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Abstract

Kidins220 (Kinase D interacting substrate of 220 kDa)/ARMS (Ankyrin Repeat-rich Membrane Spanning) is a scaffold protein
highly expressed in the nervous system. Previous work on neurons with altered Kidins220/ARMS expression suggested that
this protein plays multiple roles in synaptic function. In this study, we analyzed the effects of Kidins220/ARMS ablation on
basal synaptic transmission and on a variety of short-term plasticity paradigms in both excitatory and inhibitory synapses
using a recently described Kidins220 full knockout mouse. Hippocampal neuronal cultures prepared from embryonic
Kidins2202/2 (KO) and wild type (WT) littermates were used for whole-cell patch-clamp recordings of spontaneous and
evoked synaptic activity. Whereas glutamatergic AMPA receptor-mediated responses were not significantly affected in KO
neurons, specific differences were detected in evoked GABAergic transmission. The recovery from synaptic depression of
inhibitory post-synaptic currents in WT cells showed biphasic kinetics, both in response to paired-pulse and long-lasting
train stimulation, while in KO cells the respective slow components were strongly reduced. We demonstrate that the slow
recovery from synaptic depression in WT cells is caused by a transient reduction of the vesicle release probability, which is
absent in KO neurons. These results suggest that Kidins220/ARMS is not essential for basal synaptic transmission and various
forms of short-term plasticity, but instead plays a novel role in the mechanisms regulating the recovery of synaptic strength
in GABAergic synapses.
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Introduction

Synaptic transmission at fast chemical synapses plays a

prominent role in the communication between neurons in the

central and peripheral nervous systems. Presynaptic action

potentials trigger the fast release of neurotransmitters, which

impact on the membrane potential of the postsynaptic cell through

activation of specific ligand-gated channels. The efficacy of

synaptic transmission for successive action potentials does not

remain constant, but it changes depending on the pattern of recent

activity. Dynamic alterations lasting from milliseconds to minutes

are referred to as ‘‘short-term synaptic plasticity’’ (STP) [1], which

is thought to have an important role in the transfer of information

between neurons. Synaptic plasticity can manifest itself in several

forms, ranging from facilitation to depression, and may vary

between cell types or even between synapses of the same neuron.

Despite considerable progress in our understanding of the

mechanisms underlying STP, many questions remain unanswered,

particularly regarding the identity and specificity of the molecular

players involved. In addition to their roles in differentiation and

survival, neurotrophins (NT) have been recognized as important

synaptic modulators [2]. In particular, brain-derived neurotrophic

factor (BDNF) has a multitude of functions in the formation,

maturation and plasticity of both excitatory and inhibitory

synapses [3]. The transmembrane protein Kidins220/ARMS

(Kinase D-interacting substrate of 220 kDa/Ankyrin-Rich Mem-

brane Spanning) [4,5], referred hereafter as Kidins220, has been

identified as a direct downstream target of activated neurotrophin

receptors. Recent reports have begun to characterize the

involvement of Kidins220 in specific neurotrophin effects on

synaptic transmission, such as the potentiation of evoked

excitatory post-synaptic currents in response to acute BDNF

treatment [6] and the enhancement of miniature inhibitory post-

synaptic currents upon chronic exposure to BDNF [7]. A similar

enhancement of GABAergic input was also observed in

Kidins220-overexpressing excitatory neurons, while the opposite

effect occurred in cells with reduced Kidins220 expression, leading

to the hypothesis that BDNF released from the post-synaptic

excitatory neuron may be responsible for the enhancement [7].

Besides its direct interaction with the NT receptors Trks and

p75NTR [5,8,9], Kidins220 binds to many proteins, such as Rho-

GEF Trio [10] and the kinesin-1 motor complex [11]. These

findings have lead to the view of Kidins220 as a scaffold protein

coordinating diverse regulatory functions at the plasma mem-

brane, via its multiple protein interaction domains. Interestingly,

subunits of the NMDA [12] and AMPA receptors [13] are among
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the identified interacting proteins. This opens the possibility of a

NT-independent role of Kidins220 in the modulation of synaptic

function. Reduced Kidins220 expression lead to increased

excitatory synaptic activity, both in hippocampal cultured cells

[14] and acute brain slices [13], and to an increased long-term

potentiation of excitatory responses [15]. In addition, Kidins220

regulates the phosphorylation state and cell surface expression of

the AMPA receptor subunit GluA1 [13]. These results seem to

support a NT-independent role of Kidins220 in the modulation of

basal synaptic transmission and plasticity, even though the

involvement of NTs was not specifically excluded in the above

mentioned studies.

Furthermore, the amount of Kidins220 protein itself is strongly

affected by ongoing synaptic activity, as first demonstrated in rat

hippocampal cultures [14]. Subsequent work has shown that

Kidins220 is a target of the calcium-dependent protease calpain,

activated either by excitotoxic activation of NMDA receptors [12]

or chemically induced depolarization [15]. From these results a

picture emerges in which the amount of Kidins220 expression and

the level of neuronal activity appear to be reciprocally connected.

To date, all studies examining the relationship between

Kidins220 and synaptic transmission have relied on acutely

modulating Kidins220 levels by either overexpression or down-

regulation as well as on the use of a Kidins220 knockout strain

Figure 1. Immunocytochemical analyses showed similar Kidins220 expression and pre-synaptic localization in excitatory and
inhibitory autaptic neurons. A) Immunofluorescence images of a glutamatergic (vGlut-positive) and a GABAergic (vGAT-positive) autaptic neuron
stained with anti-Kidins220 (red), anti-vGlut1 (green) and anti-vGAT (blue) antibodies. Merged images are shown on the right. Scale bars, 10 mm. B)
Higher magnification of excitatory and inhibitory neuronal processes stained with anti-Kidins220 (red) and anti-vGlut or anti-vGAT (green) antibodies.
Merged images are shown on the right. Kidins220 shows a good co-localization with both pre-synaptic markers (arrowheads), indicating pre-synaptic
localization of the protein in both excitatory and inhibitory terminals. Scale bars, 1 mm.
doi:10.1371/journal.pone.0035785.g001

Table 1. Analysis of miniature post-synaptic currents.

mEPSC mIPSC

WT KO WT KO

Number of
cells

10 13 12 14

Amplitude
(pA)

12.260.3 12.360.2 28.160.8 27.760.8

Rise time10–90

(ms)
1.460.1 1.460.1 3.460.2 2.960.2

Decay time
(ms)

5.260.4 5.460.3 27.661.5 24.561.3

Frequency
(Hz)

0.6360.12 0.5160.10 1.2860.24 1.0460.21

f range (Hz) 0.24–1.21 0.23–1.43 0.23–2.62 0.27–2.60

Recordings from wild type (WT) and Kidins2202/2 (KO) neurons in the presence
of either bicuculline (for mEPSC) or CNQX (for mIPSC) in the bath solution, at a
holding potential of 275 mV. None of the analyzed parameters revealed
significant differences between WT and KO cells (p.0.05; unpaired Student’s t-
test).
doi:10.1371/journal.pone.0035785.t001

Short-Term Plasticity in Kidins220/ARMS2/2 Neurons
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[16], in which Kidins220+/2 mice express 60–70% of the

physiological Kidins220 levels. Homozygous knockout animals

die at a very early embryonic stage, thus precluding any functional

studies [16]. Recently, Cesca et al. [6,17] reported the generation

and phenotypic characterization of a new Kidins220-deficient

mouse line. In this line, Kidins2202/2 embryos survive until late

stages of gestation and show distinct areas of cell death and

reduced neuronal responsiveness to neurotrophic stimuli. Here, we

used embryonic hippocampal cultures from this strain to study the

consequences of constitutive Kidins220 ablation on synaptic

transmission and short-term plasticity in both excitatory and

inhibitory synapses.

Results

Excitatory and inhibitory autaptic neurons express
Kidins220 to a similar extent

In this study, we used cultured hippocampal neurons for whole-

cell patch-clamp recordings of synaptic activity, since the late

embryonic lethality of Kidins2202/2 mice [6] precluded func-

tional studies on neurons in hippocampal slices of adult animals.

Spontaneous neurotransmitter release was evaluated from the

input originating from multiple synaptically connected cells in

neuronal networks. With the exception of a subset of the data on

inhibitory short-term plasticity which derived from extracellular

stimulation of GABAergic synapses in neuronal networks,

recordings of electrically evoked release were made from autaptic

neurons, which offer the advantage to activate a defined

homogenous population of monosynaptically connected synapses

[18,20]. In this respect, they are equivalent to paired recordings

between two connected neurons, but contrary to these, they allow

to record the activity of a neuron’s synaptic contacts as a whole, as

all contacts generated by axonal sprouting are forced to reach the

same post-synaptic target.

Immunostaining experiments have shown that Kidins220 is

expressed in both excitatory and inhibitory neurons of hippocam-

pal cultures [7]. In order to check for Kidins220 expression in

autaptic neurons, we performed triple labeling with anti-

Kidins220, anti-vGlut and anti-vGAT antibodies (Figure 1A). By

this approach, we were able to separately evaluate Kidins220

expression in excitatory (vGlut-positive) and inhibitory (vGAT-

positive) neurons. Kidins220 immunoreactivity was present in a

punctate staining pattern in cell bodies and processes of both

neuronal populations. Close examination of neuronal processes at

higher resolution revealed a noticeable level of co-localization of

Kidins220 with the excitatory and inhibitory pre-synaptic markers

vGlut and vGAT (Figure 1B, arrowheads), thus indicating that the

protein is present in the pre-synaptic compartment of both cell

types. Quantification of fluorescence intensity showed no differ-

ences in the levels of Kidins220 expression between the two groups

Figure 2. Excitatory and inhibitory post-synaptic currents recorded from autaptic Kidins2202/2 neurons showed normal
amplitudes and kinetics. A) Representative eEPSC recordings in WT and KO autaptic neurons in response to brief depolarization. Stimulus
transients have been removed for clarity. Holding potential 286 mV. B) eEPSC amplitudes recorded from autaptic neurons (n = 52 for WT; n = 45 for
KO). C) Delay times were determined as the time between the stimulus and the peak of the EPSC response. D) The rise rate as a measure of the
activation kinetics was determined from the slope of the EPSC’s rising phase. E) The time constant of EPSC deactivation was determined by fitting the
EPSC decay phase with a mono-exponential function. F) Representative eIPSC recordings in WT and KO neurons in response to brief depolarization.
Stimulus transients have been removed for clarity. Holding potential 266 mV. G) eIPSC amplitudes recorded from autaptic neurons (n = 36 for WT;
n = 29 for KO). H) Delay times were determined as the time between the stimulus and the peak of the IPSC response. I) The rise time (from 10% to
90% of the IPSC amplitude) was determined from the rising phase of IPSC. J) Fast and slow time constants of IPSC deactivation were determined by
fitting the IPSC decay phase with a bi-exponential function. For the data in C–E and H–J, n = 20 for both WT and KO. None of the analyses revealed
significant differences (p.0.05; unpaired Student’s t-test). See the Methods section for details on the determination of current kinetics.
doi:10.1371/journal.pone.0035785.g002

Short-Term Plasticity in Kidins220/ARMS2/2 Neurons
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(data not shown). This analysis confirmed that Kidins220 was

expressed ubiquitously and in comparable amounts in excitatory

and inhibitory autaptic neurons.

Kidins2202/2 neurons show normal spontaneous
neurotransmitter release at excitatory and inhibitory
synapses

Spontaneous (TTX-insensitive) neurotransmitter release in

excitatory and inhibitory synapses was separately evaluated by

recording miniature post-synaptic currents in the presence of

bicuculline (30 mM) or CNQX (10 mM), respectively, in the bath

solution. In both cases, KO neurons behaved closely similar to

WT neurons regarding frequency, amplitude and kinetics of

miniature post-synaptic currents (Table 1). These data suggest that

Kidins220 ablation does not affect spontaneous presynaptic

activity or the number and properties of postsynaptic neurotrans-

mitter receptors.

Evoked excitatory and inhibitory post-synaptic currents
in autaptic Kidins2202/2 neurons have normal
amplitudes and kinetic properties

In order to compare basal evoked synaptic transmission, we

recorded post-synaptic currents in autaptic glutamatergic

(Figures 2A) and GABAergic neurons (Figure 2F) from WT and

KO embryos. As illustrated in Figure 2B and 2G, the mean

amplitudes for both eEPSCs and eIPSCs were comparable, as well

Figure 3. Cumulative amplitude profile analyses did not reveal differences in RRP sizes and vesicle release probabilities between
wild type and Kidins2202/2 neurons. A) Representative current traces (EPSCs in A1; IPSCs in A2) in response to a 1-s stimulation train at 40 Hz.
Holding potential 286 mV in A1, 266 mV in A2. B) Cumulative amplitude profile of EPSCs (B1) and IPSCs (B2) during repetitive stimulation at 40 Hz for
1 s (see current traces in A). Currents were recorded from autaptic neurons, with n = 16 WT (open squares), n = 15 KO (filled squares) for EPSC data,
and n = 13 WT (open circles), n = 16 KO (filled circles) for IPSC data. Data points between 600 and 1,000 ms were subjected to a line fit to estimate the
size of the cumulative EPSC/IPSC amplitude before steady-state depression (see below). C) The parameters derived from the cumulative amplitude
profile analyses in B did not differ between WT and KO neurons (p.0.05; unpaired Student’s t-test): (i) the amplitude of the first autaptic EPSC (C1)
and IPSC (C2) in the train; (ii) the cumulative current amplitude before steady-state depression (indicating the size of the readily releasable pool (RRP))
estimated from the intercept of the line fit (in B) at t = 0 s; (iii) the vesicle release probability (Pr) calculated as the ratio between EPSC1/IPSC1 (see i)
and the respective RRP size (see ii).
doi:10.1371/journal.pone.0035785.g003

Short-Term Plasticity in Kidins220/ARMS2/2 Neurons
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as the sizes of the patched neurons evaluated from the membrane

capacitance. Autaptic glutamatergic neurons had capacitance

values of 48.462.4 pF (n = 51; WT) and 52.162.8 pF (n = 43;

KO; p.0.05, unpaired Student’s t-test), while autaptic GABAer-

gic neurons had values of 29.762.8 pF (n = 33; WT) and

28.961.8 pF (n = 28; KO; p.0.05, unpaired Student’s t-test).

According to Arevalo et al. [13], reduced Kidins220 expression

lead to increased incorporation of GluA1 subunits at the plasma

membrane, which altered the AMPA receptor subunit composi-

tion at the expense of GluA2-containing complexes, ultimately

enhancing AMPA receptor-mediated post-synaptic responses at

Schaffer collateral – CA1 synapses. We investigated possible

changes in the AMPA receptor subunit composition of autaptic

KO neurons by recording eEPSCs in the presence and absence of

Naspm, a blocker of GluA2-lacking AMPA receptors [21]. Local

perfusion of WT autaptic neurons with Naspm (100 mM) had only

a minor effect on the eEPSC amplitude (0.9360.04 of control;

n = 5), consistent with the fact that most functional AMPA

receptors contain GluA2 subunits under basal conditions

[13,22]. Similarly, the eEPSC amplitude of KO neurons decreased

to about the same extent upon Naspm application (0.9660.04 of

control; n = 4; p.0.05, unpaired Student’s t-test), suggesting that

the subunit composition of AMPA receptors was not altered in the

absence of Kidins220.

This conclusion was further supported by the analysis of the

kinetic properties of autaptic eEPSCs (Figure 2C–E), as the

presence of GluA2 subunits was reported to slow down the decay

of AMPA receptor-mediated EPSCs [23]. Consistently, we found

that the delay, rise time and time constants of deactivation of both

mEPSCs (Table 1) and eEPSCs (Figure 2C–E) were not altered

between WT and KO neurons. Similarly, the kinetic properties of

both mIPSCs (Table 1) and eIPSCs (Figure 2H–J) were not

affected. Basal evoked synaptic transmission seems therefore not

affected by Kidins220 ablation.

The amplitude of post-synaptic currents is determined by the

linear combination of a series of parameters, such as the number of

releasable synaptic vesicles, the probability of release, the vesicular

neurotransmitter content and the post-synaptic receptor density.

Even though evoked currents have shown equal amplitudes in WT

and KO neurons, they may nevertheless hide changes in the basic

parameters compensating each other. The analysis of miniature

post-synaptic currents (Table 1) already confirmed that the

vesicular neurotransmitter content and the number of post-

synaptic receptors were unchanged in KO neurons. Cumulative

amplitude profile analysis was used to estimate the vesicle release

probability (Pr) and the size of the readily releasable pool (RRP) of

synaptic vesicles from the current responses to high-frequency

stimulation [19]. The excitatory and inhibitory responses evoked

by a stimulation train of 1 s @40 Hz (Figure 3A) were plotted as

cumulative amplitude profiles in Figures 3B1 and B2, respectively,

and the slower linear increase at later stages of train stimulation

was back-extrapolated to time zero to yield a rough estimation of

the size of the RRP of synchronous release (RRPsyn) [19]. Given

the almost identical cumulative amplitude profiles for the two

genotypes, RRPsyn and Pr were not significantly different between

WT and KO for both excitatory and inhibitory neurons

(Figure 3C1, C2).

Evoked IPSCs of Kidins2202/2 neurons show reduced
paired-pulse depression at long inter-pulse intervals

Since basal transmission of both excitatory and inhibitory

synapses was unchanged in KO neurons, we focused our attention

on various paradigms of short-term plasticity. We first applied a

series of paired-pulse stimulations with inter-pulse intervals (IPI)

ranging from 10 to 2,000 ms. Among the multiple mechanisms

known to contribute to changes in the paired-pulse ratio

(PPR = I2/I1) at short IPIs, two processes are of major importance

[1]: i) residual calcium from the first pulse causes an increase in Pr

of a second pulse applied at short intervals; ii) synaptic vesicle

depletion generated by the first pulse leads to a decrease in the

number of readily releasable vesicles for the second pulse. WT and

KO excitatory neurons showed pronounced paired-pulse facilita-

tion (PPF) at short inter-pulse intervals, i.e. the amplitude of the

second EPSC response was larger than that of the first (PPR.1;

Figure 4A, B). These neurons displayed low basal release

probability (Pr<0.14; Figure 3C1), which limits the impact of

vesicle depletion, thus favoring the effect of residual calcium. PPF

gradually decreased and eventually disappeared at intervals above

500 ms. Modification of the basal release probability by elevated

calcium concentration (5 mM) in the bath solution caused paired-

pulse depression (PPD; PPR,1) of EPSCs at all IPIs. However,

also under these high-release-probability conditions, no significant

differences between WT and KO cells were observed (data not

shown).

On the contrary, IPSC responses were characterized by PPD in

standard bath solution (containing 2 mM calcium), which is

mainly due to a higher basal Pr in inhibitory synapses (Pr<0.40;

Figure 3C2), thus favoring vesicle depletion over residual calcium.

KO responses were similar to WT at short inter-pulse intervals,

but displayed a significantly smaller PPD at intervals between

100 ms and 2,000 ms (Figure 4C, D). Notably, there was

essentially no PPD in KO cells at intervals above 500 ms, with

the PPR approaching unity. A more detailed analysis revealed that

the recovery from PPD exhibited two distinct kinetic components,

namely a fast component that was similar (tfast<35 and 20 ms for

WT and KO, respectively), and a slow component that was more

than one order of magnitude faster for KO responses than for WT

ones (tslow<2,700 and 150 ms for WT and KO, respectively). A

time constant of about 2 s has been previously reported for

PPDslow of IPSC responses in hippocampal basket cell – granule

cell synapses [24] and in collicular neurons [25]. Both studies

favored a presynaptic origin of this effect and found that PPDslow

was independent of both extracellular calcium concentration and

previous release. In fact, if PPD were caused by synaptic vesicle

depletion, one would expect an inverse relationship between the

first and the second amplitude during paired stimulation [26]. In

other words, if the first IPSC is larger than average, the second

IPSC would be smaller than average. Within the WT data set at

IPI = 50 ms, some cells indeed showed the expected relationship

(Figure 4E, left panel), while in other cells such relationship was

not apparent. This is likely due to a low mean Pr producing less

SV depletion and larger PPF. In cells showing an inverse

relationship at IPI = 50 ms, no such correlation emerged at

IPI = 500 ms (Figure 4E, right panel), suggesting that the

pronounced PPDslow in WT cells was independent of previous

release.

A recent study suggested that PPDslow of IPSCs recorded from

rat CA1 pyramidal neurons may be mediated by the activation of

GABAC receptors, since it could be reversibly blocked by the

application of the GABAC receptor antagonist (1,2,5,6-tetrahy-

dropyridin-4-yl)methylphosphinic acid (TPMPA) [27]. Under our

experimental conditions, however, bath application of TPMPA

(10–100 mM) did not lead to significant changes of the PPR of

eIPSCs in WT neurons (data not shown).

In summary, these data show that the extent of PPDslow in KO

neurons was dramatically reduced, suggesting that Kidins220 is

required for this form of synaptic plasticity.

Short-Term Plasticity in Kidins220/ARMS2/2 Neurons
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Evoked EPSCs of Kidins2202/2 neurons show normal
post-tetanic potentiation and synaptic depression

Brief tetanic stimulation induces a second type of short-term

plasticity involving a temporary accumulation of cytosolic calcium

within the presynaptic terminal. In excitatory neurons, a train of

40 stimuli in 1 s caused post-tetanic potentiation (PTP) of the

eEPSC amplitude (Figure 5A, B). PTP reached its maximum of

about 100% current increase at 10 s after the stimulus train and

then decayed with a time constant of 26 s. Postsynaptic current

potentiation was accompanied by a strong reduction of the PPR of

paired recordings: PPR changed from facilitation in the pre-

tetanus period to depression at the maximum of PTP (Figure 5C),

indicating that the current increase was due to a Pr increase.

Responses of KO neurons were similar to WT regarding PTP

amplitude, decay kinetics, PPR change and in the time course of

EPSCs during the train (see also the cumulative amplitude profile

in Figure 3B1). The same tetanic stimulation (1 s @40 Hz) applied

to inhibitory neurons did not lead to a subsequent variation of the

eIPSC amplitude. Similarly to what has been observed in

excitatory cells, KO behaved identically to WT in terms of

responses both during (Figure 3B2) and after the stimulation train

(data not shown).

Synaptic depression in glutamatergic synapses was evaluated

from the EPSC responses to a 10 s @20 Hz train (Figure 5D,

E), and subsequent recovery from depression was followed at a

stimulation frequency of 0.1 Hz (Figure 5F). Excitatory neurons

of both genotypes showed a transient increase of the EPSC

amplitude during the first pulses of the train, followed by a

progressive decay to a quasi-stationary level (Figure 5E and inset

therein). Double-exponential fitting of the data gave similar

values for the time constant of fast decay tfast (221622 ms for

WT; 195625 ms for KO; p.0.05, unpaired Student’s t-test),

for the time constant of slow decay tslow (3.360.4 s for WT;

2.360.4 s for KO; p.0.05, unpaired Student’s t-test) and for

the steady-state EPSC Iss (9.460.8% for WT; 8.460.7% for

KO; p.0.05, unpaired Student’s t-test). Recovery from

depression (Figure 5F) was already complete at the 12-s time

point after the train and could be well described by a single

exponential function with similar time constants of 1.960.1 s

(WT) and 1.660.3 s (KO).

Figure 4. Neurons from Kidins2202/2 mice showed normal
EPSC paired-pulse facilitation, but reduced IPSC paired-pulse
depression at long inter-pulse intervals. A) Representative EPSC
recordings in WT and KO autaptic neurons in response to paired stimuli
separated by the indicated inter-pulse interval. Holding potential
286 mV. B) In EPSC recordings, paired-pulse protocols were applied at

a stimulation frequency of 0.1 Hz, with inter-pulse intervals ranging
from 25 to 2,000 ms. The paired-pulse ratio was calculated as the ratio
between the second and the first amplitude, n = 11–14 for WT (open
symbols) and n = 10–14 for KO (filled symbols). There was no significant
difference between WT and KO cells (p.0.05; unpaired Student’s t-test).
Continuous lines represent best fits with a mono-exponential function.
C) Representative IPSC recordings in WT and KO neurons in response to
paired stimuli separated by the indicated inter-pulse interval. Holding
potential 266 mV. D) In IPSC recordings, paired-pulse protocols were
applied at a stimulation frequency of 0.1 Hz, with inter-pulse intervals
ranging from 10 to 2,000 ms, n = 13–25 for WT (open symbols) and
n = 14–22 for KO (filled symbols). Continuous lines represent best fits
with a bi-exponential function, dotted lines indicate the slow
component of the fit. E) The slow component of PPD in WT neurons
appears to be independent of previous release. IPSC2 is plotted against
IPSC1 for individual trials of paired-pulse stimulation. For each cell
(n = 7; WT), individual IPSC amplitudes were normalized to the mean
value of the recorded ensemble. The data set at IPI = 50 ms (left panel;
mean PPR = 0.49) revealed an inverse relationship between IPSC
amplitudes (r = 20.80; p,0.001; continuous line represents linear
regression), while the data set at IPI = 500 ms (right panel; mean
PPR = 0.72) for the same cells showed no such correlation (r = 0.25;
p.0.05).
doi:10.1371/journal.pone.0035785.g004

Short-Term Plasticity in Kidins220/ARMS2/2 Neurons

PLoS ONE | www.plosone.org 6 April 2012 | Volume 7 | Issue 4 | e35785



Evoked IPSCs of Kidins2202/2 neurons show faster
recovery from synaptic depression

Similarly to excitatory synapses, also for GABAergic responses,

the decay of IPSC amplitude during the application of a

stimulation train lasting 10 s @20 Hz was not significantly

different between WT and KO neurons (Figure 6A; tfast,

92626 ms and 76621 ms; tslow, 1.760.4 s and 1.260.3 s; Iss,

4.860.7% and 4.260.6%, respectively; p.0.05, unpaired Stu-

dent’s t-test). Interestingly, a phenotypic difference became again

evident in the recovery from synaptic depression (Figure 6B),

similarly to the results of the paired-pulse recordings of inhibitory

responses (Figure 4D). The time course of recovery in WT cells

was slow and exhibited two kinetically distinct components with

time constants of 1.260.4 s (amplitude contribution 56%) and

44.9613.1 s (amplitude contribution 44%), respectively, which are

in close agreement with the values reported for hippocampal

basket cell – granule cell synapses [24]. In contrast, KO responses

recovered to their pre-stimulation level much earlier (already 30 s

after the end of the train), with a fast time constant of 0.460.3 s

(amplitude contribution 22%) and a slow time constant of

7.765.7 s (amplitude contribution 78%). Thus, similarly to PPD,

although on a different time-scale, eIPSCs in KO cells recovered

faster from train-induced depression than in WT cells, apparently

due to a dramatic (almost 6-fold) reduction in the time constant of

the slow component of recovery. We investigated the possibility

that the slow component was due to a temporary reduction of Pr,

by comparing the PPR of IPSC responses before depression and

during recovery. According to the depletion model of depression,

the extent of PPD at short inter-pulse intervals is dependent on the

initial probability of release [1]. Indeed, the data in Figure 6C

reveal an inverse relationship between the mean PPR50ms under

baseline conditions and the Pr value obtained from the cumulative

amplitude profile analysis (Figure 3B2). With the slope of the line

fit close to 21, variations of PPR could be easily related to

opposite changes of the probability of release. During recovery

from depression, the PPR of KO responses returned immediately

to the value before the train (Figure 6D); instead, the PPR of WT

currents increased by 25% for about 60 s after the train and then

slowly, although with high variability, approached the baseline

Figure 5. Neurons from Kidins2202/2 mice showed normal post-tetanic potentiation and synaptic depression of evoked EPSCs. A)
EPSCs recorded using a paired-pulse protocol (IPI = 50 ms) are presented before (left trace) and after (right trace) the application of a 1-s stimulation
train at 40 Hz (middle trace). The increase of the EPSC1 amplitude (arrows) is connected to a decrease of the paired-pulse ratio. Holding potential
286 mV. B) Time course of post-synaptic currents (in % of baseline) recorded at a stimulation frequency of 0.1 Hz. Tetanic stimulation (as in A) was
applied at t = 0 s. EPSCs displayed post-tetanic potentiation with a peak at 10 s after the end of tetanic stimulation. There was no significant
difference between WT and KO cells (n = 22 for both groups; p.0.05, unpaired Student’s t-test). C) The paired-pulse ratio of EPSC recordings for both
WT and KO neurons (n = 22 for both groups; p.0.05, unpaired Student’s t-test) changes from facilitation in the baseline condition (pre) to depression
at the 10-s time point after tetanic stimulation (post). D) Representative EPSC trace in response to a 10-s stimulation train at 20 Hz to induce synaptic
depression. Only the first 2 s corresponding to 40 pulses are shown for clarity. Holding potential 286 mV. E) Time course of EPSC responses during
the application of a 10 s @20 Hz train. Data were normalized to the amplitude of the first current response in the train. There was no significant
difference between WT and KO cells (n = 16 for both groups; p.0.05, unpaired Student’s t-test). Continuous lines represent best fits with a bi-
exponential function. The inset illustrates the transient increase of the EPSC amplitude during the first pulses of the train on an expanded scale. Scale
bars 50 ms/20%. F) Recovery from depression of EPSC responses was followed at a stimulation frequency of 0.1 Hz. All data points were normalized
to the amplitude of the first current response in the train (applied at time point 0). There was no significant difference between WT and KO cells
(p.0.05, unpaired Student’s t-test). Lines represent best-fits with a mono-exponential function.
doi:10.1371/journal.pone.0035785.g005
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Figure 6. Neurons from Kidins2202/2 mice showed normal train-induced depression of IPSCs, but faster recovery from depression.
A) Time course of IPSC responses during the application of a 10-s stimulation train at 20 Hz to induce synaptic depression. Data were normalized to
the amplitude of the first current response in the train, n = 15 for WT and n = 11 for KO. There was no significant difference between WT and KO cells
(p.0.05; unpaired Student’s t-test). Lines represent best-fits with a bi-exponential function. The inset shows a representative current trace (only the
first 2 s corresponding to 40 pulses are shown for clarity). Scale bars 100 pA/200 ms. Holding potential 266 mV. B) Recovery from depression of IPSC
responses was followed at a stimulation frequency of 0.1 Hz. All data points were normalized to the amplitude of the first current response in the
train (applied at time point 0). Lines represent best-fits with a bi-exponential function. C) Inverse relationship between the paired-pulse ratio
(IPI = 50 ms) of baseline IPSC recordings immediately before tetanic stimulation and the vesicle release probability (Pr), obtained from cumulative
amplitude profile analyses (see Figure 3). Pooled data points from 20 WT cells (open diamonds) and 20 KO cells (closed diamonds) were fitted with a
linear function (continuous line; slope 20.97; r = 20.80; p,0.001). D) Time course of the paired-pulse ratio (PPR; IPI = 50 ms) of IPSC recordings. The
PPR at every time point was normalized to the mean PPR before the stimulation train (applied at time point 0), n = 9 for WT and n = 8 for KO. E)
Experimental scheme (left panel) illustrating the application of 1-s stimulation trains at 40 Hz before synaptic depression and during recovery from
depression to estimate Pr using cumulative amplitude profile (CAP) analysis. Relative changes of Pr and RRPsyn for 8 WT cells (baseline Pr 0.45) and 4
KO cells (baseline Pr 0.47) are shown in the right panel.
doi:10.1371/journal.pone.0035785.g006
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level. Interestingly, the time-course of PPR was the mirror-image

of the depression of eIPSC amplitudes during the slow phase of

recovery in Figure 6B. If one assumes that a 25% PPR increase

corresponds to an approximate 25% decrease of Pr (Figure 6C),

the slow component of synaptic depression in WT cells can be fully

accounted for by a temporary reduction of Pr after the train.

Moreover, we used a second independent approach to get

directly hands on possible changes of Pr during recovery from

depression. Cumulative amplitude profile analysis on IPSC

responses to tetanic stimulation was performed before and after

the induction of synaptic depression, as illustrated in Figure 6E

(left panel). Pr was determined twice on the same cell: first under

baseline conditions and a second time 40 s after the end of the

depression train, i.e. at the time point of the maximal difference

between WT and KO amplitudes during recovery from depression

(see Figure 6B). The summary of the Pr ratios (Figure 6E, right

panel) illustrates that Pr in KO cells remained invariant, while WT

cells had, on average, 30% lower Pr values after depression, in the

absence of significant changes in RRP size ratios. These data fully

confirm the results obtained from the PPR analysis and further

support the conclusion that the slow component of recovery from

synaptic depression in WT cells is caused by a temporary

reduction of Pr after the train. The fast recovery of eIPSC

amplitude and PPR/Pr in KO neurons suggests that Kidins220

favors the expression of this type of short-term plasticity in WT

cells.

Discussion

In this study we present a comprehensive description of synaptic

transmission and plasticity in cultured hippocampal neurons

isolated from embryonic Kidins2202/2 mice, with the aim to

assess the functional consequences of the chronic ablation of this

scaffold protein. Our studies were conducted in the well-

established autaptic culture system, in addition to low-density

neuronal networks, which allowed a precise quantitative evalua-

tion of synaptic parameters. KO neurons did not show any

changes in either AMPA or GABA receptor-mediated basal

synaptic transmission. However, our data revealed a novel role of

Kidins220 in GABAergic short-term synaptic plasticity.

Basal excitatory neurotransmission and short-term
plasticity are not affected in Kidins2202/2 neurons

We evaluated basal glutamatergic synaptic transmission in KO

neurons by two independent types of recordings: i) miniature

EPSCs in low-density neuronal networks and ii) evoked EPSCs

triggered by brief depolarization of autaptic neurons. In both

cases, there was no significant difference in EPSC amplitudes

between WT and KO cells. Previous work showed that reduced

Kidins220 expression, either chronically in Kidins220+/2 mice or

acutely by RNA silencing in primary neuronal cultures, lead to

increased basal excitatory transmission [13,15]. Arevalo et al. [13]

proposed that Kidins220 depletion increases EPSCs and alters the

subunit composition of synaptic AMPA receptors by favoring the

selective incorporation of new GluA1 subunits into the plasma

membrane. Our data do not confirm these observations, since

EPSC amplitudes, decay kinetics and sensitivity towards a GluA2-

lacking AMPA receptor blocker were unaltered in KO neurons.

These divergent results may be due to differences in the

experimental systems used for EPSC recordings, namely the

complete and constitutive absence of Kidins220 in KO neurons

versus reduced Kidins220 expression in Kidins220+/2 mice or

shRNA-treated neuronal cultures and the use of dissociated

hippocampal neurons in autaptic or low-density culture versus

acute or organotypic hippocampal slices.

We also analyzed the responses to three different types of short-

term plasticity, but we did not find significant differences in paired-

pulse facilitation, post-tetanic potentiation and train-induced

synaptic depression between WT and KO neurons. These results

suggested that activity-dependent alterations in calcium homeo-

stasis and vesicle dynamics were not affected by the lack of

Kidins220 in excitatory neurons. Constitutive Kidins220 ablation

therefore does not appear to affect basal excitatory neurotrans-

mission and short-term plasticity in hippocampal neurons.

Short-term plasticity of inhibitory neurotransmission is
altered in Kidins2202/2 neurons

A recent report pointed to a role of Kidins220 in the regulation

of inhibitory neurotransmission in rat hippocampal neurons [7].

Increased Kidins220 expression lead to higher amplitude and

higher frequency of mIPSCs recorded from pyramidal excitatory

neurons, while the opposite effect was observed with decreased

expression. The fact that the manipulation of Kidins220

expression affected mIPSC frequency and the intensity of

GAD65 puncta suggested a predominant presynaptic mechanism.

In support of this hypothesis, these alterations were not associated

with changes in the number or subunit composition of

postsynaptic GABAA receptors. In contrast, our measurements

of mIPSCs and autaptic eIPSCs suggested that basal GABAergic

synaptic transmission was unchanged in KO neurons. Indeed,

neither amplitude nor frequency of mIPSCs were affected by

Kidins220 ablation. Again, these divergent results may be caused

by differences in the experimental conditions. In fact, experiments

in Sutachan et al. [7] were performed at 11–12 div on rat

hippocampal neurons after a 10-d period of reduced Kidins220

expression (protein level 30% of control). Our mIPSC measure-

ments were done at 14–17 div on mouse hippocampal neurons

completely lacking Kidins220. In addition to spontaneous GABA

release, we also investigated for the first time the role of Kidins220

in evoked inhibitory transmission. Our analyses of autaptic eIPSCs

did not reveal any differences between WT and KO neurons

regarding amplitude, kinetics, RRP size and Pr, supporting the

view that the synaptic parameters contributing to basal GABAer-

gic neurotransmission are unaffected by Kidins220 ablation.

Importantly, our study unveiled specific differences in the

response to paired-pulse stimulation and in the recovery from

train-induced depression, in line with a novel role of Kidins220 in

GABAergic short-term plasticity. PPD of eIPSC responses

exhibited two kinetically distinct components, which presumably

relied on different mechanisms. The fast component was normal in

KO neurons, while the slow component was significantly

accelerated, leading to reduced PPD at long inter-pulse intervals.

Previously, PPDslow with similar time constants was described in

GABAergic synapses between basket cells and granule cells in the

rat dentate gyrus [24], in mouse cortical cultures [28] and in rat

collicular cultures [25]. All these studies attributed this form of

plasticity to a release-independent inhibition of exocytosis, but the

underlying mechanism is still unknown (see ref. [24] for a detailed

discussion of candidate mechanisms). In agreement with other

reports [24,29], presynaptic receptor activation was not involved

in PPDslow in WT cells, since all recordings were performed in the

presence of the GABAB receptor antagonist CGP 55845, and the

GABAC receptor blocker TPMPA had no effect on PPR (but see

ref. [27]). Furthermore, PPDslow is unlikely to be caused by

depletion of releasable vesicles after the first pulse, since the extent

of PPD was independent of previous release at long, but not at

short IPIs (Figure 4E), and insensitive to manipulations of the
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average Pr [24,25]. Possible changes in presynaptic GABA release

can be detected by comparing the coefficients of variation (CV) of

the first and the second IPSC during PPDslow [24,29]. However,

the CV of IPSC amplitudes under baseline conditions and the Pr

obtained from the analysis of cumulative amplitude profiles were

not sufficiently correlated in our data sets (data not shown).

Consequently, the CV analysis of paired-pulse recordings did not

provide conclusive evidence for a reduction of presynaptic GABA

release in PPDslow.

It is important to note the common ground between the recovery

from PPD and train-induced depression: both exhibited bi-

exponential kinetics in WT cells, although on different time scales,

and in both cases, the fast component was normal in KO cells, but

the slow component was strongly reduced. In the recovery from

depression induced by a stimulus train of 10 s at 20 Hz, the slow

component in WT cells can be fully explained by a transient

reduction of Pr, which appears to be absent in KO cells. The

processes underlying vesicle release and replenishment upon

prolonged stimulation at high frequency do not seem to be affected

by Kidins220 ablation. The refilling of the RRP after the train is

likely reflected by the fast component of recovery, which was normal

in KO neurons. Likewise, the dual time course of synaptic

depression during train stimulation was also very similar between

WT and KO cells. Here, the fast component may be caused by an

accumulation of the events underlying PPDfast (at IPI = 50 ms),

while the slow phase likely reflects a mechanism counteracting RRP

depletion by vesicle recruitment from a recycling pool [24,28]. The

preservation of normal vesicle release and replenishment in

response to prolonged stimulation further supports the idea that

the absence of Kidins220 may selectively affect the transient

reduction of Pr. Considering that vesicle depletion could be

excluded for the slow components of recovery from both train-

induced and paired-pulse depression, one may speculate that

Kidins220 may be involved in a common mechanism determining

an activity-dependent, transient reduction of GABA release.

How may such reduction of release probability be achieved?

Wu and Borst [30] described a similar phenomenon in the

excitatory calyx of Held synapses, in which recently recruited

vesicles showed a transient Pr decrease. This was caused in part by

the inactivation of calcium currents, but mostly by mechanisms

downstream of calcium entry, e.g. the larger distance between

docked vesicles and voltage-gated calcium channels or the lower

calcium sensitivity of the recruited vesicles [30]. Thus, Kidins220

could slow down the recovery of a normal Pr level for synaptic

vesicles recently recruited to the RRP. Although Kidins220 has

never been localized specifically at release sites, its interaction with

septin5 [31] may indicate its involvement in the regulation of

vesicle release. Septin5 can bind to ternary SNARE complexes

through its direct association with syntaxin and inhibits exocytosis

in secretory cells [32,33]. In the calyx of Held synapses, septin5 is

involved in the regulation of the coupling of calcium influx to

neurotransmitter release [34]. Septin-containing filaments sur-

round synaptic vesicles in the nerve terminal and appear to have

an inhibitory role in the positional priming at the pre-fusion stage.

Since Park et al. [31] suggested that septin5 may interact with

syntaxin and Kidins220 simultaneously, we propose a model

whereby Kidins220 may be involved in these regulatory processes.

In the absence of Kidins220, the molecular ‘‘brake’’ may be partly

released allowing the fast priming and release of newly recruited

vesicles.

Conclusions
In contrast to results obtained using neurons with altered

Kidins220 expression, the constitutive absence of Kidins220 did

not affect basal synaptic transmission either in excitatory or

inhibitory synapses. However, distinct phenotypic alterations were

specifically detected in inhibitory short-term synaptic plasticity,

despite the fact that Kidins220 is expressed in comparable

amounts in both glutamatergic and GABAergic neurons [7] (this

study). These findings suggest that neurons may modulate the

strength of basal synaptic transmission by altering Kidins220

protein levels, but they are able to compensate for its constitutive

absence possibly by means of their intrinsic plastic properties.

Instead, Kidins220 appears to be required for the activity-

dependent transient decrease of release probability in inhibitory

neurons. Our previous study provided evidence for an involve-

ment of the protein in the neurotrophin signaling pathway at

glutamatergic synapses, as the potentiation of EPSCs induced by

acute BDNF treatment was impaired in Kidins2202/2 excitatory

neurons [6]. Thus, it appears that Kidins220 fulfills distinct

functions in the two types of synapses. Since Kidins220

coordinates diverse regulatory functions via multiple protein-

protein interactions, it is expected that such differences are related

to the identity of the specific interaction partners, which may differ

between glutamatergic and GABAergic synapses, and in different

physiological situations.

Which could be the physiological role of Kidins220 in terms of

the electrical activity of neuronal circuits? Considering that

Kidins220 limits the efficacy of SV recovery in inhibitory synapses

and increases the intensity and duration of synaptic depression, it

is possible to predict that the overall firing rate and the

synchronized activity of the neuronal network will be decreased

by its deletion. The depression rate, frequency dependence and

recovery kinetics are fundamental features of inhibitory neurons

and, at the network level, temporally and spatially shape the areas

of excitation. Our data suggest a role of Kidins220 in prolonging

the temporal windows for depression in inhibitory synapses,

potentially enhancing the high band-pass filtering properties of

neuronal circuits. Thus, under physiological conditions, Kidins220

could make the information transfer more reliable by enhancing

the synchronized activity and reducing the signaling noise due to

random spiking activity.

Moreover, GABAergic dysfunctions such as those displayed by

KO neurons could potentially shift the balance of excitatory and

inhibitory transmission in a neuronal network. An imbalance

between excitation and inhibition is at the basis of several

neuropathological conditions such as epilepsy or autism spectrum

disorders. The embryonic lethality of the Kidins2202/2 strain has

prevented the study of inhibitory circuits in adult mutant animals.

The generation of mouse lines bearing a nervous system-specific

deletion of Kidins220 will therefore be instrumental to define how

Kidins220 ablation might impact on cortico-hippocampal excit-

ability and plasticity.

Methods

Ethics statement
All experiments were performed in accordance with the

European Community Council Directive dated November 24,

1986 (86/609/EEC) and approved by the Italian Ministry of

Health.

Generation of Kidins2202/2 mice and primary
hippocampal cultures

The generation of the Kidins2202/2 strain was described in

Cesca et al. [6]. All embryos used in this study were obtained from

crosses of Kidins220+/2 mice on the C57BL/6 background. Mice

were mated overnight and separated in the morning. The
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development of the embryos was timed from the detection of a

vaginal plug, which was considered day 0.5.

Hippocampi were dissected from wild type and Kidins2202/2

E18.5 embryo littermates obtained from crossing Kidins220+/2

mice. Briefly, hippocampi were dissected in ice-cold PBS,

incubated with trypsin (0.125%) for 15 min at 37uC, and

mechanically dissociated. Neurons were then resuspended and

plated on poly-D-lysine/laminin coated glass coverslips, in

Neurobasal medium containing 10% horse serum, 2 mM

glutamine and antibiotics (plating medium). After 3 hours, the

medium was removed and replaced with Neurobasal containing

2% B27 supplement, 2 mM glutamine and antibiotics (mainte-

nance medium). Autaptic cultures were prepared as previously

described [18]. Briefly, dissociated neurons were plated at very low

density (20 cells mm22) on microdots (40–300 mm diameter)

obtained by spraying poly-D-lysine (0.14 mg ml21) on dishes pre-

treated with 0.15% agarose.

Immunocytochemistry
Cells were fixed with 4% PFA/20% sucrose in PBS for 15 min

at RT and permeabilized with 0.1% Triton 6100 in PBS for

5 min at RT. Samples were blocked for 30 min in IF buffer (2%

BSA, 10% goat serum in PBS). Primary and secondary antibodies

were diluted in IF buffer and incubated for 45 min at RT. The

following primary antibodies were used: monoclonal anti-

Kidins220 [11], polyclonal anti-vesicular GABA transporter

(vGAT, AB5062P, Millipore), polyclonal anti-vesicular Glutamate

transporter 1 (vGlut1, AB5905 Millipore). Fluorescently-conjugat-

ed secondary antibodies for immunofluorescence were from

Molecular Probes (Invitrogen).

Images were acquired at an inverted Leica TCS SP5 AOBS

TANDEM confocal microscope equipped with a 406/1.25-0.75

HCX PL APO Oil objective. Images were visualised and

processed by using the Leica LAS AF, ImageJ and Adobe

Photoshop CS3 softwares.

Patch-clamp recordings and data analysis
Patch-clamp experiments on cultured hippocampal neurons

were conducted between 10 and 17 days in vitro (div). Recordings

were performed in the whole-cell configuration using an EPC-10

patch clamp amplifier (HEKA Elektronik, Lambrecht, Germany).

Data acquisition and analysis were done using the PatchMaster

and FitMaster programs (HEKA Elektronik, Lambrecht, Ger-

many), respectively. Data of evoked post-synaptic currents were

low-pass filtered at 3 kHz and acquired at 10 kHz sample

frequency, while data of miniature post-synaptic currents were

filtered at 2 kHz and acquired at 5 kHz. Patch pipettes were

fabricated from borosilicate glass capillaries with a Narishige PC-

10 puller and had final resistances of 4.5–5.5 MV when filled with

the standard pipette solution used for evoked post-synaptic

currents. This solution contained (in mM) 126 K-gluconate, 4

NaCl, 1 MgSO4, 0.02 CaCl2, 0.1 1,2-bis(2-aminophenoxy)ethane-

N,N,N9,N9-tetraacetic acid (BAPTA), 3 Na2ATP, 0.1 NaGTP, 15

glucose, 5 HEPES, pH 7.30 adjusted with KOH. The bath

solution contained (in mM) 140 NaCl, 4 KCl, 2 CaCl2, 1 MgCl2,

10 glucose, 10 HEPES, pH 7.30 adjusted with NaOH. D-(2)-2-

amino-5-phosphonopentanoic acid (D-AP5; 50 mM) and CGP

55845 (5 mM) were routinely added to block NMDA receptors and

GABAB receptors, respectively. Toxins were purchased from

Tocris (Bristol, UK), unless otherwise indicated, and were

supplemented as concentrated stock solutions. For recordings of

miniature post-synaptic currents, the pipette solution contained an

equimolar amount of KCl instead of K-gluconate, and the bath

solution was supplemented with 0.3 mM tetrodotoxin (TTX). To

isolate AMPA receptor-mediated or GABAA receptor-mediated

responses, the bath solution contained (2)-bicuculline methiodide

(30 mM) or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX;

10 mM; Sigma, Milan, Italy), respectively. To test for the effect

of the GluA2-lacking AMPA receptor blocker 1-naphtyl acetyl

spermine (Naspm), autaptic neurons were locally perfused at a

constant rate of 150 ml min21, using a perfusion pipette with five

inlets and a single outlet. Following Naspm application and

washout, each cell was exposed to CNQX via an independent

perfusion channel, which completely and reversibly abolished

EPSCs (data not shown). Experiments were performed at room

temperature (22–24uC).

Recordings of miniature and evoked post-synaptic

currents. Recordings with leak currents .100 pA (at

286 mV; all potentials off-line-corrected for liquid junction

potentials) or series resistance .20 MV were discarded.

Miniature post-synaptic currents (mEPSCs and mIPSCs) were

generally recorded at a holding potential of 275 mV, using

neuronal cultures between 13 and 17 div. The Mini Analysis

program (Synaptosoft Inc., Fort Lee (NJ), USA) was used for data

analysis.

Evoked excitatory post-synaptic currents (eEPSCs) were record-

ed exclusively from autaptic glutamatergic cells (10–14 div), while

evoked inhibitory post-synaptic current (eIPSC) responses were

derived either from autaptic GABAergic cells or from extracellular

stimulation of GABAergic synapses in neuronal networks (11–

15 div). Subsequent analysis did not reveal significant differences

(data not shown), therefore the two eIPSC data sets were pooled.

Autaptic postsynaptic currents were evoked by applying a brief

depolarization (0.5 ms; +24 mV) from a holding potential of

286 mV (eEPSCs) or 266 mV (eIPSCs). Mean autaptic ampli-

tudes (Figures 2B, G) were taken from the first recording protocol

(generally 2–3 minutes after establishing the whole-cell configura-

tion). For extracellular synaptic stimulation in neuronal networks,

current pulses of 0.2 ms duration and variable amplitude (10–

40 mA) were delivered by an isolated pulse stimulator (A-M

Systems, Carlsborg (WA), USA). The distinction between eEPSCs

and eIPSCs in autaptic neurons was based on their decay kinetics,

reversal potentials and, retrospectively, by the application of

specific antagonists of post-synaptic receptors (see above).

The evaluation of kinetic parameters of post-synaptic currents

included delay times, current activation and current deactivation.

Analysis of eEPSC activation was complicated by the fact that the

current onset was masked by the deactivation phase of large

transient sodium currents. Therefore, the delay time was generally

determined as the time between the stimulus and the peak of the

post-synaptic current response. One has to consider that this value

does not represent the synaptic delay (the time between stimulus

and current onset), but also includes the rising phase of current

activation. The rise rate (in s21) as a measure of the eEPSC

activation kinetics was determined from the slope of the EPSC’s

rising phase (in nA s21) normalized to the EPSC amplitude (in

nA). For eIPSCs, which were not confounded by inward sodium

currents, we measured the rise time from 10% to 90% of the IPSC

amplitude. Finally, the time constants of current deactivation were

determined by fitting the eEPSC decay with a mono-exponential

function and the eIPSC decay with a bi-exponential function.

Paired-pulse and train stimulation. Paired-pulse protocols

consisted of two depolarization pulses separated by variable inter-

pulse intervals (IPI) ranging from 10 to 2,000 ms. For each cell, the

mean paired-pulse ratio at a given IPI was determined from the

responses to at least 6 consecutive trials applied at 0.1 Hz.

Moreover, a paired-pulse protocol (IPI 50 ms) was routinely

applied in connection with train stimulation protocols. The
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response to the first stimulus (I1) was used to follow the current

amplitudes under baseline conditions and during recovery from

train-induced variations. At the same time, the response to the

second stimulus (I2) allowed to calculate the paired-pulse ratio

PPR = I2/I1 and infer possible changes in release probability. The

coefficient of variation (CV) was calculated as the ratio between

the standard deviation (sd) and the mean value of current

amplitudes. Recordings of recovery from train-induced

depression, in which the current amplitude did not reach at least

80% of the baseline value within 180 s, were routinely excluded

from analysis. For the time-course of PPR during recovery from

train-induced depression (Figure 6D), recordings displaying high

variability in baseline PPR (CV.10%) were excluded from the

data sets.
Cumulative amplitude profile analysis. The size of the

readily releasable pool of synaptic vesicles during synchronous

release (RRPsyn) and the probability of SV release from the RRP

(Pr) were estimated using cumulative amplitude profile analysis

[19]. The cumulative amplitude profile was constructed by

summing up the current amplitudes for 40 consecutive stimuli

applied at 40 Hz (for both excitatory and inhibitory synapses).

This analysis assumes that depression during the steady-state phase

is limited by a constant recycling of SVs and equilibrium occurs

between released and recycled SVs. The steady-state phase of

depression during the train was determined by linear fitting of the

last 16 data points (between 600 and 1,000 ms). Back-

extrapolation of the line fit to time 0 yielded the size of RRPsyn

(intercept with the y-axis), and Pr was calculated from the ratio

between the amplitude of the first stimulus and RRPsyn (Pr = I1/

RRPsyn).

Statistical analyses. Data are represented as means 6

standard error of the mean (for the number n of cells) throughout

text and figures. Statistical comparisons were made using unpaired

Student’s t-test; p-values,0.05 were considered significant, with (*)

indicating 0.01,p,0.05, (**) 0.001,p,0.01, (***) p,0.001.
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