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Summary
The neural crest is one of the embryonic structures with the broadest developmental potential in

vertebrates. Morphologically, neural crest cells emerge during neurulation in the dorsal folds of the

neural tube before undergoing an epithelial-to-mesenchymal transition (EMT), delaminating from

the neural tube, and migrating to multiple sites in the growing embryo. Neural crest cells generate

cell types as diverse as peripheral neurons and glia, melanocytes, and so-called mesectodermal

derivatives that include craniofacial bone and cartilage and smooth muscle cells in cardiovascular

structures. In mice, the fate of neural crest cells has been determined mainly by means of transgen-

esis and genome editing technologies. The most frequently used method relies on the Cre-loxP

system, in which expression of Cre-recombinase in neural crest cells or their derivatives genetically

enables the expression of a Cre-reporter allele, thus permanently marking neural crest-derived

cells. Here, we provide an overview of the Cre-driver lines used in the field and discuss to what

extent these lines allow precise neural crest stage and lineage-specific fate mapping.
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1 | A BRIEF SYNOPSIS OF METHODS USED
FOR NEURAL CREST CELL FATE MAPPING

The astonishing variety of neural crest derivatives has long been recog-

nized, mainly through the pioneering work by Le Douarin and co-

workers who used interspecies transplantation in avian embryos to

determine normal fates as well as the developmental potential of

neural crest cell populations from different axial levels of the

embryo (Bronner & Sim~oes-Costa, 2016; Le Douarin & Dupin,

2003). Together with assays involving dye labeling and retroviral

infection of neural crest cells, this approach led to the establishment

of comprehensive fate maps and revealed that certain neural crest

derivatives (such as peripheral glia, sensory neurons, and melano-

cytes) are produced from all axial levels, whereas other neural crest

cell lineages (such as cartilage, bone, smooth muscle, connective tis-

sue, endocrine cells as well as, for instance, neurons and glia from

the enteric and parasympathetic nervous system) originate from dis-

crete levels along the neuraxis.

Given the limited accessibility of mammalian embryos, lineage-

tracing experiments as performed in avian embryos have not been

widely used for fate mapping of mammalian neural crest cells. Rather,

various genetic tools have been established that allow noninvasive and

long-term tracing of neural crest cells in mice in vivo (Zurkirchen &

Sommer, 2017). By far the most frequently used approach in the field

is Cre-loxP-based conditional genetic recombination that, when com-

bined with a Cre-reporter line, results in inheritable and irreversible

expression of a marker gene in Cre-recombinase-expressing cells and in

all of their progeny (Woodworth, Girskis, & Walsh, 2017). Furthermore,

inducible forms of Cre-recombinase have been applied to perform

stage-dependent fate mapping of neural crest cells and their derivatives

or fate mapping at low recombination density for in vivo single cell

tracing (Baggiolini et al., 2015; Kaucka et al., 2016). Apart from confirm-

ing in mice many of the findings obtained by fate mapping of avian

neural crest cells, genetic lineage tracing of murine neural crest cells

led, for instance, to the identification of minor neural crest-derived cell

populations present in tissues of nonneural crest origin, to the
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establishment of novel lineage trees (revealing, in particular, the broad

developmental potential of peripheral glial cells), and to the demonstra-

tion of in vivo multipotency of single premigratory and migratory neural

crest cells. While these studies have recently been covered elsewhere

(Petersen & Adameyko, 2017; Zurkirchen & Sommer, 2017), in the

present review we aim to focus on the tool set used in the field, sum-

marizing the findings made with and discussing specific properties of

various Cre lines that have been utilized to trace neural crest cells.

2 | TRACING OF PREMIGRATORY AND
MIGRATORY NEURAL CREST CELLS USING
NONINDUCIBLE CRE-DRIVER LINES

A well-established Cre-driver line for neural crest lineage tracing is

Wnt1-Cre (Danielian, Muccino, Rowitch, Michael, & McMahon, 1998)

(Table 1). This transgenic mouse line expresses Cre initially in the mid-

brain and, after closure of the neural tube, in the midlines of the mid-

brain and the caudal diencephalon, in the midbrain–hindbrain junction,

and in the dorsal spinal cord, where it recombines premigratory neural

crest cells. By crossing Wnt1-Cre mice with the ROSA26 (R26R)

Cre-reporter line (that drives b-galactosidase expression upon Cre-

mediated recombination) (Soriano, 1999), it was shown that Wnt1-Cre

is a highly efficient Cre-driver line, resulting in recombination of approx-

imately 96% of all migratory neural crest cells (Hari et al., 2012).

Because Wnt1 is not expressed in migratory neural crest cells and Wnt

activity rapidly decreases in neural crest cells after their delamination

from the neural tube (Kl�eber et al., 2005; Rabad�an et al., 2016; Zervas,

Millet, Ahn, & Joyner, 2004), it can be assumed that most neural crest

cells are very efficiently targeted by Wnt1-Cre before or at the time of

their delamination. Intriguingly, however, despite the early activity of

Wnt1-Cre in the dorsal neural tube, recombination apparently occurs

too late to allow investigation of mechanisms regulating epithelial-to-

mesenchymal transition (EMT) or delamination of neural crest cells.

Indeed, Wnt1-Cre-mediated ablation of signaling pathways shown in

other animal models to be crucial for neural crest EMT, such as canoni-

cal Wnt signaling and signaling by TGFb superfamily factors, did not

affect early stages of neural crest development (Brault et al., 2001;

B€uchmann-Møller et al., 2009; Hari et al., 2002; Jia et al., 2007). In

contrast, the differentiation potential of neural crest cells along all axial

levels could readily be monitored using Wnt1-Cre, both during develop-

ment and at postnatal stages (Chai et al., 2000; Jiang, Rowitch, Soriano,

McMahon, & Sucov, 2000; Zurkirchen & Sommer, 2017). A potential

caveat of this line is, however, that, at least in the midbrain, Wnt1 is

ectopically expressed from theWnt1-Cre transgene, which could lead to

ectopic activation of canonical Wnt signaling (Lewis, Vasudevan, O’neill,

Soriano, & Bush, 2013). Although it is not known whether such ectopic

Wnt1 expression also affects the neural crest, the use of a new driver

line termed Wnt1-Cre2 should be considered (Lewis et al., 2013). In

TABLE 1 List of publicly available neural crest drivers

Premigratory neural crest drivers

Short name Official Name Original study

P3Pro-Cre Tg(Pax3-cre)1Joe Li et al. (2000)

Wnt1-Cre H2afvTg(Wnt1-cre)11Rth Danielian et al. (1998)

Wnt1-Cre2 E2f1Tg(Wnt1-cre)2Sor Lewis et al. (2013)

Wnt1-CreER Tg(Wnt1-cre/ERT)1Alj Zervas et al. (2004)

Wnt1-Flpe Tg(Wnt1-FLP1)1Dym Dymecki et al. (1998)

Wnt1-FlpeERT2 Tg(Wnt1-flpe/ERT2)9455Dym Hunter et al. (2005)

Migratory neural crest drivers

Short name Official name Original study

AP2a-IRESCre Tfap2atm1(cre)Moon Macatee et al. (2003)

Ht-PA-Cre Tg(PLAT-cre)116Sdu Pietri et al. (2003)

Mef2c-F10N-Cre Tg(Mef2c-cre)5Patr Aoto et al. (2015)

P0-Cre Tg(Mpz-cre)94Imeg Yamauchi et al. (1999)

Plp-CreERT Tg(Plp1-cre/ERT)3Pop/J Doerflinger et al. (2003)

Plp-CreERT2 Tg(Plp1-cre/ERT2)1Ueli Leone et al. (2003)

Sox10-Cre Tg(Sox10-cre)1Wdr Matsuoka et al. (2005)

Sox10ERT2CreERT2 (SECE) Tg(Sox10-ERT2/cre/ERT2)17Sor He and Soriano (2015)

Sox10-iCreERT2 Tg(Sox10-icre/ERT2)1Ldim Simon et al. (2012)

Sox10-iCreERT2 Tg(Sox10-icre/ERT2)26Vpa Laranjeira et al. (2011)

Sox10-iCreERT2 Tg(Sox10-icre/ERT2)388Wdr McKenzie et al. (2014)

TEC1 Tg(Tyr-cre)1Gfk Tonks et al. (2003)
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fact, in studies addressing the role of fibronectin in cardiac neural crest

development, considerable phenotypic variances have been reported

upon Wnt1-Cre vs. Wnt1-Cre2-mediated recombination, although this

could have been due to differences between the two transgenic lines

other than aberrant Wnt1 expression (Wang & Astrof, 2016).

Apart from the Cre/loxP system, another site-specific recombina-

tion system has also been established to trace the fate of neural crest

cells. To this end, two transgenic mouse lines (termed Wnt1-Flpe mice)

were independently generated that express Flp recombinase from the

Wnt1 promoter (Dymecki & Tomasiewicz, 1998; Hatzistergos et al.,

2015). Although the recombination efficiency and the extent of neural

crest lineages traceable by these lines have not been described in

detail, these lines were instrumental to perform intersectional lineage

tracing of cells that concurrently express two distinct promoters. When

combined with either the RC::FrePe (Engleka et al., 2012) or RC::Fela

(Jensen et al., 2008) dual reporter alleles (which report dual Flp and Cre

recombination), a fraction of cKit-CreERT2-traced cardiac progenitors

was shown to derive from the cardiac neural crest (traced by Wnt1-

Flpe) (Hatzistergos et al., 2015). Likewise, intersectional fate-mapping

with the RC::FrePe allele was used to demonstrate that Isl1 is not an

exclusive marker for second heart field cardiac progenitors, as previ-

ously suggested, but also marks a subpopulation of cardiac neural crest

cells (Engleka et al., 2012).

Another mouse line expressing Cre in the dorsal neural tube and

premigratory neural crest is P3Pro-Cre, in which Cre expression is

driven from a Pax3 promoter fragment (Li, Chen, & Epstein, 2000).

Although Pax3 is expressed in the neural plate border before bona fide

neural crest specification (Bronner & Sim~oes-Costa, 2016), Cre-

mediated conditional inactivation of pathways controlling EMT/delami-

nation did not affect neural crest cell production and early migration in

P3Pro-Cre embryos (Buchmann-Moller and Sommer, unpublished).

Thus, we are not aware of a Cre-driver line suitable for the study of

early events in neural crest development, including neural crest specifi-

cation, EMT, and delamination. Fate mapping experiments with P3Pro-

Cre have demonstrated efficient labeling of postmigratory neural crest

derivatives, such as the enteric nervous system, the mesenchyme in

pharyngeal arches, and cardiovascular structures. In contrast to the

Wnt1-Cre line, however, P3Pro-Cre-mediated recombination appears to

be less specific for neural crest lineage tracing as it also marks noncrest

neuroepithelial cells and several mesodermal tissues, including cartilagi-

nous portions of the ribs and a large part of the skeletal musculature

(Jarad & Miner, 2009; Li et al., 2000; Liu et al., 2006; Lang et al. 2000).

Several Cre-driver lines have been generated that, unlike the

Wnt1-Cre or P3Pro-Cre lines, express Cre-recombinase in neural crest

cells not before they undergo an EMT in the dorsal neural tube, but

only as the cells begin to migrate. For instance, transgenic Ht-PA-Cre

mice express Cre under the control of a human tissue plasminogen acti-

vator (Ht-PA) promoter fragment specifically in migratory neural crest

cells (Pietri, Eder, Blanche, Thiery, & Dufour, 2003). A detailed compari-

son with Wnt1-Cre/R26R mice revealed very efficient labeling of neural

crest derivatives by Ht-PA-Cre, including neuronal, glial, melanocytic,

and mesenchymal cell populations during development and in adult

structures (Pietri et al., 2003; Wong et al., 2006). Ht-PA-Cre/R26R mice

were also reported to label a fraction of nonneural epithelial cells lateral

to cranial neural folds that were suggested to contribute to mesecto-

dermal structures in the head (Breau, Pietri, Stemmler, Thiery, &

Weston, 2008).

Additional Cre-driver lines mostly used to study cranial and cardiac

neural crest development are the transgenic line Mef2c-F10N-Cre (Aoto

et al., 2015) and the AP2a-IRESCre line generated by knock-in of an

IRESCre cassette into the 30 untranslated region of the AP2a transcrip-

tion factor locus (Macatee et al., 2003). A detailed analysis of Mef2c-

F10N-Cre/R26R embryos at different stages confirmed the neural crest

origin of various neural and nonneural structures and emphasized the

neural crest origin of olfactory ensheathing glial cells, cells in the

meninges surrounding the forebrain, and cells of the choroid plexus.

Apart from marking migratory neural crest cells only after delamination

from the neural tube, Mef2c-F10N-Cre/R26R presented a neural crest

fate map highly similar to the one obtained with the Wnt1-Cre line,

with the exception of some differences apparent in the calvarial bones

(Aoto et al., 2015).

Tyrosinase (Tyr) is a key enzyme of the melanin biosynthetic path-

way and, accordingly, a transgenic mouse line, in which Tyr enhancer

and promoter elements drive Cre expression, was found to mark the

melanocytic lineage, but not other neural crest derivatives (Delmas,

Martinozzi, Bourgeois, Holzenberger, & Larue, 2003). In contrast, an

independently produced Tyr-Cre line termed TEC1 also marks neural

crest lineages other than melanoblasts, such as craniofacial structures,

dorsal root ganglia (DRG), and sympathetic cephalic ganglia, albeit at a

seemingly low recombination efficiency and at a relatively late stage in

neural crest development (embryonic day (E) 10.5 onwards) (Tonks

et al., 2003). Whether this reflects activity of tyrosinase transcriptional

elements in a subset of undifferentiated migratory neural crest cells or

aberrant transgene expression remains to be determined.

Although P0 was originally identified as a marker of the peripheral

glial lineage, the expression of P0-Cre in transgenic mice was not line-

age restricted, but detected already in migratory neural crest cells

(Yamauchi et al., 1999). Consequently, P0-Cre/R26R mice displayed

b-galactosidase expression in multiple neural and nonneural tissues

originating from the neural crest. However, at least in some structures

such as the DRG, the recombination efficiency appeared to be consid-

erably lower than the one achieved by Wnt1-Cre-mediated recombina-

tion. Furthermore, cranial neural crest cell populations are differentially

marked in Wnt1-Cre vs. P0-Cre mice: Wnt1-Cre preferentially recom-

bines midbrain as opposed to hindbrain neural crest cells, while hind-

brain neural crest cells are efficiently targeted by P0-Cre (Chen et al.,

2017). Intriguingly, fate-mapping experiments by means of the P0-Cre

line also allowed the identification of neural crest-derived cells in struc-

tures previously not known to harbor such cells. Specifically, Nagoshi

and colleagues demonstrated that neural crest cells give rise to vascular

endothelial and smooth muscle cells present in the adult bone marrow,

which was later confirmed in Wnt1-Cre mice (Nagoshi et al., 2008;

Wislet-Gendebien et al., 2012). Likewise, between 5 and 15% of all

hormone-producing cells in the anterior lobe of the pituitary turned out

to originate from the neural crest based on P0-Cre- lineage tracing

(Ueharu et al., 2017).

DEBBACHE ET AL. | 3 of 8DEBBACHE ET AL. 3 of 8



Yet another transgenic mouse line expressing Cre in neural crest

cells only once they have engaged in migration is Sox10-Cre (Hari et al.,

2012; Matsuoka et al., 2005). Fate mapping in Sox10-Cre/R26R

embryos, combined with immunostaining for Cre protein, demon-

strated targeting of approximately 78% of all Sox10-positive neural

crest cells after their emigration from the neural tube (Hari et al., 2012).

Thanks to this high recombination efficiency it was possible to address

stage-specific functions of canonical Wnt signaling upon constitutive

activation in premigratory neural crest (using Wnt1-Cre) vs. migratory

neural crest cells (using Sox10-Cre). Furthermore, the Sox10-Cre line

was used together with the Wnt1-Cre line to show an unexpected con-

tribution of neural crest cells in the murine neck region to muscle con-

nective tissue, cartilage and bone, including endochondral bones that

were till then believed to exclusively originate from the mesoderm

(Matsuoka et al., 2005). However, unlike Wnt1-Cre, Sox10-Cre activity

leads to recombination of some adult structures that are not of neural

crest origin, such as subpopulations of epithelial cells present in hair

follicles (Figure 1).

3 | NEURAL CREST LINEAGE TRACING
USING INDUCIBLE CRE-DRIVER LINES

The above-described Cre lines allow in vivo fate mapping or functional

analysis of a gene of interest only at the first time the Cre-driving pro-

moter is active. To temporally control Cre activity, inducible forms of

Cre have been developed, for instance by fusion with a mutant ligand-

binding domain of the human estrogen receptor (CreER) that bind to

the synthetic estrogen receptor ligand 4-hydroxytamoxifen (4-OHT) or

tamoxifen (TM), but not to endogenous estradiol (Feil et al., 1996). Sub-

sequently, a refined version with a higher TM sensitivity was con-

structed (termed CreERT2) (Feil, Wagner, Metzger, & Chambon, 1997).

Although some mouse lines expressing inducible forms of Cre display

leakiness, CreER- and CreERT2-expressing lines have become very valu-

able tools to determine stage-specific roles of genes of interest, to

carry out lineage tracing experiments at different stages of neural crest

development, or to perform clonal analyzes of neural crest cells in vivo

by choosing conditions enabling low recombination frequencies (Zur-

kirchen & Sommer, 2017).

Because Wnt1 is only expressed in premigratory neural crest, but

not once neural crest cells have emigrated from the neural tube, Wnt1-

CreER and Wnt1-FlpeERT2 mice (generated to study lineage relation-

ships of cells at the mid/hindbrain boundary (Hunter, Awatramani, Far-

ley, & Dymecki, 2005; Zervas et al., 2004)) (Table 1) are not suitable for

neural crest lineage tracing at different time points. However, the

Wnt1-CreER line has been successfully used in conjunction with the

multicolor Cre-reporter allele R26R-Confetti (Snippert et al., 2010) to

show that premigratory Wnt1-expressing neural crest cells are multipo-

tent in vivo (Baggiolini et al., 2015). In this study, low dose TM treat-

ment of pregnant mice led to low density recombination of the

multicolor Cre-reporter in neural crest cells homozygous for R26R-Con-

fetti, resulting in clones of cells expressing either nuclear green, cyto-

plasmic yellow, cytoplasmic red, membrane-bound blue, or rare

combinations thereof. Intriguingly, around 20% of all the clones derived

FIGURE 1 Adult skin structures traced by Wnt1-Cre and Sox10-Cre-driven recombination. Immunolabeling of adult skin from mice, in
which recombination of the Cre-reporter allele R26R-tdTomato was driven during neural crest development by Wnt1-Cre (Danielian et al.,
1998) and Sox10-Cre (Matsuoka et al., 2005), respectively. Genetically recombined cells are labeled with tdTomato (red) in combination with
selected lineage markers (green): DCT (melanocytes in hair follicles (HF)); NF (axons of nerves in nerve bundles (NB)). Aberrant tracing of
some keratinocytes (white arrows) can be observed with Sox10-Cre. Hoechst nuclei counterstaining, scale bars 50 mm. The schematics sum-
marize the neural crest lineage-specific and unspecific recombination events observed with these Cre-driver lines. Star-like cells: melano-
cytes; cells in hair bulges: glial cells and melanocyte stem cells; cells in NBs: Schwann cells
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from single Wnt1-CreER-traced neural crest cells not only contributed

to multiple neural crest cell lineages, but also contained daughter cells

in the dorsal neural tube. These data are consistent with the idea that

at least some premigratory neural crest cells self-renew in vivo.

The assumption that multipotent neural crest cells can self-renew

during a given time window was further supported by clonal analysis of

migratory neural crest cells, traced shortly after emigration by means of

a Sox10-iCreERT2 driver line (Baggiolini et al., 2015; Simon, Lickert,

G€otz, & Dimou, 2012). By using R26R-Confetti as Cre-reporter in

Sox10-iCreERT2 mice treated with low TM doses, the vast majority of

migratory neural crest cells were shown to maintain multipotency, and

the Sox10-iCreERT2-expressing cells did not display any higher degree

of fate restriction as compared to their premigratory counterparts (Bag-

giolini et al., 2015). The only structure labeled by Wnt1-CreER– but not

Sox10-iCreERT2–lineage tracing was the dorsal neural tube, confirming

that Sox10-iCreERT2 is not expressed in the premigratory neural crest,

but only once the cells start to migrate. R26R-Confetti-based clonal

analysis of neural crest cells has also been performed with another,

independently produced Sox10-iCreERT2 line (Kaucka et al., 2016; Lar-

anjeira et al., 2011). In this study, composition and behavior of ectome-

senchymal cranial neural crest-derived clones were monitored during

early craniofacial development, revealing that cranial neural crest cell-

derived clones frequently comprise odontogenic, chondrogenic, osteo-

genic, and adipogenic cells.

Sox10 is not only expressed in migratory neural crest cells, but its

expression is maintained throughout development and postnatally in

the glial and melanocyte lineage, including in adult tissue (Bremer et al.,

2011; Kuhlbrodt, Herbarth, Sock, Hermans-Borgmeyer, & Wegner,

1998; Shakhova et al., 2012). Moreover, it marks cells with neural crest

stem cell (NCSC) features that have been isolated from various adult

neural crest-derived structures (Shakhova & Sommer, 2010). Impor-

tantly, reporter expression in Sox10-iCreERT2 lines nicely matches the

known Sox10 expression pattern during development and in the adult

(Laranjeira et al., 2011; Simon et al., 2012). Thus, these Sox10-CreERT2

lines (Laranjeira et al., 2011; Simon et al., 2012) are ideally suited to

monitor whether neural crest-derived cells give rise to distinct cell pop-

ulations at different time points or to assess stage-specific roles of

genes of interest. In fact, the Sox10-iCreERT2 line by Laranjeira and col-

leagues has been used to show that glia in the adult enteric nervous

system are able to produce neurons upon injury (Laranjeira et al., 2011)

or that cells in peripheral nerves can give rise to parasympathetic neu-

rons, dental mesenchymal cells, or neuroendocrine chromaffin cells in

the adrenal medulla (Dyachuk et al., 2014; Furlan et al., 2017; Kaukua

et al., 2014). Such studies might also be possible with yet another inde-

pendently generated Sox10-iCreERT2 line (McKenzie et al., 2014) or

with a Sox10ERT2CreERT2 line termed SECE (He & Soriano, 2015). Of

note, while high dose TM treatment in SECE/R26R embryos resulted in

labeling of multiple neural and nonneural neural crest derivatives, low

dose application of TM was found to affect the reporter gene expres-

sion pattern, allowing the tracing specifically of cranial as opposed to

trunk neural crest cells (He & Soriano, 2015).

Another genetic tool suitable for neural crest cell fate mapping at

different developmental stages is a Plp-CreERT2 mouse line generated

by Leone and colleagues (Leone et al., 2003). Plp is a glia-specific

FIGURE 2 Sox10-iCreERT2 and Plp-CreERT2-mediated tracing of adult neural crest-derived cells in the skin. Immunolabeling of adult skin of
tamoxifen-free animals carrying inducible Sox10-iCreERT2 (Simon et al., 2012) and Plp-CreERT2 (Leone et al., 2003), respectively, reveals leaki-
ness of these driver lines in combination with the Cre-reporter allele R26R-tdTomato (red) in melanocyte stem cells and glial cells present in
or around the hair bulge, melanocytes (DCT (green); star-like cells in the schematics), and Schwann cells in nerve bundles (NB). NF marks
axons of nerves. Hoechst nuclei counterstaining, scale bars 50 mm. Note that tamoxifen treatment of adult animals results in significantly
enhanced CreERT2 activity in peripheral glia and melanocytes in both Sox10-iCreERT2 and Plp-CreERT2 lines (Parfejevs et al., 2018)
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marker, and the Plp gene regulatory elements used to drive CreERT2

expression in these mice were reported to direct specific transgene

expression in oligodendrocytes and Schwann cells. Accordingly, TM-

induced recombination during embryonic development and in adult

mice led to very efficient labeling of peripheral glia in PLP-CreERT2/

R26R double transgenic animals (approximately 80% upon TM injection

of adult mice) (Leone et al., 2003). Moreover, using this line, an unex-

pectedly broad developmental potential of peripheral glial cells was

revealed, with Plp-CreERT2-traced cells along peripheral nerves giving

rise to cell types as diverse as melanocytes, parasympathetic neurons,

mesenchymal cells in teeth, and chromaffin cells of the adrenal medulla

(Adameyko et al., 2009; Dyachuk et al., 2014; Furlan et al., 2017; Kau-

kua et al., 2014; Petersen & Adameyko, 2017). The glial origin of at

least some melanocytes was also suggested by fate mapping experi-

ments using another inducible Plp-Cre-driver line, Plp-CreER (Doerflin-

ger, Macklin, & Popko, 2003). Using this line, it was reported that

melanocytes in hair follicles, but not in the interfollicular epidermis of

the tail, originate from Plp-Cre-positive glial cells at E11.5 in the mouse

(Deo, Huang, Fuchs, de Angelis, & Van Raamsdonk, 2013). The poten-

tial of peripheral glia to generate nonglial cell types was also demon-

strated by alternative approaches, involving fate mapping with other

lineage-specific Cre-driver lines or single cell RNA sequencing (Espi-

nosa-Medina et al., 2014; Furlan et al., 2017; Uesaka, Nagashimada, &

Enomoto, 2015). The latter allowed generation of “pseudo-time” line-

age trajectories and revealed an intermediate cellular state in between

the states defining Schwann cell precursors and differentiated nonglial

cells, respectively (Furlan et al., 2017). Finally, the Plp-CreERT2 line

(Leone et al., 2003) was instrumental to demonstrate by fate mapping

that adult peripheral glia become activated upon skin wounding, detach

from axons, and colonize the wound bed to support wound healing in a

paracrine manner, without notable differentiation into other, nonglial

cell types (Parfejevs et al., 2018).

However, inducible Cre activity in the Plp-CreERT2 line turned out

not to be specific for the glial lineage (Hari et al., 2012; Leone et al.,

2003). Indeed, in PLP-CreERT2/R26R embryos, TM treatment at early

stages of neural crest development (E9.5) resulted in prominent label-

ing of peripheral neurons, glia, and melanocytes, i.e., a fate map highly

reminiscent of multipotent neural crest cells (Hari et al., 2012). The

expression pattern of b-galactosidase became gradually restricted upon

TM injection at later stages. However, at all stages examined, the mela-

nocytic lineage was marked with considerable efficiency upon PLP-

CreERT2-mediated recombination. Likewise, induction of PLP-CreERT2-

driven recombination in adult mice marked a substantial fraction of

skin melanocytes, independently of the Cre-reporter allele used (Parfe-

jevs et al., 2018). Some of this expression might be due to CreERT2

leakiness during early neural crest development, given that in adult skin

of both PLP-CreERT2/R26R-tdTomato and Sox10-iCreERT2/R26R-tdTo-

mato mice, about 25% of all hair follicles contain recombined melano-

cytes even in the absence of any TM treatment (Figure 2) (Parfejevs

and Sommer, unpublished). However, TM injection in the adult signifi-

cantly induced Cre-reporter expression in both peripheral glia and

melanocytes in the skin (Parfejevs et al., 2018), demonstrating persis-

tent activity of PLP-CreERT2 and Sox10-iCreERT2 in these adult tissues.

Thus, as with Sox10-CreERT2-expressing mice, different neural crest

derivatives can be traced by means of the PLP-CreERT2-line, albeit with

an apparently lower recombination efficiency. Recently, Kaucka and

colleagues made use of this feature to carry out clonal analysis of cra-

nial neural crest cells in PLP-CreERT2/R26R-Confetti embryos to confirm

data obtained with a Sox10-iCreERT2 line (Kaucka et al., 2016).

In conclusion, distinct genetic mouse lines are available for fate

mapping premigratory and migratory neural crest cells. Together with

Cre-driver lines specific for fate-restricted precursor cells that we have

not covered in the present review, there is an increasing tool set avail-

able to the community to study the neural crest lineage tree and the

molecular mechanisms shaping it. The finding that several Cre and

CreERT2 driver lines expected to exhibit lineage-specific expression

appear to mark multipotent neural crest cells (although with quite

divergent recombination efficiencies) could simply reflect unfaithful

transgene expression. Alternatively, however, migratory neural crest

cells as well as, for instance, cells in peripheral nerves might comprise

distinct subpopulations expressing supposedly lineage-specific markers

together with multipotency markers. Conceivably, such cell populations

may be more or less ready to respond to the activity of cues controlling

fate decisions during development or upon injury. To address such

issues, the genetic approaches for prospective lineage tracing of neural

crest cells described herein will have to be complemented with other

methods, notably including retrospective lineage tracing by single cell

transcriptome analysis.
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