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Abstract: Cancer is still an insurmountable problem for humans and critically attacking 
human health. In recent years, natural products have gained increasing attention in the 
field of anti-tumor due to their extensive sources and minimal side effects. Maslinic acid 
(MA), a pentacyclic triterpene acid mainly derived from the olive tree (Olea europaea L.) 
has been confirmed to possess great anti-cancer effects. This paper reviewed the inhibi-
tory effect of MA and its derivatives on lung cancer, colon cancer, ovarian cancer, gastric 
cancer, lymphatic, leukemia, breast cancer, pancreatic cancer, melanoma, prostate cancer, 
renal cell carcinoma, gallbladder cancer, and bladder cancer, among others. MA inhibited 
the proliferation of various tumor cells and showed lower IC50 values in melanoma 
518A2 cells and gastric cancer MKN28 cells compared with other cell lines. A series 
of semi-synthetic derivatives obtained by modifying MA chemical structure have been 
shown to have high cytotoxicity to human tumor cell lines, but low cytotoxicity to non- 
malignant cells, which is conducive to developing its potential as a chemotherapeutic 
agent. These studies suggest that MA derivatives have broad prospects in the develop-
ment of antitumor therapeutics in the future and warrant further study. 
Keywords: maslinic acid, tumor, mechanism, derivatives

Introduction
Cancer, generally characterized by uncontrolled growth and spread of abnormal 
cells, is the second leading cause of death worldwide, following cardiovascular 
diseases.1 The occurrence of cancer is complex and multi-factorial, which involves 
excessive oxidative stress, chronic inflammation, cell cycle disorders, abnormal 
expression of proto-oncogenes, and angiogenesis disorders.2–5 Chemotherapy is 
a primary treatment for cancer. However, due to low selectivity and drug resistance 
of chemotherapeutic drugs, chemotherapy does not achieve the best possible 
results. Therefore, finding more effective chemotherapy agent is needed.6,7 

Natural compounds derived from Traditional Chinese Medicine (TCM), a class of 
drugs that are widely distributed in nature with many pharmacological applications, 
have been recognized as a rich source for new drug discovery.8–11 According to 
reports, approximately half of small molecule anti-tumor drugs approved from the 
1940s to 2018 were derived from natural products or analogs.12,13 Therefore, 
natural products as promising candidates for anti-cancer treatment have broad 
application prospects.

Pentacyclic triterpenes are an important class of plant secondary metabolites. 
Due to their extensive antitumor activity and lack of obvious toxicity, pentacyclic 
triterpenes are promising leading compounds for developing new multi-targeting 

Correspondence: Fu Peng  
Department of Pharmacology, Key 
Laboratory of Drug-Targeting and Drug 
Delivery System of the Education 
Ministry, Sichuan Engineering Laboratory 
for Plant-Sourced Drug and Sichuan 
Research Center for Drug Precision 
Industrial Technology, West China School 
of Pharmacy, Sichuan University, Chengdu, 
610041, People’s Republic of China  
Tel/Fax +86 28-61800018  
Email fujing126@yeah.net   

Cheng Peng  
State Key Laboratory of Southwestern 
Chinese Medicine Resources, Chengdu 
University of Traditional Chinese 
Medicine, Chengdu, 611137, People’s 
Republic of China  
Tel/Fax +86 28-61800231  
Email cdtcmpengcheng@126.com

Drug Design, Development and Therapy 2021:15 3863–3879                                            3863
© 2021 Yu et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php 
and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work 

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For 
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Drug Design, Development and Therapy                                               Dovepress
open access to scientific and medical research

Open Access Full Text Article

Received: 25 June 2021
Accepted: 14 August 2021
Published: 9 September 2021

http://orcid.org/0000-0002-6682-4710
mailto:fujing126@yeah.net
mailto:cdtcmpengcheng@126.com
http://www.dovepress.com/permissions.php
https://www.dovepress.com


antitumor agents.14–17 Maslinic acid [MA, (2α,3β)- 
2,3-dihydroxylolean-12-en-28-oic acid] (Figure 1) is 
a pentacyclic triterpene acid primarily derived from the 
olive tree (Olea europaea L.) and shanzha (Crataegus 
pinnatifida Bunge), with a C30H48O4 molecular formula, 
molecular weight of 472.7, and melting point and 
boiling point of 267–269°C and 570.0 ± 50.0°C, 
respectively.18–20 MA possesses a wide range of pharma-
cological benefits, including anti-cancer,21 anti- 
inflammatory and analgesic effects,22–24 antiplatelet 
aggregation,25,26 cardioprotective and anti- 
inflammatory,27,28 antimicrobial,29,30 hepatoprotective,31 

anti-diabetic, and anti-hyperlipidemic,32,33 to name a few. 
Among these effects, it has strong clinical potential. 
Recent studies have focused on anticancer activity of 
MA, emphasizing its promising properties as an antic-
ancer agent and as a candidate for developing anticancer 
drugs. In this review, we searched all relevant research 
papers on MA as an effective anti-cancer treatment pub-
lished by PubMed and Web of Sciences in the past ten 
years. The search strategy implemented was to use sev-
eral keywords to track related research articles, including 
“pentacyclic triterpenes acid,” “Maslinic acid,” “cancer,” 
tumour,” “anti-cancer,” and “cell death.” We then 

analyzed and summarized all retrieved data. This review 
provides a basis for MA application in cancer prevention 
and treatment.

Anticancer Properties of Maslinic 
Acid
The therapeutic potential of MA for different cancers has 
been confirmed by a large number of preclinical experi-
ments highlighting its role in regulating different cancer 
effects (ie, inhibiting proliferation, promoting apoptosis, 
regulating autophagy, and blocking angiogenesis). The 
cytotoxicity of MA to different cancer cells and corre-
sponding IC50 values are briefly summarized below 
(Figure 2).

Colorectal Cancer
Colorectal cancer (CRC) has maintained high incidence rates 
in western countries. About 60,000 people in Germany are 
diagnosed with CRC every year and two-thirds of tumors are 
located in the colon.34–36 With alterations in people’s lifestyle 
and dietary structure, the incidence of CRC is increasing 
among the young population.37 In the United States, morbid-
ity and mortality rates among adults over the age of 50 have 
declined since the early 1990s, owing to advances in 

Figure 1 Chemical structure of MA.
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screening and treatment. However, CRC incidence in adults 
under the age of 50 continues to rise.38,39 Currently, most 
CRC deaths are caused by metastasis. In recent years, MA 
has shown excellent efficacy in treating CRC. In vivo, MA 
could reduce the content of preneoplastic biomarkers in 
1,2-dimethylhydrazine -induced colon cancer rat models 
and 5 mg/kg MA could decrease aberrant crypt foci and 
mucin-depleted foci amount by 15% and 27%, respectively; 
when MA was 25 mg/kg, the amount decreased by 33% and 
51%, respectively (Table 1).40 Further, the ApcMin/+ mouse 
model is widely used in the study of human chemotherapeu-
tic agents because it can simulate human spontaneous intest-
inal tumorigenesis. A recent study showed that ApcMin/+ 

mice treated with 100 mg/kg MA for six weeks reduced the 
formation of total intestinal polyps by 45%.41 In addition, the 
anti-colon cancer properties of MA have been demonstrated 
in vitro. Recent studies revealed that MA exerted anti-colon 
cancer effects by inhibiting cell proliferation and promoting 
cell apoptosis.42 MA at IC50 of 39.7 ± 0.4 μg/mL and IC80 of 
56.8 ± 0.1 μg/mL remarkably reduced Caco-2 human 
colon cancer cell proliferation and increased apoptosis 
(Table 2).43 Another experiment exhibited similar results by 
illustrating IC50 and IC80 of MA in colon cancer cells were 

40.7 ± 0.4 μg/mL and 56.8 ± 0.1 μg/mL, respectively.44 For 
HT29 cells, IC50 (28.8 ± 0.9 µg/mL) and IC80 (37.5 ± 0.2 µg/ 
mL) concentrations at 72 hours of MA could significantly 
induce cell apoptosis.45 Another study demonstrated that MA 
negatively affected HT29 cell proliferation at concentrations 
of 3.7 μM (IC50/8) and 30 μM (IC50).46

Melanoma
Cutaneous melanoma is a serious malignant tumor, rank-
ing third in skin malignant tumors and becoming the first 
fatal skin disease. The increased risk of skin melanoma is 
related to factors such as exposure to ultraviolet light and 
genetics.47,48 Mokhtari et al proved that MA can influence 
B16F10 melanoma cells grown under stressful conditions, 
where MA showed different IC50 values for B16F10 mel-
anoma cells under different conditions. When 10% FBS 
was added to the medium, its IC50 value was 36.88 μg/mL 
(86 μM) and when the medium was 0% FBS, its IC50 

value became 1.48 μg/mL (3.5 μM). It is possible that 
the lack of FBS reduces cell activity, which in turn reduces 
the IC50 value of MA.49 Moreover, Mokhtari et al demon-
strated the inhibitory effect of MA on melanoma cells by 
adding 0.15 mM H2O2 to murine skin melanoma (B16F10) 

Figure 2 Anticancer properties of MA and its corresponding IC50 values. 
Note: Created with BioRender.com.
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cells and healthy cells (A10) to stress the cells and explore 
the role of MA in protecting cell lines from oxidative 
damage under stress conditions. The results showed that 
MA could reestablish superoxide dismutase, glutathione 
S-transferase, and glutathione peroxidase activity caused 
by H2O2 in B16F10 cells compared to A10. MA showed 
significant cytotoxicity in B16F10 cells with an IC50 value 
of 42 µM, but no obvious toxicity for A10 cells at con-
centrations up to 210 µM.50

Lymphoma
Lymphoid malignancies differ from other malignant tumors 
and are widely regarded as neoplastic and inflammatory 
diseases. They are part of the immune system and consist 
of inflammation/immune cell microenvironments.51 Hsum 
et al demonstrated that MA inhibits proliferation of Raji 
cells by inhibiting Cox-2 expression with an IC50 value of 
100 μM.52 Similarly, Hsum et al revealed that MA 
suppressed cell proliferation of Raji cells in a dose- and 

Table 1 The Anticancer Effects of MA in vivo

Cancer 
Types

Animals Models MA 
Concentrations

Route of 
Administration

Administration 
Times

Effects References

Colorectal 

cancer

4-week- 

old male 

mice

ApcMin/+ 

intestinal polyp 

mouse model

100 mg MA/kg 

feed

Diet 

supplemented

6 weeks Reduced total 

intestinal polyp 

formation by 45%

[41]

6-week- 

old male 
C57BL/6J 

mice

Azoxymethane 

(AOM)/dextran 
sulfate sodium 

(DSS) mice 

model

10 mg/kg and 

30 mg/kg day-1

Orally 40 days Protects against 

DSS-induced acute 
colitis, attenuated 

the increase of 

tumors. ↓IL-6, 
↓TNF-α, ↑IL-10,

[42]

5-week- 

old male 

BALB/c 
nude 

mice

HCT116 

xenograft 

model

10 mg/kg and 

30 mg/kg day-1

Orally 17 days Suppressed the 

tumorigenesis, 

↓p-mTOR, 
↓p-4EBP1, 

↓p70S6K,↑p- AMPK.

[42]

Leukemia 5-week- 

old male 

BALB/c 
mice

WEHI-3 

xenograft 

model

0, 8, 16, 32 mg/Kg Intraperitoneal 

injection

2 weeks Increase immune 

responses: 

enhanced 
macrophage 

phagocytosis and 

NK cell activities

[80]

Pancreatic 

cancer 
er

4–5 

week-old 
athymic 

nu/nu 

male 
mice

Panc-28 

xenograft 
model

10, 50 mg/kg MA 

every 2 day

Subcutaneous 

injected

36 days Suppressed 

pancreatic tumor 
growth, induced 

tumor apoptosis, 

and inhibited NF- 
B-regulated anti- 

apoptotic gene 

expression, such as 
Survivin and Bcl-xl.

[112]

Gallbladder 
cancer

6-week- 
old 

athymic 

nu/nu 
male 

mice

EH-GB2 
xenograft 

model

30 mg/kg MA 
every 2 days 

+GEM

Subcutaneously 
injected

30 days Inhibitory tumor 
volume, and 

decreased NF- 

κB-regulated gene 
products 

expression.

[90]

https://doi.org/10.2147/DDDT.S326328                                                                                                                                                                                                                               

DovePress                                                                                                                                     

Drug Design, Development and Therapy 2021:15 3866

Yu et al                                                                                                                                                                Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Table 2 The Anticancer Effects of MA in vitro

Cancer Types Cell 
Lines

MA Concentration IC50 Exposure 
Time

Effects References

Colorectal cancer Caco-2 

colon 

cancer 
cells

0 −100 μg/mL 39.7 

±0.4μg/mL

72h ↑caspase-8 /caspase-3, ↑ caspase-9, 

↑JNK, ↓Bid, ↓Bcl-2

[43]

HCT116, 
SW480 

cells

5, 10, 20, 30μM SW480: 
19.04μM 

HCT116: 

18.48 μM

12h ↑cleaved caspase-3, −9, ↓Bcl-2; ↑p- 
AMPK, ↑(AMP+ADP)/ATP; ↓p-mTOR, 

↓p-4EBP1 and p70S6K

[42]

Caco-2 
colon 

cancer 

cells

IC50: 40.7μg/mL 
IC80: 56.8 μg/mL

40.7μg/mL 72h ↑cleavage of caspases −8 and −3, ↑ t-Bid, 
↑ cytochrome C release

[44]

HT29 

cells

0 −100 μg/mL 39.7 

±0.4μg/ 
mL;

72h: ↓Bcl-2,↑Bax, ↑ cytochrome C, 

↑Caspase-9 and Caspase-3

[45]

HT29 
cells

3.75, 7.5, 15 and 30 
μM

30 μM 3, 12, 24, 
48, 72 h

– [46]

Melanoma B16F10 
cells

10–100µg/mL – 24 h ↑ROS [49]

B16F10 
and A10 

cells

IC50/4, IC50/2, IC50, 

2·IC50

42.3μM – ↓ SOD, ↓GSTs, ↓GSH-Px. [50]

Lymphoma Raji cells 12.5, 25, 50, 100 μM 100 μM 8h ↓COX-2, ↓NF-κB, ↓AP-1 [52]

Raji cells IC50: 0.1μm/mL 100 μM 72 h – [54]

Raji cells 12.5, 25, 50, 100 and 

200μM

– 4, 8, 16, 24 

48, and 72 
h

↓dUTPase, ↓stathmin, ↓cyclin D1, ↑p21 

protein, ↓NF-κB

[53]

Lung cancer A549 
cells

0, 9, 12, 15, 18, 21μg/ 
mL

– 24 h ↓caspase-3, −8 and −9, ↑cleaved 
caspase-3, −8 and −9. 

↑Smac, ↓ c-IAP1, c-IAP2, X-linked 

inhibitor of apoptosis protein, 
↓(XIAP) and Survivin

[58]

A549 
cells

0, 4, 8, 16, 32, 64 μM – – ↓ Bcl-2, ↓Na+-K+-ATPase activity, 
↑caspase-3/8, ↑cytochrome c, ↓HIF-1α, 

↓VEGF, ↓ survivin, ↓iNOS

[59]

Triple negative 

breast carcinoma

MDA-MB 

-231, 

MDA-MB 
-468, 

MCF7 

cells

30–50 µM – 24h ↓ CDK4, ↓ CDK2 (TNBCs) ↑ CDK2 

(MCF7); ↑ Bax, ↓ BCL2, ↑ Bax/Bcl-2 

ratio. ↓survivin

[64]

MDA-MB 

-231 cells

0–20µM – 24h MA+DOC: ↓MELK, ↓FoxM1, ↓ FoxM1, 

↓ ABCB1

[65]

(Continued)
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Table 2 (Continued). 

Cancer Types Cell 
Lines

MA Concentration IC50 Exposure 
Time

Effects References

Ovarian cancer A2780 

cells

1, 24, 60 μM – 6, 12, 24h – [104]

Gastric Cancer SGC-790 

cells

0–50μM 33.09 

±3.15

6, 24h ↑p38 MAPK, ↑ caspase [69]

MKN28 

cells

0, 0.1, 1, 10 µM 8.45 µM 24h ↓Bcl2, Bax and Bad; ↓IL-6/JAK/STAT3 

signaling cascade: (↓ p-STAT3 and JAK2, 
↓ IL-6

[70]

Pancreatic cancer 
er

Panc-28 
cells

6.25, 12.5, 25, 50, 
100, and 200 μM

49.2±0.5 
μM

48 h ↑LC3-II/LC3-I, ↑ Atg7, Atg16L, Atg5, 
Atg12 and Atg3, ↓p-mTOR, ↑p-ULK1 

(via ↑HSPA8)

[73]

Panc-28 

cells

10μM – 6, 12, 24, 

48 h

MA+TNFα 
↑p65; ↓cell proliferation gene (Cyclin 

D1, CO-2 and c-Myc), ↓ apoptosis 
(Survivin), Bcl-2, Bcl-xl, XIAP, IAP-1), ↓ 
invasion (MMP-9 and ICAM-1), ↓ 
angiogenesis (VEGF)

[112]

Bladder cancer T24, 253J, 

MRC-5 
cells

0–100μM T24:32.98 

± 4.06µM 
253J:71.83 

± 5.42µM 

MRC- 
5:328.75 ± 

40.64µM

48h ↑ P38 MAPK [77]]

Prostate canc DU145 

cells

0–25μM – 24h ↓uPAR, E-cadherin, VEGF and MMP; ↓ 
HIF-1a, ↓ Akt and ERK

[84]

Renal cancer RCC, 

SN12K1, 

HUVEC, 
PTEC 

cells

0–100μM – 24h ↓VEGF [87]

Gallbladder 

carcinoma

–EH-GB1, 

EH-GB2 

and GBC- 
SD cells

10–200μM – 0, 12, 24, 

48h

MA+ GEM 

↓NF-κB, ↓ cyclin D1, Bcl-2, Bax, MMP-2 

and MMP-9. 
.

[90]

Astrocytoma 1321N1 

cells

1–50μM 25μM 24h ↑ caspase-3, 

↑ ROS

[93]

Adenoid cystic 

carcinoma

ACC-2 

and 

ACC-M 
cells

0–100μM ACC-2: 

43.68 μM, 

ACC-M: 
45.76 μM,

24h, 48h, 

72h

↑[Ca2+]i, ↑p38 MAPK phosphorylation, 

↑caspase-3

[117]

Pheochromocytoma PC12 
cells

1, 3, 5, 10 μM, – 24h ↑ LC3-I/II conversion, ↓Beclin1 [96]

(Continued)
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time-dependent manner, where the proliferation inhibition 
rates of MA (50 μM) at 24 h, 48 h, and 72 h were 46%, 
76%, and 97%, respectively.53 Furthermore, another study 
also showed that MA inhibited Epstein–Barr virus (EBV) 
early-antigen expression in Raji cells with an IC50 value of 
0.1 ± 0.04 μg/mL. Phorbol 12-myristate 13-acetate (PMA) 
can also induce early-antigen EBV expression; the anti- 
tumor activity of MA may be attributed to its hydrophilic 
moieties interacting with protein kinase C, which prevents 
PMA from binding and activating protein kinase C.54

Lung Cancer
Lung cancer is a crucial public disease with the highest 
mortality rate. According to reports, the 5-year survival 
rate of lung cancer patients has increased in the past 10 
years.55–57 Consequently, lung cancer caused a heavy bur-
den on public health. Bai et al found that MA in the 
concentration range of 9–21 μg/mL significantly sup-
pressed cell proliferation and accelerated apoptosis of 
A549 lung cancer cells in a dose-dependent manner after 
24 h treatment.58 Likewise, Hsia et al reported MA exhib-
ited a significant pro-apoptotic effect when targeting A549 
cells under normoxic and hypoxic conditions at concentra-
tion ranges of 4–64 μM and 16–64 μM, respectively. 
Notably, the stronger pro-apoptotic effect of MA on 
A549 cells was observed under normoxic than hypoxic 
conditions at the same dose.59

Breast Cancer
To date, breast cancer remains the second leading cause of 
cancer-related deaths among women worldwide. Finding 
molecular markers and targeted therapies for specific sub-
groups of breast cancer patients is currently an urgent 
task.60,61 Triple negative breast cancer (TNBC) is an 
aggressive subtype of breast cancer that accounts for 
approximately 15–20% of all breast carcinomas. 
Compared with hormone receptor- or HER2-positive 

breast carcinoma, TNBC has an earlier onset age, a more 
invasive clinical course, and a bleak prognosis, which 
mainly relies on cytotoxic chemotherapy. However, due 
to the lack of expression of three effective breast cancer 
molecular markers, such as estrogen and progesterone 
receptors, as well as HER-2/Neu amplification, TNBC 
chemotherapy is not sufficiently effective.62,63 A recent 
study confirmed the anti-tumor effect of MA on TNBC 
by suppressing cell proliferation for both estrogen positive 
MCF7 and TNBC cells (namely, MDA-MB-231 and 
MDA-MB-468). In MDA-MB-231 cells, the IC50 value 
of MA at 24 h was 38.34 µM; in MDA-MB-468, the 
IC50 value of MA was 49.57 µM; in MCF7 cell lines, the 
IC50 value of MA was 55.20 µM. MA also initiated apop-
tosis and cell death, which was positively associated with 
the adhesive and migratory capabilities of cancer cells.64 

Docetaxel is a commonly used chemotherapy agent for 
treating TNBC. However, drug resistance caused by long- 
term use reduces its therapeutic effects. Wang K et al 
proved that docetaxel combined with different doses of 
MA (2.5, 5, and 10 µM) could significantly improve the 
sensitivity of MDA-MB-231 cells to docetaxel and reduce 
drug resistance in a dose-dependent manner, which sup-
ports MA as a promising contributor of docetaxel resis-
tance in human TNBC therapy.65

Gastric Cancer
Gastric cancer (GC) is a leading global cause of cancer 
mortality. Due to the inapparent clinical symptoms during 
early stages, many GC patients miss the optimal treatment 
period. In addition to radical gastrectomy, fluorouracil- 
based adjuvant chemotherapy is the first-line adjuvant 
therapy for patients with advanced GC. Cardia cancer is 
the most common subtype of GC, with increasing inci-
dence rate and poor prognosis, whose 5-year survival rate 
is reportedly only 16.7%.66–68 Chang T et al established 
a tumor model by subcutaneously injecting SGC-7901 into 

Table 2 (Continued). 

Cancer Types Cell 
Lines

MA Concentration IC50 Exposure 
Time

Effects References

Neuroblastoma SHSY-5Y 

cells

0, 5, 10, 20, 40, 80µM – 12h, 48h ↑ ROS, ↓MAPK/ERK [97]

Soft tissue sarcomas SW982 

and SK- 
UT-1 cells

10–100 μM – 24 h MA+DXR: ↓ MRP-1 [98]
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nude mice to investigate the preventative properties of MA 
against GC. They found that MA significantly inhibited 
tumor growth in a dose-dependent manner and 20 mg/kg 
MA could suppress growth of xenograft tumors by 
approximately 50%. Further, the latter study revealed 
IC50 values of MA on SGC-7901 and BGC-823 cells 
were 33.09 μM and 23.85 μM, respectively.69 

Furthermore, another study manifested that MA supple-
ments significantly inhibited proliferation of MKN28 GC 
cells and induced apoptosis in a dose-dependent manner, 
with an IC50 value of 8.45 μM.70

Pancreatic Cancer
Pancreatic cancer ranks as the fourth leading cause of 
cancer death in the USA, with surgical resection being 
the only cure method as pancreatic cancer responds 
poorly to most chemotherapeutic agents. However, 
this cancer typically acts as a hidden disease evading 
early diagnosis and most patients lose the chance of 
surgical excision. Hence, finding new strategies for 
comprehensive treatment of pancreatic cancer is 
urgent.71,72 MA can inhibit human pancreatic cancer 
Panc-28 cells with an IC50 value of 49.2 ± 0.5 μM. 
MA also significantly induced autophagy at 
a concentration of 50 μM.73

Tumor necrosis factor-alpha (TNF-α) is a key proin-
flammatory factor. Generally, endogenous TNF-α physio-
logically secreted in the epithelial-to-mesenchymal 
transition of cancer patients promotes tumor growth and 
spread. Recently, TNF-α showed anti-tumor activity in 
several preclinical models and in non-comparative clinical 
trials.74 However, TNF-α is not established as an effective 
anti-cancer agent due to its systemic cytotoxicity and 
resistance to tumor cells. A recent study showed that MA 
inhibited TNF-α in pancreatic cancer cell proliferation in 
a dose-dependent manner at significant concentrations of 
1.5 μM. Notably, the lethality of pancreatic cancer is due 
to its high invasiveness and tendency to metastasize 
rapidly in the lymphatic system. Pretreatment with 
25 μM MA for 12 h can inhibit pancreatic cancer cell 
invasion. Further, MA promoted TNF-α-induced cell 
apoptosis. Moreover, treatment with two different doses 
(10 mg/kg or 50 mg/kg) of MA can suppress tumor growth 
induced by Panc-28 pancreatic cancer cells in mice. 
Compared with the control group, MA treatment reduced 
tumor volume and weight of mice in a dose-dependent 
manner.75

Bladder Cancer
Bladder cancer is one of the ten most common malignant 
tumors and has the highest incidence among malignant 
tumors of the urinary system, which seriously threatens 
people’s lives and health. Therefore, finding new molecu-
lar targeted drugs for treating bladder cancer is clinically 
pertinent.76 A recent study demonstrated that MA selec-
tively inhibited growth of bladder cancer cells. In different 
bladder cancer cells, the IC50 values were as follows: T24 
(32.98 ± 4.06 µM), TCCSUP (27.95 ± 3.72 µM), 253J 
(71.83 ± 5.42 µM), PBC-1 (44.05 ± 3.83 µM), and PBC-2 
(16.26 ± 1.79 µM). Meanwhile, MA shows no obvious 
cytotoxicity to human lung fibroblasts (MRC-5) and nor-
mal liver cells (L-O2), with IC50 values of 328.75 ± 40.64 
µM and 196.95 ± 25.60 µM, respectively. In addition, 
different doses (5 and 20 mg/kg) of MA significantly 
inhibited tumor growth in a BALB/C nude bladder cancer 
model induced by T24 and 253J cells, suggesting MA has 
significant therapeutic effects on bladder cancer.77

Leukemia
Leukemia is a malignant tumor of the hematopoietic sys-
tem characterized by uncontrolled proliferation of imma-
ture blood cells, which has become a huge challenge due 
to high mortality and morbidity.78 Recently, MA of 25 μM 
concentration inhibited proliferation of HL-60 cells with-
out obvious inhibitory effects on proliferation of normal 
skin fibroblasts (NHSF46 and NB1RGB).79 Further, Lai 
et al confirmed the anti-leukemia effect of MA in mice 
leukemia models established by injecting WEHI-3 cells 
into the abdominal cavity of normal BALB/c mice. 
Following intraperitoneal injection with MA at different 
concentrations (0, 8, 16, and 32 mg/kg) for two weeks, 
body weight of leukemia mice became slightly up- 
regulated with no observed toxic reactions during treat-
ment. In addition, the survival rate of leukemia mice 
improved with high MA doses (32 mg/kg).80

Prostate Cancer
Prostate cancer is a common urogenital malignancy in 
aging men, accounting for approximately 15% of male 
cancer patients worldwide. Prostate cancer is almost 
always an adenocarcinoma that originates in glandular 
epithelial tissue, without obvious symptoms in its early 
stage. In its middle stage, it often manifests lower urinary 
obstruction symptoms, such as urinary frequency, urgency, 
and urinary incontinence.81,82 Epidermal growth factor 
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(EGF) has previously been shown to stimulate migration, 
invasion, and adhesion of DU145 cells.83 A recent study 
suggested that MA could inhibit metastatic capacity of 
prostate cancer. First, cell proliferation experiments 
showed cell viability did not change after treatment with 
10–25 μM of MA for 18 h. Differing doses (10 and 25 
μmol/l) of MA were then applied to prostate cancer cells, 
showing MA can inhibit basal and EGF-induced migration 
(27–64%), invasion (23–60%), and adhesion (8–40%) of 
DU145 cells.84

Renal Cancer
Renal cell carcinoma (RCC) is diagnosed in approximately 
300,000 people worldwide annually and causes more than 
100,000 deaths. RCC is not a single disease, as it pos-
sesses many histological characteristics and clinical man-
ifestations caused by different genes. Currently, the 
complexity and increasing incidence of kidney cancer, as 
well as the poor efficacy and high drug resistance of 
existing treatments, have increased the need for targeted 
therapies and precision medicine for kidney cancer.85,86 

A recent study showed that dietary MA supplementation 
could reduce kidney cancer risk, as well as present an 
auxiliary method to improve efficacy of existing anti- 
angiogenesis treatment. Treatment with MA for three 
RCC cell lines (Caki-1, SN12K1, and ACHN) showed 
SN12K1 was the most sensitive cell, with an IC50 value 
of 47.11 μM, while ACHN was the most tolerant cell, with 
an IC50 value of 76.52 μM. Further, under similar experi-
mental conditions, MA was more toxic to RCC cell lines 
than kidney proximal tubular epithelial cells (PTEC), high-
lighting the selective toxicity of MA to RCC cells. Further 
studies showed that MA can inhibit proliferation, reduce 
proliferating cell nuclear antigen and suppress colony for-
mation on RCC cells.87

Gallbladder Carcinoma
Gallbladder cancer is a malignant tumor originating from 
mucosal epithelial cells of the gallbladder. It is the most 
common malignant tumor in the biliary system, accounting 
for more than 70% of biliary malignancies.88,89 

Gemcitabine (GEM) is a chemotherapeutic agent for treat-
ing advanced metastatic cholangiocarcinoma and gallblad-
der cancer. However, GEM resistance is seen in many 
types of cancer. Recently, an experiment treated GBC 
cell lines with five MA doses (10, 25, 50, 100, and 200 
μΜ) and GEM (25 nM) for 48 h, revealing MA applied 
alone may significantly inhibit proliferation of GBC cells 

in a dose-dependent manner, but also combining MA and 
GEM may synergistically inhibit cell proliferation in GBC 
cells by strengthening apoptosis and inhibiting cell 
invasion.90

Other Cancers
Astrocytoma is a glioma with good prognosis, is an inva-
sive growth tumor, and can occur at any age.91,92 Recently, 
MA showed an anti-astrocytoma effect by inhibiting cell 
proliferation and inducing apoptosis. Specifically, Martín 
et al treated 1321N1 cells with 1–50 μM/L MA, demon-
strating an IC50 value of MA after 24 h was approximately 
25 μM/L.93

Phaeochromocytomas are rare neuroendocrine tumors 
with a highly variable clinical presentation and common 
manifestations of headaches, sweating, palpitations, and 
hypertension. Closely related tumors, called extra-adrenal 
paragangliomas, can arise in extra-adrenal sites. If pheo-
chromocytoma is detected in time and removed surgi-
cally, the prognosis is promising.94,95 LC3-I/II is an 
autophagy marker, whose content reflects autophagy 
levels. MA treatment showed a stimulatory effect on 
LC3-I/II conversion of rat pheochromocytoma PC12 
cells, suggesting MA inhibited pheochromocytoma by 
promoting autophagy.96

Neuroblastoma is a malignant tumor originating from 
the sympathetic nerve, which is common in children and 
has a poor prognosis. MA (0, 10, 40, and 80 μM) signifi-
cantly suppressed proliferation of SHSY-5Y neuroblas-
toma cells, which was dose and time dependent. In 
addition, MA can inhibit cell migration and invasion.97

MA can also inhibit soft tissue sarcomas (STS). As 
a single agent, MA inhibited cell proliferation in a dose- 
dependent manner, with IC50 values of 45.3 μM (SW982 
cells) and 59.1 μM (SK-UT-1 cells) in both STS cells. 
Inhibition rates of MA 80 μM against the two cell lines 
were 70.3 ± 1.1% and 68.8 ± 1.5%, respectively. Moreover, 
when MA was combined with doxorubicin, MA significantly 
improved the anti-tumor effects of doxorubicin by inhibiting 
cell viability and inducing cell death. For both STS cell lines, 
MA combined with doxorubicin facilitated the antiprolifera-
tive effect of doxorubicin by 1.3–2.3 times.98

Derivatives
Identifying new cytotoxic agents to enhance or restore 
apoptosis of malignant cancer cells is essential for more 
effective anti-cancer drugs.99 The IC50 values of MA in 
many cancer cell lines mentioned above are larger than 10 
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micromolar. By structural modification, a series of MA 
derivatives can ameliorate IC50 values on cancer cells. 
Further, other drug-related properties, such as 

bioavailability and solubility, are improved in derivatives. 
Many MA derivatives have anti-cancer effects and part of 
their structures is shown in Figure 3.

Figure 3 Chemical structure of MA derivatives.
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PEG polymer is considered a strong candidate for pro- 
drug conjugation due to its high aqueous solubility.100 

Experiments by Medina-O’Donnell et al showed that dia-
mine and PEGylated-diamine derivatives of MA 1 have 
considerable anti-cancer potential. In non-tumor HPF cell 
lines, the cell viability range of all diamine conjugates of 
MA was 81% and 94%. In tumor cell lines, the MA 
diamine conjugate with the shortest and longest diamine 
chain shows the best cytotoxic effects (IC50 values from 
0.76 μM to 1.76 μM). In B16-F10 cell lines, they were 
140- and 20-fold more effective than their corresponding 
precursors.101 Chouaib et al tested the anti-proliferative 
effects of MA and its 24 synthetic triazole derivatives on 
mouse EMT-6 (Breast) and human SW480 (Colon) cancer 
cell lines, showing that MA has significant anti- 
proliferation effects on EMT-6 and SW480 cancer cells, 
with cell survival rates of 5% and 9% (100 μM), respec-
tively. The proliferation experiment of its derivatives 
demonstrated in most cases 1.4-regioisomers type pre-
sented better anti-proliferative activity compared with 
1.5-regioisomers type, Compound 2a displayed the most 
activity in this series against EMT- 6 and SW480, with 
a cell viability of 13% and 34% (100 μM). For the 
1.4-regioisomers, compound 2b was the most active 
against both EMT-6 and SW480, with a cell viability of 
6% and 10% (30μM). This activity may be explained by 
the aryl group attaching to the triazole in relation to the 
triterpene moiety in cellular space.102

MA acetylation produced acetates 3a. Reaction of 3a 
with oxalyl chloride, followed by a reaction with pipera-
zine, furnished amides 3b, after which a reaction of rho-
damine B with 3b produced violet-colored compounds 3c. 
As a result, compound 3c is approximately 1000-fold more 
cytotoxic than parent MA, and the selectivity FSi (defined 
as EC50 A2780 tumor cell line compared with EC50 non-
malignant mouse fibroblasts NIH 3T3) increased by 50. 
Here, rhodamine B is not cytotoxic (up to a concentration 
of 30 μM). Therefore, to the best of our knowledge, 
compound 3c is the most toxic triterpenoic acid derivative 
to date of cytotoxic compounds in nano-molar concentra-
tions, where its cytotoxicity is comparable to commercial 
and well-established cytotoxic therapeutics, such as dox-
orubicin or paclitaxel.103

Parra et al showed that MA and its derivatives can 
suppress B16F10 melanoma cell growth by inducing apop-
tosis. MA was transformed into the corresponding sodium 
salt derivative 4a via several steps. In addition, the diace-
tyl derivative of MA was converted into the corresponding 

amide derivative first with thionyl chloride/DCM, then 
with MeOH/NH3, then converted into nitrile derivative 
4b via treatment with thionyl chloride in DCM, which 
was further deacetylated to form compound 4c. 
Moreover, 28-benzyl maslinic acid 4d, a derivative of 
MA treated with benzyl chloride and DMF, also showed 
significant anticancer effects. The details are as follows. At 
a concentration of 1 μM, the pro-apoptotic activities of 
some compounds were sodium maslinate 4a at 56.67%, 
2.3-diacetoxy-28-cyanide 4b at 68.62%, 28-cyanide 4c at 
78.75%, and 28-benzoyl 4d at 87.50%.99 Serbian et al 
reacted MA and benzoyl chlorides to form two corre-
sponding acylated compounds, 2-O-acylated and 
3-O-acylated MA derivatives. Biological screening of 
these compounds by SRB assays showed cancer cell cyto-
toxicity increased compared with MA. The EC50 value of 
A2780 cells treated with MA for 96 h was 19.5 μΜ. 
However, the EC50 values of compounds (5a-f) were all 
lower than 10 μΜ.104 Another experiment demonstrated 
that MA and MA analogue 6 showed cell membrane 
damaging activity in tumor cells. In A2780 cells, the 
IC50 values of MA and compounds were 19.5 μM and 
10.6 μM, respectively. The latter study showed that, during 
cell culture, compound 6 and cholesterol formed crystals 
around or near the cells. Compound 6 then entered the cell 
membrane and the lipid raft compacted cholesterol, alter-
ing the cell membrane, decreasing cell volume, and indu-
cing apoptosis.105

Another study also demonstrated that MA and its acety-
lated derivative (7, EM2) showed significant anti- 
melanoma effects. In 518A2 cells, MA showed an IC50 

value of 13.7 μM, whereas 7 showed stronger toxicity 
with an IC50 value of 1.5 μM. In nonmalignant mouse 
fibroblasts (NiH 3T3 cell line), the IC50 value of 7 was 
33.8 μM.106

Derivatization at position C-28 of MA could improve 
anti-proliferative activity, where the EC50 of 2, 3-di- 
o-acetyl-benzylamine 7 was 0.5 μM in A2780 ovarian 
cancer cells.107 Structural modifications performed on 7 
revealed the presence of these acetyl groups in 7 and the 
presence of (2b,3b)-configurated centers are required for 
high cytotoxicity combined with optimal selectivity 
between malignant cells and non-malignant mouse fibro-
blasts. Therefore, maslinic acid derived N-[2b,3b-di 
-O-acetyl-17bamino-28-norolean-12-en-17-yl]-phenylurea 
8 was synthesized by replacing the benzylamide function 
for a phenylurea moiety, which improved results with 
EC50 values of 0.9 μM (for A2780 ovarian cancer cells) 
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with EC50 > 120 μM for fibroblasts (NIH 3T3) and trig-
gered apoptosis.108

Discussion
Bioactive compounds isolated from TCM, as well as deri-
vatives, are becoming increasingly more promising as 
complementary and alternative medicines for cancer 
treatment.109–111 MA is widely distributed in many tradi-
tional Chinese medicines, such as olive tree (Olea euro-
paea L.), shanzha (Crataegus pinnatifida Bunge), hongzao 
(Ziziphus jujuba Mill.), and pipaye (Eriobotrya japonica 
Thunb.). The literature shows MA can inhibit proliferation, 
migration, and invasion of cancer cells, promote apoptosis 
and autophagy of cancer cells, and suppress tumor growth 
to alleviate secondary diseases caused by tumor in mice 
xenograft tumor models. Specifically, we found IC50 

values of MA against various cancer cells were all lower 
than 60 μM. In lung cancer A549 cells, MA showed 
significant inhibitory effects at 21 μM. In colon cancer 
HT29 cells, MA showed an IC50 value for 24h at 61 
µM. In addition, for melanoma 518A2 cells, the IC50 

value of MA was 13.7 μM, and when acting on GC 
MKN28 cells, the IC50 value was less than 10 μM. 
Further, different doses of MA (2.5, 5, and 10 μM) com-
bined with docetaxel in MDA-MB-231 cells significantly 
increased sensitivity of MDA-MB-231 cells to docetaxel 
in a dose-dependent manner.65 Similarly, MA can increase 
the proliferation inhibitory effect of TNF-α on pancreatic 
cancer cells, which was significant at concentrations of 1.5 
μM.112 In addition, MA can inhibit tumor growth in mouse 
xenograft tumor models and reduce secondary diseases 
caused by tumors. In summary, MA inhibited proliferation 
of various tumor cells and showed lower IC50 values in 
melanoma 518A2 cells and gastric cancer MKN28 cells 
compared with other cell lines. When applied with mar-
keted chemotherapeutic drugs, MA could significantly 
increase sensitivity and promote anti-cancer effects.

MA and its derivatives have gained attention as dietary 
supplements and its efficacy as a functional food or medi-
cine cannot be established without bioavailability studies.113 

Male Sprague-Dawley rats were orally administered MA at 
1, 2, and 5 mg/kg. MA was then detected two days later in 
the jejunum, ileum, cecum, and colon segments, with the 
highest concentrations in the distal part of the intestine. In 
addition, eleven gut-derived metabolites formed by mono-, 
dihydroxylation, and dehydrogenation reactions were iden-
tified, suggesting MA undergoes Phase I reactions resulting 
in most monohydroxylated metabolites without the presence 

of Phase II derivatives.114 Another study also proved that 
MA has relative rapid oral absorption, with a peak concen-
tration after 50 mg/kg oral administration at 0.51 h and 
a bioavailability of 5.13%. After entering the bloodstream, 
it is widely distributed in the tissues, since the central and 
peripheral distribution volumes were 8.41 L/70 kg and 63.6 
L/70 kg, respectively. The clearance (8 L/h/70 kg) was 
related to unaltered renal excretion.115 Although based on 
Cmax (32.8 ± 10.4) and AUC0-10 (185.1 ± 66.5), the 
bioavailability of MA was 7-fold higher than similar struc-
ture oleanolic acids,116 clinical application of MA is still 
limited by solubility and source.

Current studies show anti-tumor activity of MA is 
related to its inhibition of proliferation, promotion of 
apoptosis, regulation of autophagy, and inhibition of 
angiogenesis (Figure 4). MA induces apoptosis via 
both extrinsic and intrinsic apoptotic pathways. First, 
MA can promote activation of caspase-8 and caspase-3, 
which further decreases Bcl-2 expression and increases 
Bid cleavage levels. Conversely, MA promoted expres-
sion of Smac, inhibited expression of c-IAP1, c-IAP2, 
XIAP, and survivin, activated caspase −9, and pro-
moted the release of mitochondrial cytochrome C to 
eventually trigger cell apoptosis. The MAPK pathway 
is constituted by the ERK1/2 MAPK family, P38 
MAPK family, and JNK/SAPK MAPK family. The 
ERK1/2 signaling pathway is the first RasRaf-MAPK 
classic signal transduction pathway, which is most clo-
sely related to cell proliferation. MA treatment can 
inhibit expression of major proteins in the ERK path-
way, leading to apoptosis of cancer cells. In addition, 
MA activates the p38 MAPK signaling pathway by 
promoting [Ca2+]i activity, then activates Caspase-3 
to stimulate apoptosis.117 Furthermore, JNK may act 
directly upon the Bcl-2 protein family, thus inducing 
the mitochondrial pathway, as well as stimulate Bid. 
Bid-active targets the mitochondria to modulate other 
Bcl-2-like factors, such as Bax,118,119 and MA treat-
ment induces expression of JNK in cells, thereby acti-
vating p53 to promote cytochrome C release and 
increase caspase-9, −3, and −7 expression, leading to 
apoptosis. ERK1/2 activation can trigger STAT3, lead-
ing to gene expression that controls critical cellular 
functions, including cell proliferation, survival, differ-
entiation, and development. IL-6 is a pleiotropic cyto-
kine that plays an important role in tumor development 
by regulating immune and inflammatory responses and 
can participate in cell proliferation, differentiation, 
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apoptosis, and metastasis.120 IL-6 may activate the 
Janus kinase (JAK)/signal transducer and activator of 
STAT3 signaling pathway, as well as the MAPK sig-
naling pathway.121–123 Further, MA treatment can inhi-
bit phosphorylated-STAT3 and JAK2 expression to 
decrease IL-6 protein levels. These results indicate 
MA inhibits growth of cancer cells when inducing 
apoptosis by suppressing the IL-6/JAK/STAT3 signal-
ing cascade.

Conclusion and Perspective
Herein, we summarized the anti-cancer effects and 
mechanisms of MA and its derivatives. MA can inhibit 
lung cancer, colorectal cancer, breast cancer, bladder 
cancer, leukemia, lymphoma, melanoma, and prostate 
cancer, among others. The anti-cancer effect of MA is 
mainly related to inducing cell apoptosis, but also to 
inducing cell cycle arrest, regulation of autophagy, and 

hindering angiogenesis. However, it is clear the anti- 
cancer mechanisms of MA are not sufficiently 
explained. Most studies are in vitro experiments, 
while in vivo experiments are inadequate, which 
requires further research. In vitro, MA showed anti- 
proliferative effects in HCT116, SW480, Caco-2, and 
Raji cells, among others. Nevertheless, MA showed 
high IC50 values within various cells. A series of deri-
vatives obtained by modifying the MA structure show 
high cytotoxicity to human tumor cell lines, but low 
cytotoxicity to non-malignant cells. However, we find 
that the dose-effect relationship, toxicity and safety of 
MA and its derivatives is still obviously inadequate, 
which requires more in-depth and comprehensive 
study.

In summary, MA and its derivatives show inhibitory 
effects on a variety of tumors and are expected to become 
candidate anti-tumor agents in the future.

Figure 4 Partial molecular pathways involved in the anti-cancer mechanism of MA. 
Note: Created with BioRender.com.
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