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Abstract

Recurrent neural networks (RNNs) provide state-of-the-art performances in a wide variety

of tasks that require memory. These performances can often be achieved thanks to gated

recurrent cells such as gated recurrent units (GRU) and long short-term memory (LSTM).

Standard gated cells share a layer internal state to store information at the network level,

and long term memory is shaped by network-wide recurrent connection weights. Biological

neurons on the other hand are capable of holding information at the cellular level for an arbi-

trary long amount of time through a process called bistability. Through bistability, cells can

stabilize to different stable states depending on their own past state and inputs, which per-

mits the durable storing of past information in neuron state. In this work, we take inspiration

from biological neuron bistability to embed RNNs with long-lasting memory at the cellular

level. This leads to the introduction of a new bistable biologically-inspired recurrent cell that

is shown to strongly improves RNN performance on time-series which require very long

memory, despite using only cellular connections (all recurrent connections are from neurons

to themselves, i.e. a neuron state is not influenced by the state of other neurons). Further-

more, equipping this cell with recurrent neuromodulation permits to link them to standard

GRU cells, taking a step towards the biological plausibility of GRU. With this link, this work

paves the way for studying more complex and biologically plausible neuromodulation

schemes as gating mechanisms in RNNs.

1 Introduction

Recurrent neural networks (RNNs) have been widely used in the past years, providing excel-

lent performances on many problems requiring memory such as sequence to sequence model-

ing, speech recognition, and neural translation. These achievements are often the result of the

development of the long short-term memory (LSTM [1]) and gated recurrent units (GRU [2])

recurrent cells, which allow RNNs to capture time-dependencies over long horizons. Despite

all the work analyzing the performances of such cells [3], recurrent cells remain predominantly

black-box models. There has been some advance in understanding the dynamical properties of

RNNs as a whole from a non-linear control perspective [4], showing the importance of fixed

points in trained networks. However, little has been done in understanding the underlying sys-

tem of recurrent cells themselves. Rather, they have been built for their robust mathematical
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properties when computing gradients with back-propagation through time (BPTT), as training

RNNs has been known to be difficult [5]. Research on new recurrent cells is still ongoing and,

building up on LSTM and GRU, recent works have proposed other types of gated units [6–8].

In addition, an empirical search over hundreds of different gated architectures has been car-

ried in [9]. These works showed the possibility to achieve better performances than widely-

used cells such as GRUs and LSTMs by only slightly changing gating mechanisms, hinting that

such small changes can have major impact on the RNN dynamics.

In parallel, there has been an increased interest in assessing the biological plausibility of

neural networks. There has not only been a lot of interest in spiking neural networks [10–12],

but also in reconciling more traditional deep learning models with biological plausibility [13–

15]. RNNs are a promising avenue for the latter [16] as they are known to provide great perfor-

mances from a deep learning point of view while theoretically allowing a discrete dynamical

simulation of biological neurons.

RNNs combine simple cellular dynamics and a rich, highly recurrent network architecture.

The recurrent network architecture enables the encoding of complex memory patterns in the

connection weights. These memory patterns rely on global feedback interconnections of large

neuronal populations. Such global feedback interconnections are difficult to tune, and can be a

source of vanishing or exploding gradient during training, which is a major drawback of

RNNs. In biological networks, a significant part of advanced computing is handled at the cellu-

lar level, mitigating the burden at the network level. Each neuron type can switch between sev-

eral complex firing patterns, which include e.g. spiking, bursting, and bistability. In particular,

bistability is the ability for a neuron to switch between two stable outputs depending on input

history. It is a form of cellular memory [17].

In this work, we propose a new biologically motivated bistable recurrent cell (BRC), which

embeds classical RNNs with local cellular memory rather than global network memory. More

precisely, BRCs are built such that their hidden recurrent state does not directly influence

other neurons (i.e. they are not recurrently connected to other cells). To make cellular bistabil-

ity compatible with the RNNs feedback architecture, a BRC is constructed by taking a feedback

control perspective on biological neuron excitability [18]. This approach enables the design of

biologically-inspired cellular dynamics by exploiting the RNNs structure rather than through

the addition of complex mathematical functions.

We show that, despite having only cellular temporal connections, BRCs provide decent per-

formances on standard benchmarks and outperform classic RNN cells as GRUs and LSTMs

on benchmarks with datasets requiring long-term memory, highlighting the importance of

bistability. To further improve BRCs performances, we endow them with recurrent neuromo-

dulation, leading to a new neuromodulated bistable recurrent cell (nBRC). We carry a thor-

ough analysis of the performances of nBRCs against state-of-the-art cells and show that they

are the top performers when long-term memory requirements are important.

2 Recurrent neural networks and gated recurrent units

RNNs have been widely used to tackle many problems having a temporal structure. In such

problems, the relevant information can only be captured by processing observations obtained

during multiple time-steps. More formally, a time-series can be defined as X = [x0, . . ., xT]

with T 2 N 0 and xi 2 Rn
. To capture time-dependencies, RNNs maintain a recurrent hidden

state whose update depends on the previous hidden state and current observation of a time-

series, making them dynamical systems and allowing them to handle arbitrarily long sequences

of inputs. Mathematically, RNNs maintain a hidden state ht = f(ht−1, xt;θ), where h0 is a con-

stant and θ are the parameters of the network. In its most standard form, an RNN updates its
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state as follows:

ht ¼ gðUxt þWht� 1Þ ð1Þ

where g is a standard activation function such as a sigmoid or a hyperbolic tangent. However,

RNNs using Eq 1 as the update rule are known to be difficult to train on long sequences due to

vanishing (or, more rarely, exploding) gradient problems. To alleviate this problem, more

complex recurrent update rules have been proposed, such as LSTMs [1] and GRUs [2]. These

updates allow recurrent networks to be trained on much longer sequences by using gating

principles. By way of illustration, the updates related to a gated recurrent unit are

zt ¼ sðUzxt þWzht� 1Þ

rt ¼ sðUrxt þWrht� 1Þ

ht ¼ zt � ht� 1 þ ð1 � ztÞ � tanh ðUhxt þ rt �Whht� 1Þ

8
>>><

>>>:

ð2Þ

where z is the update gate (used to tune the update speed of the hidden state with respect to

new inputs) and r is the reset gate (used to reset parts of the memory).

3 Neuronal bistability: A feedback viewpoint

Biological neurons are intrinsically dynamical systems that can exhibit a wide variety of firing

patterns. In this work, we focus on the control of bistability, which corresponds to the coexis-

tence of two stable states at the neuronal level. Bistable neurons can switch between their two

stable states in response to transient inputs [17, 19], endowing them with a kind of never-fad-

ing cellular memory [17].

Complex neuron firing patterns are often modeled by systems of ordinary differential equa-

tions (ODEs). Translating ODEs into an artificial neural network algorithm often leads to

mixed results due to increased complexity and the difference in modeling language. Another

approach to model neuronal dynamics is to use a control systems viewpoint [18]. In this view-

point, a neuron is modeled as a set of simple building blocks connected using a multi-scale

feedback, or recurrent, interconnection pattern.

A neuronal feedback diagram focusing on one time-scale, which is sufficient for bistability,

is illustrated in Fig 1A. The block 1/(Cs) accounts for membrane integration, C being the

membrane capacitance and s the complex frequency. The outputs from presynaptic neurons

Vpre are combined at the input level to create a synaptic current Isyn. Neuron-intrinsic dynam-

ics are modeled by the negative feedback interconnection of a nonlinear function Iint = f(Vpost),

called the IV curve in neurophysiology, which outputs an intrinsic current Iint that adds to Isyn
to create the membrane current Im. The slope of f(Vpost) determines the feedback gain, a posi-

tive slope leading to negative feedback and a negative slope to positive feedback. Im is then

integrated by the postsynaptic neuron membrane to modify its output voltage Vpost.

The switch between monostability and bistability is achieved by shaping the nonlinear func-

tion Iint = f(Vpost) (Fig 1B). The neuron is monostable when f(Vpost) is monotonic of positive

slope (Fig 1B, left). Its only stable state corresponds to the voltage at which Iint = 0 in the

absence of synaptic inputs (full dot). The neuron switch to bistability through the creation of a

local region of negative slope in f(Vpost) (Fig 1B, left). Its two stable states correspond to the

voltages at which Iint = 0 with positive slope (full dots), separated by an unstable state where

Iint = 0 with negative slope (empty dot). The local region of negative slope corresponds to a

local positive feedback where the membrane voltage is unstable.

In biological neurons, a local positive feedback is provided by regenerative gating, such as

sodium and calcium channel activation or potassium channel inactivation [19, 20]. The switch
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from monostability to bistability can therefore be controlled by tuning ion channel density.

This property can be emulated in electrical circuits by combining transconductance amplifiers

to create the function

Iint ¼ Vpost � a tanh ðVpostÞ; ð3Þ

where the switch from monostability to bistability is controlled by a single parameter α [21]. α
models the effect of sodium or calcium channel activation, which tunes the local slope of the

function, hence the local gain of the feedback loop (Fig 1B). For α 2 ]0, 1] (where ]0, 1] denotes

a continuous interval), which models a low sodium or calcium channel density, the function is

monotonic, leading to monostability (Fig 1B, left). For α 2 ]1, +1[, which models a high

sodium or calcium channel density, a region of negative slope is created around Vpost = 0, and

the neuron becomes bistable (Fig 1B, right). This bistability leads to never-fading memory, as

in the absence of significant input perturbation the system will remain indefinitely in one of

the two stable states depending on the input history.

Neuronal bistability can therefore be modeled by a simple feedback system whose dynamics

is tuned by a single feedback parameter α. This parameter can switch between monostability

and bistability by tuning the shape of the feedback function f(Vpost), whereas neuron conver-

gence dynamics is controlled by a single feedforward parameter C. In biological neurons, both

these parameters can be modified dynamically by other neurons via a mechanism called neu-

romodulation, providing a dynamic, controllable memory at the cellular level. The key chal-

lenge is to find an appropriate mathematical representation of this mechanism to be efficiently

used in artificial neural networks, and, more particularly, in RNNs.

4 Cellular memory, bistability and neuromodulation in RNNs

4.1 The bistable recurrent cell (BRC)

To model controllable bistability in RNNs, we start by drawing two main comparisons

between the feedback structure Fig 1A and the GRU equations (Eq 2). First, we note that the

reset gate r has a role that is similar to the one played by the feedback gain α in Eq 3. In GRU

equations, r is the output of a sigmoid function, which implies r 2 ]0, 1[. These possible values

for r correspond to negative feedback only, which does not allow for bistability. The update

gate z, on the other hand, has a role similar to that of the membrane capacitance C. Second,

one can see through the matrix multiplications Wz ht−1, Wr ht−1 and Wh ht−1 that each cell uses

the internal state of other neurons to compute its own state without going through synaptic

connections. In biological neurons, the intrinsic dynamics defined by Iint is constrained to

only depend on its own state Vpost, and the influence of other neurons comes only through the

synaptic compartment (Isyn), or through neuromodulation.

Fig 1. A. One timescale control diagram of a neuron. B. Plot of the function Iint = Vpost−αtanh(Vpost) for two different values of α. Full dots

correspond to stable states, empty dots to unstable states.

https://doi.org/10.1371/journal.pone.0252676.g001
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To enforce this cellular feedback constraint in GRU equations and to endow them with bist-

ability, we propose to update ht as follows:

ht ¼ ct � ht� 1 þ ð1 � ctÞ � tanh ðUxt þ at � ht� 1Þ ð4Þ

where at = 1 + tanh(Ua xt + wa�ht−1) and ct = σ(Uc xt + wc�ht−1). at corresponds to the feed-

back parameter α, with at 2 ]0, 2[ (as tanh(�)2] − 1, 1[). ct corresponds to the update gate in

GRU and plays the role of the membrane capacitance C, determining the convergence dynam-

ics of the neuron. We call this updated cell the bistable recurrent cell (BRC).

The main differences between a BRC and a GRU are twofold. First, each neuron has its

own internal state ht that is not directly affected by the internal state of the other neurons.

Indeed, due to the four instances of ht−1 coming from Hadamard products, the only temporal

connections existing in layers of BRC are from neurons to themselves. This enforces the mem-

ory to be only cellular. Second, the feedback parameter at is allowed to take a value in the

range ]0, 2[ rather than ]0, 1[. This allows the cell to switch between monostability (a� 1) and

bistability (a> 1) (Fig 2A and 2B). The proof of this switch is provided in Appendix A.

It is important to note that the parameters at and ct are dynamic. at and ct are neuromodu-

lated by the previous layer, that is, their value depends on the output of other neurons. Tests

were carried with a and c as parameters learned by stochastic gradient descent, which resulted

in lack of representational power, leading to the need for neuromodulation. This neuromodu-

lation scheme was the most evident as it maintains the cellular memory constraint and leads to

the most similar update rule with respect to standard recurrent cells (Eq 2). However, as will

be discussed later, other neuromodulation schemes can be thought of.

Likewise, from a neuroscience perspective, at could well be greater than 2. Limiting the

range of at to ]0, 2[ was made for numerical stability and for symmetry between the range of

bistable and monostable neurons. We argue that this is not an issue as, for a value of at greater

than 1.5, the dynamics of the neurons become very similar (as suggested in Fig 2A).

Fig 2. A. Bifurcation diagram of Eq 4 for U xt = 0. B. Plots of the function ht − F(ht) for two values of at, where F(ht) = ct ht + (1 − ct)tanh(at ht) is the right hand

side of Eq 4 with xt = 0. Full dots correspond to stable states, empty dots to unstable states. C. Response of BRC to an input time-series for different values of at
and ct.

https://doi.org/10.1371/journal.pone.0252676.g002
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Fig 2C shows the dynamics of a BRC with respect to at and ct. For at< 1, the cell exhibits a

classical monostable behavior, relaxing to the 0 stable state in the absence of inputs (blue

curves in Fig 2C). On the other hand, a bistable behavior can be observed for at> 1: the cells

can either stabilize on an upper stable state or a lower stable state depending on past inputs

(red curves in Fig 2C). Since these upper and lower stable states do not correspond to an ht
which is equal to 0, they can be associated with cellular memory that never fades over time.

Furthermore, Fig 2 also illustrates that neuron convergence dynamics depend on the value

of c.

4.2 The recurrently neuromodulated bistable recurrent cell (nBRC)

To further improve the performance of BRC, one can relax the cellular memory constraint. By

creating a dependency of at and ct on the output of other neurons of the layer, one can build a

kind of recurrent layer-wise neuromodulation. We refer to this modified version of a BRC as

an nBRC, standing for recurrently neuromodulated BRC. The update rule for the nBRC is the

same as for BRC, and follows Eq 4. The difference comes in the computation of at and ct,
which are neuromodulated as follows:

( at ¼ 1þ tanh ðUaxt þWaht� 1Þ

ct ¼ sðUcxt þWcht� 1Þ
ð5Þ

The update rule of nBRCs being that of BRCs (Eq 4), bistable properties are maintained and

hence the possibility of a cellular memory that does not fade over time. However, the new

recurrent neuromodulation scheme adds a type of network memory on top of the cellular

memory.

This recurrent neuromodulation scheme brings the update rule even closer to standard

GRU. This is highlighted when comparing Eqs 2 and 4 with parameters neuromodulated fol-

lowing Eq 5. We stress that, as opposed to GRUs, bistability is still ensured through at belong-

ing to ]0, 2[ (thus the possibility to be greater than 1). A relaxed cellular memory constraint is

also ensured, as each neuron past state ht−1 only directly influences its own current state and

not the state of other neurons of the layer (Hadamard product on the ht update in Eq 4). This

is important for numerical stability as the introduction of a cellular positive feedback for bist-

ability leads to global instability if the update is computed using other neurons states directly

(as it is done in the classical GRU update, see the matrix multiplication Wh ht−1 in Eq 2).

Finally, let us note that to be consistent with the biological model presented in Section 3, Eq

5 should be interpreted as a way to represent a neuromodulation mechanism of a neuron by

those from its own layer and the layer that precedes. Hence, the possible analogy between gates

z and r in GRUs and neuromodulation. In this respect, studying the introduction of new types

of gates based on more biological plausible neuromodulation architectures would certainly be

interesting.

5 Analysis of BRC and nBRC performance

To demonstrate the impact of bistability in RNNs we tackle four problems. The first is a one-

dimensional toy problem, the second is a two-dimensional denoising problem, the third is the

permuted sequential MNIST problem and the fourth is a variation of the third benchmark. All

benchmarks are related to a supervised setting. The network is presented with a time-series

and is asked to output a prediction (regression for the first two benchmarks and classification

for the others) after having received the last element(s) of the time-series xT. Note that for the

second benchmark the regression is carried over multiple time-steps (sequence-to-sequence)
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whereas, this prediction is given in a single time-step after receiving xT for the other bench-

marks. We first show that the introduction of bistability in recurrent cells is especially useful

for datasets in which only time-series with long time-dependencies are available. We achieve

this by comparing results of BRC and nBRC to other recurrent cells. We use LSTMs [1] and

GRUs [2] as a baseline since they have already been established. We also compare to two other

cells (GORUs [8] and LMUs [22]) which were developed to improve performance over GRUs

and LSTMs and use them as our state-of-the-art comparison. Finally, we also take a look at the

dynamics inside the nBRC neurons in the context of the denoising benchmark and show that

bistability is heavily used by the neural network.

5.1 Results

For the first two problems, training sets comprise 40000 samples and performances are evalu-

ated on test sets generated with 50000 samples. For the permuted MNIST benchmarks, the

standard train and test sets are used. All averages and standard deviations reported were com-

puted over three different seeds. We found that there were only minor variations in between

runs, and thus believe that three runs are sufficient to capture the performance of the different

architectures. For all benchmarks, networks are composed of two layers of 128 neurons. Dif-

ferent recurrent cells are always tested on similar networks (i.e. same number of layers/neu-

rons). We used the tensorflow [23] implementation of GRUs. Finally, the ADAM optimizer

with a learning rate of 1e−3 is used for training all networks, with a mini-batch size of 100. The

source code for carrying out the experiments is available at https://github.com/nvecoven/BRC.

All networks are trained for 50 epochs (which has proven to be enough to reach convergence

on these particular benchmarks).

5.1.1 Copy first input benchmark. In this benchmark, the network is presented with a

one-dimensional time-series of T time-steps where xt � N ð0; 1Þ; 8t 2 T. After receiving

xT, the network output value should approximate x0, a task that is well suited for capturing

their capacity to learn long temporal dependencies if T is large. Note that this benchmark

also requires the ability to filter irrelevant signals as, after time-step 0, the networks are con-

tinuously presented with noisy inputs that they must learn to ignore. The mean square error

on the test set is shown for different values of T in Table 1. In this benchmark, one can see

the limitation of LSTMs and GRUs when T becomes large (this is shown in particular for

GRUs on Fig 3), as they are unable to beat random guessing performances (which would be

equal to 1 in this setting. Indeed, as x0 is sampled from a normal distribution N ð0; 1Þ, guess-

ing 0 would lead to the lowest error which would on average be equal to the standard devia-

tion). Furthermore, we see that the gated orthogonal version of GRUs (GORUs) achieves

better performances than GRU cells, as expected. We also see that thanks to bistability,

nBRCs and BRCs are able to learn effectively and achieve similar performances to those of

LMUs.

5.1.2 Denoising benchmark. The copy input benchmark is interesting as a means to high-

light the memorisation capacity of the recurrent neural network, but it does not tackle its

Table 1. Mean square error (± standard deviation) of different architectures on the test set for the copy input benchmark. Results are shown after 50 epochs and for

different values of T.

T BRC NBRC GORU LSTMCell GRUCell LMU

5 0.005±0.001 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

50 0.082±0.027 0.002±0.000 0.019±0.009 0.000±0.000 0.997±0.005 0.000±0.000

300 0.086±0.014 0.010±0.003 0.308±0.050 1.002±0.009 0.876±0.190 0.000±0.000

600 0.099±0.029 0.009±0.002 0.323±0.068 0.989±0.008 0.999±0.017 0.002±0.001

https://doi.org/10.1371/journal.pone.0252676.t001
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ability to successfully exploit complex relationships between different elements of the input

signal to predict the output. In the denoising benchmark, the network is presented with a two-

dimensional time-series of T time-steps. Five different time-steps t1, . . ., t5, for which data

should be remembered, are sampled uniformly in {0, . . ., T − N} with N 2 {5, . . ., T − 4} and

are communicated to the network through the first dimension of the time-series by setting

xt[1] = 1 if t 2 {t1, . . ., t5}, xt[1] = 0 if t = T − 4 and xt[1] = −1 otherwise. Note that the parame-

ter N controls the length of the forgetting period as it forces the relevant inputs to be in the

first T − N time-steps. This ensures that tx< T − N, Â 8x 2 {1, . . ., 5}. Also note that this

dimension can be used by the network to know its prediction is now starting to influence the

loss (whenever xt[1] = 0).

The second dimension is a data-stream, generated as for the copy first input benchmark,

that is xt½2� � N ð0; 1Þ; 8t 2 f0; . . . ;T � 4g and xt[2] = 0, 8t 2 {T − 4, . . ., T}. At time-step

T − 4, the network is asked to output xt1 ½2�, at time-step T − 3 the network is asked to output

xt2 ½2� and so on until time-step T at which it should output xt5 ½2�. The mean squared error is

averaged over the five values. That is, the error on the prediction is equal to
P5

i¼1

ðxti ½2�� OT� 5þiÞ
2

5

with Ox the output of the neural network at time-step x.

As one can see in Table 2 (generated with T = 400 and two different values of N), for

N = 200 only bistable cells are able to achieve good performances.

5.1.3 Permuted sequential MNIST. In this benchmark, the network is presented with the

MNIST images, where pixels are shown, one by one, as a time-series. It differs from the regular

sequential MNIST in that pixels are shuffled, with the result that they are not shown in top-left

to bottom-right order. This benchmark is known to be a more complex challenge than the reg-

ular one. Indeed, shuffling makes time-dependencies more complex by introducing lag in

between pixels that are close together in the image, thus making structure in the time-serie

harder to find. MNIST images are comprised of 784 pixels (28 by 28), requiring dynamics

over hundreds of time-steps to be learned. Table 3 shows that bistability does not hinder

Fig 3. Evolution of the average mean-square error (± standard deviation) over three runs on the copy input

benchmark for GRU and BRC and for different values of T.

https://doi.org/10.1371/journal.pone.0252676.g003

Table 2. Mean square error (± standard deviation) of different architectures on the denoising benchmark’s test set. Results are shown with and without constraint on

the location of relevant inputs and after 50 epochs. Relevant inputs cannot appear in the N last time-steps, that is xt[1] = −1, 8t> (T − N). In this experiment, results were

obtained with T = 400.

N BRC NBRC GORU LSTM GRU LMU

5 0.579±0.033 0.016±0.003 0.000±0.000 0.655±0.463 0.001±0.000 1.004±0.006

200 0.614±0.119 0.071±0.078 1.004±0.003 0.996±0.005 0.995±0.003 1.000±0.003

https://doi.org/10.1371/journal.pone.0252676.t002
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performances when compared to GRU cells, even for more complex standard benchmarks, in

which specific long-term memory is not required. In this case, only LMUs provide signifi-

cantly better performance than nBRCs, which are otherwise competitive with all other cell

types. This table also shows that the introduction of cellular connections does not hinder

much the representational power of the cell.

5.1.4 Permuted line-sequential MNIST. In this benchmark, we use the same permuta-

tion of pixels in the MNIST images as for the previous benchmark. We then feed the pixels to

the RNNs line by line, thus allowing one to test the networks with a higher input dimension

(28 in this case). Furthermore, to highlight once again the interest of bistability, we add N
black lines at the end of the image. This has the effect of a forgetting period, as any relevant

information for predicting the output will be farther from the prediction time-step in the

time-serie. As for the copy input benchmark, we see on Table 4 that only bistable cells and

LMUs are able to tackle this problem correctly.

5.1.5 Permuted variable-line-sequential MNIST. Finally, to test the capacity of the net-

work on variable-length sequences, we also test a variation of this benchmark, which we call

permuted variable-sequential-line MNIST. In this variation, a random number N of black

lines are added to the image (after permutation of the pixels) for each sample, where N is sam-

pled uniformly in Uf0; . . . ;Xg. Additionally, all pixels of the last line are assigned a high posi-

tive value (greater than the value corresponding to that of a white pixel, so that this line can

never appear in a standard image). This line can be used by the network for it to know it

should output the class of the image for that particular time-step. We note that in this bench-

mark, samples are of variable lengths. In this case (Table 5, results are more similar to those

obtained in the denoising benchmark.

Table 3. Overall accuracy and macro-averaged F1-score (± standard deviation) on the permuted sequential MNIST benchmark’s test set after 50 epochs and for dif-

ferent cell types.

BRC NBRC GORU LSTMCell GRUCell LMU

Acc. 0.662±0.007 0.908±0.006 0.902±0.004 0.910±0.002 0.908±0.004 0.969±0.001

F1 0.655±0.007 0.906±0.005 0.897±0.008 0.907±0.003 0.902±0.006 0.965±0.002

https://doi.org/10.1371/journal.pone.0252676.t003

Table 4. Overall accuracy and macro-averaged F1-score (± standard deviation) on permuted sequential-line MNIST test set after 50 epochs for different architec-

tures. Images are fed to the recurrent network line by line and N black lines are added at the bottom of the image after permutation. We note that when N equals 72(472)

the resulting image has 100(500) lines.

N BRC NBRC GORU LSTMCell GRUCell LMU

Acc. 72 0.968±0.001 0.973±0.001 0.977±0.000 0.977±0.002 0.977±0.002 0.969±0.001

F1 72 0.967±0.001 0.972±0.001 0.972±0.000 0.976±0.002 0.974±0.001 0.941±0.002

Acc. 472 0.960±0.001 0.972±0.002 0.198±0.021 0.562±0.328 0.591±0.388 0.961±0.003

F1 472 0.956±0.001 0.972±0.002 0.083±0.0031 0.454±0.453 0.495±0.477 0.898±0.013

https://doi.org/10.1371/journal.pone.0252676.t004

Table 5. Overall accuracy and macro-averaged F1-score (± standard deviation) on the permuted variable-sequential-line MNIST test set after 50 epochs for different

architectures. Images are fed to the recurrent network line by line and N � Uf0; . . . ;Xg black lines are added at the bottom of the image after permutation.

X BRC NBRC GORU LSTMCell GRUCell LMU

Acc. 472 0.958±0.002 0.970±0.001 0.148±0.015 0.630±0.318 0.540±0.426 0.180±0.002

F1 472 0.954±0.000 0.967±0.001 0.022±0.001 0.491±0.465 0.451±0.474 0.062±0.036

https://doi.org/10.1371/journal.pone.0252676.t005

PLOS ONE A bio-inspired bistable recurrent cell allows for long-lasting memory

PLOS ONE | https://doi.org/10.1371/journal.pone.0252676 June 8, 2021 9 / 13

https://doi.org/10.1371/journal.pone.0252676.t003
https://doi.org/10.1371/journal.pone.0252676.t004
https://doi.org/10.1371/journal.pone.0252676.t005
https://doi.org/10.1371/journal.pone.0252676


5.2 Analysis of nBRC dynamic behavior

Until now, we have looked at the learning performances of bistable recurrent cells. It is, how-

ever, interesting to take a deeper look at the dynamics of such cells to understand whether or

not bistability is used by the network. To this end, we pick a random time-series from the

denoising benchmark and analyse some properties of at and ct. For this analysis, we train a net-

work with 4 layers of 100 neurons each, allowing for the analysis of a deeper network as com-

pared to those used in the benchmarks. Note that the performances of this network are similar

to those reported in Table 2. Fig 4 shows the proportion of bistable cells per layer and the aver-

age value of et per layer. The dynamics of the parameters show that they are well used by the

network, and three main observations should be made. First, as relevant inputs are presented

to the network, the proportion of bistable neurons tends to increase in layers 2 and 3, effec-

tively storing information and thus confirming the interest of introducing bistability for long-

term memory. As more information needs to be stored, the network leverages the power of

bistability by increasing the number of bistable neurons. Second, as relevant inputs are pre-

sented to the network, the average value ct tends to increase in layer 3, effectively making the

network less and less sensitive to new inputs. Third, one can observe a transition regime when

a relevant input is shown. Indeed, there is a high decrease in the average value of ct, effectively

making the network extremely sensitive to the current input, which allows for its efficient

memorization.

6 Conclusion

In this paper, we introduced two new important concepts from the biological brain into recur-

rent neural networks: cellular memory and bistability. This led to the development of two new

cells, called the Bistable Recurrent Cell (BRC) and recurrently neuromodulated Bistable Recur-

rent Cell (nBRC) that proved to be very efficient on several datasets requiring long-term mem-

ory and on which the performances of classical recurrent cells such as GRUs and LSTMS were

poor. Furthermore, through the similarities between nBRCs and standard GRUs, we highlight

that gating mechanisms can be linked to biological neuromodulation.

As future work, it would be of interest to study more complex and biologically plausible

neuromodulation schemes and identify what types of new, gated architectures could emerge

Fig 4. Representation of the nBRC parameters, per layer, of a recurrent neural network (with 4 layers of 100 neurons each), when shown a time-series of the

denoising benchmark (T = 400, N = 0). Layer numbering increases as layers get deeper (i.e. layer i corresponds to the ith layer of the network). The 5 time-steps at

which a relevant input is shown to the model are clearly distinguishable by the behaviour of those measures alone.

https://doi.org/10.1371/journal.pone.0252676.g004
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from them. A well biologically-motivated example of this would be the use of a neuromodula-

tory network [24] to compute gate activations.

Furthermore, we note that even though we focused on supervised benchmarks in the con-

text of this paper, bistable cells might be of great use for reinforcement learning (RL), and

more precisely for RL problems with sparse environments. These problems have been known

to be extremely hard to solve, on one hand due to the difficulty of exploration and on the other

hand due to the difficulty of remembering relevant information across large periods of time-

steps. Bistable cells are a promising avenue for solving the latter, and might be a worthwhile

path to explore.

7 Appendix

A Proof of bistability for BRC and nBRC for at> 1

Theorem A.1. The system defined by the equation

ht ¼ cht� 1 þ ð1 � cÞ tanh ðUxt þ aht� 1Þ ¼ Fðht� 1Þ ð6Þ

with c 2 [0, 1] is monostable for a 2 [0, 1[ and bistable for a> 1 in some finite range of Uxt cen-
tered around xt = 0.

Proof. We can show that the system undergoes a supercritical pitchfork bifurcation at the

equilibrium point (x0, h0) = (0, 0) for a = apf = 1 by verifying the conditions

Gðh0Þjapf ¼
dGðhtÞ
dht

jh0 ;apf
¼
d2GðhtÞ
dh2

t

jh0 ;apf
¼
dGðhtÞ
da

jh0 ;apf
¼ 0 ð7Þ

d3GðhtÞ
dh3

t

jh0 ;apf
> 0;

d2GðhtÞ
dhtda

jh0 ;apf
< 0 ð8Þ

where G(ht) = ht − F(ht) [25]. This gives

Gðh0Þjapf ¼ ð1 � cÞðh0 � tanh ðapf h0ÞÞ ¼ 0; ð9Þ

dGðhtÞ
dht

�
�
�
�
h0 ;apf

¼ ð1 � cÞðapf ð tanh 2ðapf h0Þ � 1Þ þ 1Þ ¼ ð1 � cÞð1 � apf Þ ¼ 0; ð10Þ

d2GðhtÞ
dh2

t

�
�
�
�
h0 ;apf

¼ ð1 � cÞ2a2
pf tanh ðapf h0Þð1 � tanh 2ðapf h0ÞÞ ¼ 0; ð11Þ

dGðhtÞ
da

�
�
�
�
h0 ;apf

¼ ð1 � cÞh0ð tanh ðapf h0Þ
2
� 1Þ ¼ 0; ð12Þ

d3GðhtÞ
dh3

t

�
�
�
�
h0 ;apf

¼ ð1 � cÞ � ð2a3ð tanh 2ðapf h0Þ � 1Þ
2
þ 4a3

pf tanh
2ðapf h0Þð tanh 2ðapf h0Þ � 1ÞÞ

¼ 2ð1 � cÞ > 0;

ð13Þ
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d2GðhtÞ
dhtda

�
�
�
�
h0 ;apf

¼ ð1 � cÞðð tanh 2ðapf h0Þ � 1Þ þ 2apf h0 tanh ðapf h0Þð1 � tanh 2ðapf h0ÞÞÞ

¼ c � 1 < 0:

ð14Þ

The stability of (x0, h0) for a 6¼ 1 can be assessed by studying the linearized system

ht ¼
dFðhtÞ
dht

�
�
�
�
h0

ht� 1: ð15Þ

The equilibrium point is stable if dF(ht)/dht 2 [0, 1[, singular if dF(ht)/dht = 1, and unstable

if dF(ht)/dht 2 ]1, +1[. We have

dFðhtÞ
dht

�
�
�
�
h0

¼ cþ ð1 � cÞað1 � tanh 2ðath0ÞÞ ð16Þ

¼ cþ ð1 � cÞa; ð17Þ

which shows that (x0, h0) is stable for a 2 [0, 1[ and unstable for a> 1.

It follows that for a< 1, the system has a unique stable equilibrium point at (x0, h0), whose

uniqueness is verified by the monotonicity of G(ht) (dG(ht)/dht> 08ht).
For a> 1, the point (x0, h0) is unstable, and there exist two stable points (x0, ±h1) whose

basins of attraction are defined by ht 2 ]−1, h0[ for −h1 and ht 2 ]h0, +1[ for h1.
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