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Abstract

Background: Signalling pathways underlie development, behaviour and pathology. To understand patterns in the
evolution of signalling pathways, we undertook a comprehensive investigation of the pathways that control the
switch between growth and developmentally quiescent dauer in 24 species of nematodes spanning the phylum.

Results: Our analysis of 47 genes across these species indicates that the pathways and their interactions are not
conserved throughout the Nematoda. For example, the TGF-3 pathway was co-opted into dauer control relatively
late in a lineage that led to the model species Caenorhabditis elegans. We show molecular adaptations described in
C. elegans that are restricted to its genus or even just to the species. Similarly, our analyses both identify species
where particular genes have been lost and situations where apparently incorrect orthologues have been identified.

Conclusions: Our analysis also highlights the difficulties of working with genome sequences from non-model species

as reliance on the published gene models would have significantly restricted our understanding of how signalling
pathways evolve. Our approach therefore offers a robust standard operating procedure for genomic comparisons.

Background

An animal’s phenotype, whether developmental or behav-
ioral in response to stimuli, is mediated through signalling
pathways. While there are a limited number of pathway
types, they can vary in terms of membership and can be
strung together to form complex interactions [1]. Given
their role in development and in human disease, under-
standing how these pathways evolve is an important, out-
standing question. The surge of metazoan genomes has
created the temptation to search for orthologous genes
involved in a pathway of interest and then to offer some
biological interpretations. Such comparisons are a routine
feature of publications announcing new genomes. However,
genomes are often published at a relatively early draft stage,
with errors in the assembly leading to incorrect or absent
gene models. This is an important pitfall for comparative
genomics and molecular biology analyses; the non-
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detection of an orthologue is not necessarily biologically
relevant, but can be the consequence of technical issues.
Here, we have investigated the utility and viability of gen-
omic comparisons in the context of the evolution of signal-
ling pathways. As a model pathway, we have analyzed the
conservation of the Caenorhabditis elegans dauer larva de-
velopment pathways across the Nematoda.

The free-living nematode C. elegans is one of the
most studied animals and has a genome assembly of
the highest quality [2]. As a consequence, its signalling
pathways are generally well-known and well-
characterized. During the larval development of C. ele-
gans, a decision occurs in the first larval stage (L1),
which involves three environmental factors: popula-
tion density, food supply and temperature. In replete
conditions, development continues through the L2, L3
and L4 molts to adult. In response to environmental
stress, the animal enters an arrested developmental
stage [3]. Termed dauer, the stage is long-lived and is
exited once conditions improve. The regulation of
signal transduction from stimuli to developmental

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-016-2770-7&domain=pdf
mailto:jwasmuth@ucalgary.ca
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Gilabert et al. BMC Genomics (2016) 17:476

decision involves four pathways: cGMP, Insulin/IGF-1,
TGEF-B and steroid hormone (dafachronic acid) syn-
thesis [4] (Fig. 1).

The phylum Nematoda is an excellent system for the
study of pathway evolution for two reasons. Firstly,
from a free-living ancestral state, parasitism of plants
and animals has evolved independently at least 15 times
[5]. These transitions were made possible through a
range of molecular adaptations [6], which must include
changes in the architecture of signalling pathways as
they respond to new stimuli [1]. Secondly, constituents
of these pathways are likely a promising source of new
anti-parasitics, possibly through repurposing already li-
censed drugs [7]. Multi-drug resistance is a growing
problem in veterinary medicine and an emerging threat
to the efficacy of human-based mass drug administra-
tion programs [8]. The search for new control strategies
has motivated sequencing projects for many species of
parasitic nematodes [5]. Morphological and behavioral
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similarities between the C. elegans dauer and the infect-
ive stage of some parasitic species has led to the dauer
hypothesis, in which pre-adaptations in free-living
ancestors led to the multiple independent transitions to
parasitism as a life strategy [9, 10]. This hypothesis is
gaining support through biochemical manipulation of
the pathways in parasitic species [11]. Understanding
the conservation of genes that control this important
stage could therefore prioritise targets for new
anthelmintics.

Here, we have identified homologues — putative ortho-
logues — of 47 genes across C. elegans and 23 other
nematode species, both free-living and parasitic. While
the pathways controlling the dauer transition are gener-
ally well-conserved, we identify an evolutionary path of
gene duplication and pathway co-option that leads from
the ancestral nematode to C. elegans. Further, we high-
light the issues encountered and solutions implemented
when working with draft genomes.
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Results of problematic gene models that were incorrect or missing
Identifying potential homologues for dauer signalling in the genomes’ released annotations (Additional file 3:
genes Figure S1): missing coding regions, the true gene split be-

We used seven strategies to search the protein se- tween multiple models, or a single model containing mul-
quences of C. elegans dauer genes against the gene tiple true genes. Many cases could be corrected manually.
models and assembled genome sequences of 23 other Given the manual inspection step, we are confident to
nematode species [12-30]. For each C. elegans protein  have found homologues between C. elegans genes and
that seeded a search, we carried out a manual inspec- other nematode species. In a few cases, where two or
tion for both positive and negative results. We first re-  more copies are found in another species, these are likely
lied on the fuzzy reciprocal BLAST approach (FRB) recent duplications, signifying a co-orthologous relation-
[31]. Following manual inspection, FRB identified 80 %  ship with C. elegans. Given these duplications, the lack of
(173 of 216) homologues in Caenorhabditis species, gene-order conservation between C. elegans and other
and 61 % (300 of 538) for the remaining 17 nematode  nematodes, and that performing a detailed phylogenetic
species (Fig. 2). In this second group, gene model ac- reconstruction on every gene would be prohibitively time-
curacy was not significantly correlated (r=0.25) with  consuming, we refer to the matches as homologues,
completeness of genome annotation (Additional file 1:  except in specific examples. Gene models for the homo-
Table S1). Across all species, the assignment of homology  logues are available in the Additional file 4: File S1 and
for 33 % of genes relied on comparisons against the raw  Additional file 5: FileS2.

genome assembly [32-37]. Experience of various genome Homologues for 14 C. elegans genes, daf-38, tax-2,
analyses has shown that RNA-seq assemblies inflate gene  tax-4, daf-2, age-1, pdk-1, pptr-1, akt-1, ftt-2, daf-16,
number. A limited, formal analysis supported this position  daf-1, pdp-1, egl-4, ncr-1 were present in all 23 species
and did not lead to any additional dauer genes being iden-  (Fig. 2). If we removed species of Clade I from the count,
tified (Additional file 2: Table S2). We observed the gamut  then homologues for a further eight genes are present in
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all remaining species. Below, we consider each of the
four pathways and the conservation of homologues.

¢GMP signalling

The genes tax-2 and tax-4 encode subunits of a sen-
sory transduction nucleotide-gated channel and are
conserved throughout the species examined. The daf-
11 encoded transmembrane guanylate cyclase, whose
activity powers the channel, is found in Clade III, IV
and V species. The set of G-protein subunits and the
G-protein coupled receptors (GPCRs) are less well
conserved. Their proteins are implicated as sensors of
environmental cues and control C. elegans’ dauer. The
GPCR daf-38 is ubiquitous, with gpa-3 lost in the Tri-
chinella/ Trichuris lineage. The other components are
likely restricted to the Caenorhabditis species, with
srg-37 found only in C. elegans.

Insulin ligands

The C. elegans genome is predicted to contain 40 genes
that encode for insulin-like proteins [29]. Five have been
implicated in the regulation of dauer [38—40]. Proteins
encoded by ins-4, ins-6 and daf-28 are agonists and are
restricted to Caenorhabditis species. The antagonists,
ins-1 and ins-18, are more widely conserved.

Insulin/IGF-1 signalling

This pathway is broadly conserved across all species. Vari-
ability of conservation was focused around two heteromeric
complexes. In the first complex, AKT-1/AKT-2, homo-
logues to C. elegans akt-1 were found in all species. How-
ever, akt-2 was restricted to C. elegans. In the second
complex, FTT-2/PAR-5, homologues for at least one of the
genes were found in each species. Within both complexes,
components shared high sequence similarity, indicating
gene duplication events at various points in the phylum.
The negative dauer regulator, ist-1, likely arose after the
split with Clade I, with subsequent independent loss in other
lineages, including that leading to Pristionchus species.
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The P. pacificus daf-16 had been previously cloned and
functionally characterized (GenBank Accession: JX891629)
[41]. However, our searches of the P. pacificus genome as-
sembly and associated models revealed little support for the
presence of daf-16 [17]. Aligning the short sequence reads
to the C. elegans dauer proteins revealed a read depth and
coverage consistent with other predicted P. pacificus homo-
logues [37]. Alignment of the confirmed P. pacificus daf-16
with sequence reads showed that the region of the genome
containing the gene is probably misassembled (Fig. 3).

Dauer TGF - B signalling

Broadly conserved across the phylum were genes that
encode the TGF - P ligand, DAF-7, the subunits of its re-
ceptor, DAF-1 and DAF-4, and the receptor’s regulator
BRA-1. Genes encoding the Smad transcription factors
were increasingly restricted in their phylogenetic distribu-
tion. daf-8, an inducer of transcription, and daf-3, a repres-
sor, were found in Clade IV and V species. Another inducer,
daf-14, was found throughout Clade V. Homologues to an-
other repressor, egl-4, were found throughout, while daf-5
was restricted to Clade V species. In the Clade I species, we
were unable to find homologues for any of the Smad tran-
scription factors, daf-5, scd-1 or scd-2.

Phylogenetic reconstruction of dauer TGF-B ligand
Notable from the TGF-B pathway was the absence of a
homologue for its ligand, daf-7, in Strongyloides ratti. Sev-
eral studies have proposed a putative orthologue for daf-7;
the candidate gene has been cloned from S. ratti
(AY672707), the sister species Strongyloides stercoralis
(AAV84743) and Parastrongyloides trichosuri (ABQ10586)
[42, 43]. While we could not find a significant alignment
between AY672707 and any S. ratti gene model, we did
successfully recover a splice-aware alignment from the
raw genome assembly [33, 34]. However, even the inclu-
sion of this model in the S. ratti annotation did not gener-
ate a FRB match to C. elegans daf-7.
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Fig. 3 Absence of P. pacificus daf-16 from assembled genome. The protein sequence encoded by P. pacificus daf-16 (GenBank accession:
JX891629) is represented by the black bar. The location of the best BLASTP alignment with the published P. pacificus gene models is shown in
green. The locations of the best TBLASTN alignments with the published P. pacificus genome assembly are shown in orange. The horizontal grey
bars are the locations the alignments with P. pacificus short DNA sequence reads (SRA: ERR777789), the blue histogram reports the depth of
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There are five genes in C. elegans that encode anno-
tated TGF-P ligands — daf-7, dbl-1, unc-129, tig-2 and
tig-3. Using the FRB results, we assembled the putative
homologues across the 24 nematode species, to which
we added individually cloned nematode TGF-f ligands
[42—-46]. From a protein sequence based maximum like-
lihood phylogenetic reconstruction, we noted that
monophyletic clades were returned for DBL-1, UNC-129
and TIG-2 proteins (Fig. 4). The topologies within each
clade were broadly consistent with the known species re-
lationships [47]. If we removed the assumption that
AY672707, AAV84743, ABQ10586 are DAF-7 ortholo-
gues, then we observed a monophyletic clade for DAF-7,
which importantly included Clade I sequences. We also
confirm the orthologous relationship between DAF-7
and ligands in H. contortus, N. americanus and B.
malayi. The three sequences from S. ratti, S. stercoralis
and P. trichosuri were placed with TIG-3 from T. spiralis
and R. culicivorax, a clade that formed a trifurcation
with TIG-3 from other species and DAF-7. The available
gene expression data shows that the Strongyloides/Para-
strongyloides genes more closely resemble C. elegans tig-
3: low in L1, L2 and L3; significantly increased in the
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infective L3; low or undetectable in adults [42, 48]. C.
elegans tig-3 has been implicated in ageing [49, 50] and
may have a role in iL3 longevity in some parasites.

Steroid hormone signalling

This pathway was conserved throughout species in Clades
I, IV and V, with ncr-2 restricted to Caenorhabditis spe-
cies. High sequence similarity between the sterol transport
proteins NCR-1 and NCR-2 (BLASTP; Expect=0) indi-
cates a gene duplication event early in the Caenorhabditis
lineage. Both the nuclear hormone receptor, daf-12, and
the cytochrome P450 daf-9 are essential in the regulation
of dauer development [51, 52]. Searches of the gene models
and genome assembly failed to return a match for daf-12 in
either H. contortus isolates. However, a likely candidate daf-
12 was found when C. elegans proteins were aligned to
DNA sequence reads generated as part of the H. contortus
genome projects [14, 15, 37]. The same approach was ne-
cessary to identify daf-9 in N. americanus. Homologues to
neither could be robustly identified in T. spiralis and T.
suis. However, it is important to note that both these spe-
cies have significantly reduced complements of nkr and cyp
gene classes (D. Curran pers. comm.).
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Discussion

The ability of C. elegans to undergo dauer arrest is one of
the most renowned postembryonic developmental transi-
tions in any species. Here, we present the evolution of the
signalling pathways that control dauer throughout the
nematode phylum. There are four points for discussion:
pathway-level evolution in dauer, gene-level evolution in
dauer, the analogy of free-living dauer and parasitic infect-
ive stages, and the quality of draft genomes.

The decision to enter dauer is controlled in C. elegans
by at least four pathways, with Insulin/IGF-1 and TGF-j3
acting synergistically. With compelling comparisons
drawn between the dauer arrested state of C. elegans
and the infective stage of some parasitic nematodes [9],
the question here was whether common genetic path-
ways existed across the phylum that would likely control
this transition. The answer is yes for species of Clades
IIL, IV and V, and unlikely for Clade 1.

Of the four pathways the ¢cGMP and Insulin/IGF-1
pathways are broadly conserved. In the cGMP pathway,
the nucleotide-gated channel (subunits: tax-2 and tax-4)
is ubiquitous. However, the identity of the genes in-
volved in the detection of environmental cues, the
GPCRs and G-proteins is less clear. Our approach has
been to take a simple assumption and look for the ho-
mologues — putative orthologues — of C. elegans pro-
teins. However, genes that sample the environment are
frequently members of large gene families that display
complex patterns of gene birth and death [53-55]. This
makes transference of function difficult, even between
closely related species, as observed in Caenorhabditis
pheromone receptors [56]. In non-Caenorhabditis spe-
cies, it is likely that several GPCRs are involved in sens-
ing environmental cues. However, preliminary evidence
points to a reduced complement in the parasites, H. con-
tortus, S. ratti and A. suum (data not shown). Whether
this is a consequence of the more restricted environ-
ments of parasitic nematodes remains to be determined.
While the antagonist of the insulin receptor DAF-2 ap-
pear to be broadly conserved in nematodes, putative
orthologues to known agonists in C. elegans were more
restricted. It is probable that DAF-2 receptors in non-
Caenorhabditis species bind other insulin-like peptides.
A comprehensive genomic survey and phylogenetic re-
construction of these relatively short — approximately
110 amino acids — is necessary.

Single gene studies have proposed homology in the
Insulin/IGF-1 pathway in several parasitic species, with
functional assays for daf-2 [57], age-1 [58] and daf-16
[41, 59-61]. The conservation of the DAF-7-TGF-j3
pathway is less clear. The pattern of gene homology in
Clade IV and V species is indicative of a DAF-7-TGEF-f
pathway that acts synergistic to Insulin/IGF-1. The an-
tagonist pair, daf-8 and daf-5, arose in the MRCA of
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Clade IV and V. The activation and repression of this
pathway with respect to the dauer phenotype has been
fine-tuned with daf-14 and daf-5 in the MRCA of the
Rhabditida (H. contortus and N. americanus) and Rhab-
ditoidea (Caenorhabditis). From a broader perspective,
the patterns of gene homology indicate a more funda-
mental function for the DAF-7 induced pathway and
later co-option in the Clade IV/V MRCA to the regula-
tion of life stage transition. Support for this hypothesis
is provided by the phenotypes exhibited by mutant
strains and RNA interference assays. Knock-out of the
genes early in the pathway display defects related to re-
lated to egg-laying in addition to the altering likelihood
of dauer development. The phenotypes associated with
daf-3 and daf-5 are restricted to dauer. However, even
within the Clade V nematodes, the expression of daf-7
is confounding. In C. elegans, daf-7 expression peaks in
L2, reducing significantly in a dauer arrested animal
[42]. A reduction of daf-7 expression likely leads to
dauer entry. However, inspection of the RNA-Seq data
from H. contortus and N. americanus shows that daf-7
expression is maximal in the infective L3 stage, which
is supported by real-time PCR in H. contortus [14, 16,
46]. One proposition is that the DAF-7-TGF-f pathway
has flipped in parasitic nematodes to maintain the in-
fective stage and promotes transition to the adult [62].
An assumption there is that the role of the pathway in
C. elegans is the ancient characteristic, with the para-
sitic one being derived. Interestingly, the daf-7 ortholo-
gues of Clade III B. malayi and Clade I T. suis have
expression patterns that match the Clade V parasites
[26, 45], but in Clade III T. canis expression in the
adult is significantly greater than the infective L3s (iL3)
[24]. Therefore, we propose an alternative evolutionary
path, in which the iL3 to adult transition through DAEF-
7-TGF-B mediation is basal, and the behavior observed
in C. elegans is derived. Detailed gene expression pro-
files across the entire life-cycle for the free-living P.
pacificus and P. redivius will, we hope, provide
enlightenment.

The final pathway, steroid hormone biosynthesis, is
well conserved in Clade III, IV and V species. In the
final step, dafachronic acids, a class of steroid hor-
mones generated by daf-9, bind to daf-12, a nuclear
hormone receptor. For Strongyloides stercoralis, a facul-
tative parasite (Clade IV), the application of exogeneous
dafachronic acid to L1 worms led to the development
of free-living adults, rather than iL3s [11]. The cyto-
chrome P450 daf-9 was previously reported to be lost
in parasitic lineages [63, 64]. Searches for functional
equivalents in cytochrome P450s will be difficult in
such a large gene family [65]. Here, we have provided
promising candidates for validation by functional
rescue.
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For species of Clade I, the most striking absences are for
daf-11 in all three species and daf-9 in T. spiralis and T.
muris. The daf-11 gene encodes a receptor that defines the
c¢GMP pathway, which controls daf-2 transcription in re-
sponse to environmental stimuli. The gene daf-9 encodes
for a cytochrome P450 that generates the sterol ligands for
DAF-12, which leads to reproductive growth. The phylo-
genetic distribution of daf-9 is most parsimoniously ex-
plained by gene loss, a consequence of a major reduction in
genome size and gene count. Our current work shows that
T. spiralis and T. muris likely only have two or three cyto-
chrome P450 genes (unpublished). These must have broad
specificity and are unlikely to carry out the precise role re-
quired of daf-9 in C. elegans. Similarly, there are few other
guanylate cyclases encoded in the three Clade I species to
carry out the function of daf-11. The role of the cGMP
pathway in transmitting signal to the insulin pathway
through daf-11 may therefore have arisen after the split of
Clade I nematodes. Alternatively, daf-11 may be present in
other, as yet unsampled, Clade I species and has been lost
in two distinct lineages. A functional analogue of daf-11
might be unnecessary in the species surveyed. Their infect-
ive stage is L1 for T. spiralis and T. suis and L2 in R. culici-
vorax. In all these species the transition from infective larva
to adult is through a series of rapid molts, the control of
which may not be in response to external stimuli.

The refinement of signalling pathways transducing a
stimulus to a response are often considered at a macro-
level, with the co-option of new pathway types [1]; here,
DAEF-7-TGF-p in Clade V nematodes. Equally important
are micro-level refinements. We observed gene duplica-
tions restricted to Caenorhabditis and to just C. elegans.
The products interact and provide functional redun-
dancy. There were instances of putative duplications for
other genes in other nematodes, though genome assem-
bly error through allelic polymorphism cannot be ruled
out for some.

Finally, it is important to make a comment on the use
of draft genome assemblies in non-model organism ge-
nomes. The assignment of gene homology between C.
elegans and another species relies on careful consider-
ation of sequence similarity shared between two gene
models or a model and a region of an assembled genome
[33-36]. In some instances, this required aligning short
genomic reads against seed proteins [37]. We recognize
the limitations in transferring functional annotation
based on sequence similarity, but emphasize the use of
multiple alignment algorithms and the manual inspec-
tion of each alignment. This gene-by-gene consideration
proved critical, as no single alignment score threshold
would have sufficed. Importantly, the sole reliance on
gene models would have resulted in the homologous re-
lationships for over 30 % of the genes going unfound.
Central to this is the new crop of protein-to-genome
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aligners that are refining long established genome anno-
tations [33, 66].

Methods

Genomic datasets

Genome assemblies and predicted gene models were
downloaded from Wormbase [29] for all species,
except Romanomermis culicivorax, which was down-
loaded from http://nematodes.org/genomes/romano-
mermis_culicivorax/index.html. The gene expression
data for each species was taken from the supplemen-
tary information of each genome publication and is
cited in the text.

Sequence searches

Seven search strategies were used to identify potential
homologues. The first is our own implementation of the
fuzzy reciprocal BLASTP hits first used across 12 species
of Drosophila [31]. The remaining six methods used C.
elegans protein sequences to search the sequence of the
genome assemblies: TBLASTN [32], Figmop [33], spaln
[34] exonerate [36], genBLAST [35] and DIAMOND
[37]. We have previously used Figmop to annotate cyto-
chrome P450 genes missed by standard gene finding
protocols [33]. All search results were inspected manu-
ally with the help of Kablammo [67]. Gene models gen-
erated by the six genome-based search strategies often
overlapped gene models published as part of that spe-
cies’ genome paper. In these instances, both gene models
were aligned to the C. elegans protein. Our newer
gene models were considered a minor improvement if
their alignment had a coverage 5 % greater than the
published gene model, and a major improvement if the
alignment has a coverage 15 % greater. Where our pre-
dictions overlapped multiple published gene models or
no gene model, the new model was considered a major
improvement. The presence and absence matrix (Fig. 2)
was generated using the ETE Toolkit [68]. The align-
ments generated by DIAMOND were processed using
samtools [69] and Fig. 3 was generated using Geneious
version 9 (http://www.geneious.com, [70]).

TGF-B phylogenetic reconstruction

In addition to the putative homologues to DAF-7, searches
were run using C. elegans DBL-1 (Wormbase: T25F10.2),
TIG-2 (F39G3.8), TIG-3 (Y46E12BL.1) and UNC-129
(C53D6.2) as the seeds. Individually cloned sequences were
identified from the literature. The alignment was built with
MAFFT, using the linsi options [71]. The most appropriate
phylogenetic model was LG + G [72]. The phylogenetic tree
was reconstructed with PhyML using the following
command line options: -c 4 -m LG -v 0.0 -a e -o tlr -fd -d
aa -b 1000 -s BEST —rand_start —n_rand_starts 101’ [73].
Nodes with less than 50 % bootstrap support were left
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http://nematodes.org/genomes/romanomermis_culicivorax/index.html
http://www.geneious.com/
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unresolved. The final tree figure was generated using
TreeGraph 2 [74] and FigTree (http://tree.bio.ed.ac.uk/
software/figtree/).
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