subtype selectivity (6) and only avoid debilitating side ef-
fects because they can be delivered locally to specific organs.
Thus, the antagonist atropine is delivered directly to the eye,
while the chronic obstructive pulmonary disease (COPD) drug
tiotropium, which reduces bronchoconstriction via the M3
muscarinic acetylcholine receptor (M3R), is delivered by in-
halation. This reduces exposure to M2Rs in the heart, averting
tachycardia. Even so, antagonism of presynaptic M2Rs in the
lung can have unwanted feedback effects on postsynaptic M3Rs
by disinhibition of acetylcholine release (7). The recent de-
termination of the crystal structures of four muscarinic receptor
subtypes (8–11) allows one to consider a structure-guided ap-
proach to subtype-selective ligand design (12, 13). We explored
the development of antagonists selective for M3R over M2R,
exploiting the single Leu→Phe difference in their orthosteric
pockets (Fig. 1 A and B).

Results and Discussion
We began with the nonselective antagonists 3-quinuclidinyl-
benzilate (QNB) (14) and tiotropium (15), related molecules
that adopt similar binding modes in the X-ray structures of M2R
and M3R, respectively (8, 9) (Fig. 1 A and B). Key interactions
include a hydrogen bond between Asn6.52 and the hydroxyl and
ester moieties. The cationic amines ion-pair with Asp3.32 in both
receptors, and are both enclosed by an aromatic cage composed
of Tyr3.33, Tyr6.51, Tyr7.39, and Tyr7.43. One aromatic ring (the A
ring) stacks with Tyr3.33, Trp4.57, and Val3.40 (8), while the other

(the B ring) points toward the extracellular vestibule and inter-
acts with Thr5.39, Tyr3.33, and Trp4.57. The single differentiating in-
teraction is that in M2R, the B ring interacts with Phe181ECL2, while
in M3R, the residue at the same position is Leu225ECL2. Accord-
ingly, we first investigated derivatives with an enlarged “upward”-
directed B aryl moiety, synthesizing methylthienyl, benzothienyl,
and methylbenzothienyl analogs (SI Appendix). Disappointingly,
these compounds (Fig. 1C and SI Appendix, Fig. S1) had little
preference for M3R over M2R.
Docking studies suggested that the tolerance of both musca-

rinic subtypes toward enlargement of the upward-directed B
substituent of QNB or tiotropium may be explained by flexibility
of the link between the two arene moieties, allowing the upward-
facing ring to avoid a clash with Phe181 (Fig. 1D and SI Ap-
pendix, Figs. S2 and S3). Consequently, a ligand scaffold was
sought that enforced a clash with Phe181 of the M2R, and that
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scaffold was used for a structure-guided optimization of ring B.
Three modeled modifications were pursued (Fig. 2). First, we
directly linked the benzene ring A to the upward-directed phenyl
group B. Because ring A is embedded into a tight hydrophobic
pocket (SI Appendix, Fig. S4), we expected that directly con-
necting the rings (16) would enforce a more coplanar orientation
and juxtapose the B ring more closely against Phe181ECL2 (Fig.
2). Second, we exchanged the CH(OH)C=O unit for a planar
NHC=O (17), believing that the more rigid amide would bolster
the more “upright” position. Docking supported this, while
suggesting that the molecule could retain key hydrogen bonds
with Asn6.52 via the NHC=O group (SI Appendix, Figs. S2 and
S3). Third, the docking suggested that a small electronegative
substituent would be tolerated at the para position of the B ring,

further increasing repulsive interactions with the Phe181ECL2 of
M2R, while still fitting well with the Leu225ECL2 of M3R (Fig.
2B). Exploiting our recent synthetic methodology for radical
aniline arylation (18), several halogens were installed. Gratify-
ingly, introduction of a fluorine atom (19, 20) in compound 6b
retained strong M3R affinity (Ki = 0.2 nM), while noticeably
reducing M2R binding (Ki = 21 nM), a 105-fold selectivity for
M3R over M2R (Fig. 2B). Chloro-, bromo-, and trifluoromethyl
analogs also favored M3R over M2R binding, although with
lower selectivity (SI Appendix, Fig. S5). Chemical modifications,
including the synthesis of quinuclidine- and scopine-based qua-
ternary ammonium salts and the bioisosteric exchange of the
terminal benzene by a thiophene ring, led ultimately to the an-
tagonist 6o (BS46) (SI Appendix, Fig. S5), with M3R Ki values
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in the low picomolar range. In functional assays, 6o (BS46)
fully inhibits carbachol-induced inositol monophosphate (IP)
accumulation as well as β-arrestin recruitment at M3Rs (SI
Appendix, Fig. S6). Compound 6o (BS46) showed more than
100,000-fold selectivity for muscarinic receptors against 21
aminergic and peptidergic GPCRs (SI Appendix, Fig. S7 and
Tables S4 and S5).
The accuracy of the 27 pM affinity of 6o (BS46) in equilibrium

binding may be affected by ligand depletion. Consistent with this,
association and dissociation rates suggested a 12 pM Kd for 6o
(BS46) (SI Appendix, Fig. S8 and Table S1), representing a 33-
fold preference for M3R over M2R. This selectivity is sub-
stantially higher than with the high-affinity antagonist tiotropium
(M3/M2 selectivity ∼ 1.5) and similar to the clinically used M3R
antagonist darifenacin (M3/M2 selectivity ∼ 25) (SI Appendix,
Table S1). The dissociation half-life for 6o (BS46) (890 min) is
comparable to that of tiotropium (1,300 min) and substantially
higher than for darifenacin (140 min). We note that while 6o
(BS46) was selective for M3R vs. M2R, the goal of this study, the
molecule retained high affinity against the M1R, M4R, and M5R
subtypes (Ki = 0.011 nM, Ki = 0.009 nM, and Ki = 0.047 nM,
respectively) (SI Appendix, Table S2), likely reflecting their
conservation of the M3R Leu225ECL2 equivalent.
To investigate whether the selectivity of the antagonists reflects

the design for preferential binding to Leu225ECL2 and against
Phe181ECL2, we explored the effects of residue substitutions in the
M2R and M3R backgrounds (21, 22). In the M2R mutant F181L,
the affinity of 6i, 6k, 6l, 6n, and 6o (BS46) improved four- to 29-fold,
while their affinity dropped vs. the reciprocal construct M3R L225F
(seven- to 48-fold) (SI Appendix, Fig. S9). These mutant studies thus
support inferences from the modeling and the structure activity
relationships, although the F181L mutation in M2R did not in-
crease affinity as much as WT M3R did for all compounds.
We examined the effect of compound 6b on airway resistance,

an M3R-mediated response, and heart rate, an M2R-mediated

response, following i.v. administration of the nonselective agonist
methacholine in C57BL/6 mice (Fig. 3). As expected, methacholine
increased airway resistance from 25.3 to 87.6% for individual mice,
and reduced heart rate from −13.6 to −22.7% (P < 0.05, two-way
ANOVA). On i.v. dosing, which ensures systemic exposure, com-
pound 6b reduced the methacholine-induced airway resistance almost
fully back to baseline at a dose of 1 * 10−9 mol/kg. Conversely, sub-
stantial tachycardia was not observed until a dose of 1 * 10−5 mol/kg.
The order of addition of the agonist or the antagonist did not
change the results qualitatively. Thus, pretreatment of the mice
with 1 * 10−7 mol/kg of compound 6b, followed by injection of
methacholine, continued to substantially reduce airway resistance,
while no significant difference in mean heart rate was observed at
this dose (Fig. 3B). Concerning overall in vivo selectivity in the
methacholine-provoked effects, the average log IC50 values are
−8.8 ± 0.6 M (or 1.6 nM) for airway response and −5.2 ± 0.1 M
(or 6.3 μM) for heart rate response, suggesting an in vivo M3/M2
selectivity of about 4,000-fold.
To test the model upon which these molecules were based and

to provide a template for future design, the structure of the
M3R/6o (BS46) complex was determined by X-ray crystallogra-
phy. An M3R-mT4L fusion protein (23) was expressed and pu-
rified in the presence of 6o (BS46), and crystals were grown in lipid
cubic phase. We obtained a 3.1 Å dataset from 93 crystals and
solved the structure by molecular replacement (Fig. 4A and SI
Appendix, Table S3). The electron density for 6o (BS46) was un-
ambiguous in a Fo-Fc–simulated annealing omit map (SI Appendix,
Fig. S10). Compound 6o (BS46) binds to M3R in the predicted
orientation, making all interactions predicted in the model, with the
fluorine oriented toward Leu225ECL (Fig. 4 B and C); overall, the
crystallographic result superimposes on the docking prediction with
an rmsd of 0.377 Å (SI Appendix, Fig. S11). When superimposed on
the M3R/6o (BS46) complex, the fluorine would sterically clash
with Phe181ECL2 of M2R (Fig. 4 D and E).
Several caveats bear mentioning. After this work was com-

pleted, we discovered that intermediate compounds 3 and 4, two
weakly selective antagonists that we studied to validate our
model, were part of a series of M3 antagonists developed by
Yamanouchi pharmaceuticals and others (24, 25). The synthesis
of compounds 6a and 6b had been described in a patent from
Astellas (26); however, the activity of these two molecules was
not defined. Along these lines, our compounds of type 6 are not
the very first antagonists selective for the M3R vs. the M2R
(although such molecules remain very rare). Indeed, the drug
darifenacin, a scaffold unrelated to that explored here, shows
remarkable selectivity (Ki = 0.25 and Ki = 19 nM for M3R and
M2R, respectively). Our selectivity goal was narrow, improving
activity for M3R at the expense of M2R, which is the most rel-
evant antitarget in the periphery, as quaternary amines will not
cross the blood–brain barrier. The selectivity over M2R is en-
abled by an L225→Phe substitution in the orthosteric site, while
in the other three muscarinic subtypes, M1R, M4R, and M5R,
Leu225 is conserved, and so the compounds show no selectivity
against these receptors. Finally, 6o (BS46) is a lead and not a drug
candidate; further structure-activity relationship and pharmaco-
kinetics studies would be necessary to develop this compound
family.
These caveats should not obscure the main conclusions from

this work. Whereas some of the molecules described have been
previously investigated, little is known about their activity, their
structural recognition, or their pharmacology. While darifenacin is
selective in vitro, it is a bladder-directed drug that is much less
potent in respiratory disease (27), where it activity is complicated
by its problematic metabolism and short half-life (28). Two ob-
servations from this study merit particular emphasis. First, com-
pounds like 6o (BS46) can have important clinical applications for
the treatment of COPD and asthma. The long-acting musca-
rinic antagonists currently approved for treatment of COPD are all
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nonselective for the M3R vs. M2R in binding assays. They achieve
some in vivo selectivity by inhalation and by their slower dissociation
from the M3R relative to the M2R (29). However, 6o (BS46) has a
dissociation rate from the M3R that is comparable to that of
tiotropium, but is also selective over the M2R. Thus, com-
pounds like 6o (BS46) may have efficacy comparable to these
approved M3R antagonists for asthma and COPD, without the
off-target effects on the M2R in the heart or in parasympathetic
neurons in the lung. Second, and more generally, the structure-
based strategy used here may prove useful for other GPCR fam-
ilies that are highly related by subtype, such as the nine adrenaline,
13 serotonin, and five dopamine receptors, among others.

Materials and Methods
Ligand Design.MR ligand designwas guided by structures of theM2R inactive-
state crystal structure [Protein Data Bank (PDB) ID code 3UON] bound to the
antagonist QNB and the M3R inactive structure (PDB ID code 4DAJ) bound to
the inverse agonist tiotropium. We used Dock 3.6 (30) to perform virtual
docking against these structures. Further details of the ligand synthesis and
docking are provided in SI Appendix.

Characterization of Ligands. Synthesized ligands were characterized by li-
gand binding, arrestin recruitment, and inositol monophosphate accumu-
lation assays as described in SI Appendix. The effect of compound 6b on
heart rate and airway resistance was determined in mice as described in
SI Appendix.

Structure Determination. The structure of M3R bound to compound 6o was
determined by crystallography in the lepidic cubic phase. Data collection was
performed at beamline BL32XU at SPring-8. Diffraction data were processed
from 93 crystals by XDS (31). The structure was solved by molecular re-
placement using the previously reported M3-mT4L (4U15) structure as the
searching model. Structure refinement was performed with phenix.refine.
The final model was validated with MolProbity. All structure figures were
prepared with PyMOL. Further details are provided in SI Appendix.
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structure of the M3R/mT4L/6o (BS46) complex. (B and C) Binding-pocket residues of M3R interacting with 6o (BS46). (D and E) Interaction of 6o (BS46) with a non-
conserved position in the second extracellular loop (ECL2) of M2R andM3R. (D) Crystal structure shows an interaction of the fluorine group of 6o (BS46) with Leu225 in
the ECL2 of M3R. (E) Superimposed structure of M2R on the M3R/6o (BS46) structure indicates a steric clash between Phe181 of M2R and the fluorine of 6o (BS46).
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