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Abstract: Hepatocrinology is defined as a bidirectional, complex relationship between hepatic
physiology and endocrine function, hepatic disease and endocrine dysfunction, hepatotropic drugs
and endocrine function, and endocrine drugs and hepatic health. The scope of hepatocrinology
includes conditions of varied etiology (metabolic, infectious, autoimmune, and invasive) that we
term as hepato-endocrine syndromes. This perspective shares the definition, concept, and scope
of hepatocrinology and shares insight related to this aspect of medicine. It is hoped that this
communication will encourage further attention and research in this critical field.
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1. Introduction

The liver has long been recognized as the seat of the metabolism. Simultaneously,
the endocrine system controls the homeostasis of the body. The subject ‘hepatocrinology’
is the field of medicine that studies the bidirectional relationship between hepatic and
endocrine physiology, as well as dysfunction. The discipline of hepatocrinology explores
the liver as an endocrine gland by describing its production of hormones and its role
in hormonal modulation (by synthesizing transport proteins). The hepato-insular axis
is a part of hepatocrine physiology [1]. Endocrine manifestations of liver insufficiency
(cirrhosis) and malignancy, and hepatic complications of various endocrine disorders
are included. Special attention is paid to hepato-endocrine syndromes in which hepatic
and endocrine dysfunction co-occur. The possible hepatotropic effect of endocrine drugs,
pleiotropic endocrine consequences of medicines used in the management of liver disease,
and potential exaptation of endocrine agents for use in hepatology form part of this science.

2. The Liver as an Endocrine Organ

The liver secretes various hormones, which mediate glucose metabolism, blood pres-
sure, growth, and hemorheological homeostasis. These include insulin-like growth factor
(IGF)-1, betatrophin, and irisin, all of which mediate insulin sensitivity [2,3]. Angiotensino-
gen, produced by the liver, is the bedrock of the renin-angiotensin-aldosterone system,
which contributes to blood pressure maintenance [4]. Hepcidin and thrombopoietin con-
tribute to the regulation of iron metabolism and platelet production, respectively [5,6]. The
hepato-insular axis is a well-researched contributor to glucose metabolism and has been
described variously as the entero-insular or adipo-hepato-insular axis [1]. There are several
other hormones or their precursors that are synthesized by the liver. Some of the important
products are summarized in Table 1 and detailed below.
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Table 1. The liver as an endocrine organ.

Action Hormones Reference

Hormone synthesis

IGF-1 Bach [2]

Angiotensinogen Matsuaska [4]

Thrombopoietin Hitchcock [6]

Hepcidin Ruchala [5]

Betatrophin Raghow [3]

Proprotein convertase subtilsin-kexin type 9 Yadav [7]

Hormone action modulation

IGF binding protein 1 to 6 Allard [8]

Sex hormone-binding globulin Selby [9]

Thyroid hormone-binding globulin Schussler [10]

Transthyretin Palha [11]

Corticosteroid binding globulin Breuner [12]

Vitamin D binding protein Bouillon [13]
IGF—insulin-like growth factor.

2.1. Insulin-Like Growth Factor and Insulin-Like Growth Factor Binding Proteins

The IGF and IGF-binding proteins (IGFBPs) are primarily synthesized in the liver
and constitute a complex system that plays a critical role in cellular proliferation and
differentiation [14,15]. Growth hormone (GH), secreted from the somatotrophs in the
anterior pituitary, drives the synthesis of IGF-1 in the liver. The IGF-1 is a crucial mediator
of development during childhood, and the primary determinant of linear growth. In
adults, it continues to exert an anabolic effect, and adult GH deficiency (GHD) portends
to a negative cardiovascular (CV) outcome [16]. IGF-2, the other hormone responsible for
growth-promoting effects, is widely expressed during fetal development, but synthesized
in the liver and epithelial cell lining of the brain surface after birth [17]. The actions of IGF-1
and IGF-2 are modulated both systemically and locally by six different IGFBP subtypes
designated IGFBP-1 through 6 [8].

Serum IGF-1 levels are decreased in cirrhosis as the synthetic capacity of the liver is
diminished [18,19]. Hepatic IGF-1 production is also lower in those with higher degrees
of steatosis, non-alcoholic fatty liver disease (NAFLD) activity score (NAS), and hepatic
fibrosis [20,21]. Conversely, NAFLD occurs more commonly in adult GHD. GH and IGF-1
prevent NAFLD by decreasing visceral fat, reducing lipogenesis in the hepatocytes, and
improving fibrosis by inactivating stellate cells [22].

The GH-IGF-1 axis is involved in the pathogenesis of several other endocrine and
hepatic disorders. Notable among them is the development of hormone-sensitive cancers.
There is emerging evidence that cross-talk between sex steroids and IGF-1 modulates
the propensity for the development of breast and prostate cancers [23,24]. The various
pathophysiological effects of the GH-IGF-1 axis are thus orchestrated through IGF and
IGFBP synthesized in the liver.

2.2. Angiotensinogen

Hemodynamic homeostasis is governed by hepatic secretory products. A key compo-
nent among them is angiotensinogen, an alpha-globulin synthesized in multiple tissues [4].
It is abundantly present in the plasma, and the serum levels are determined by hepatic
secretion. Renin from the juxtaglomerular cells of the kidney cleaves angiotensinogen to
angiotensin I. Renin-mediated cleavage is tightly regulated and considered the rate-limiting
step in the production of biologically active angiotensin peptides [25]. Angiotensin I is
subsequently converted to angiotensin II by the angiotensin-converting-enzyme (ACE)
located predominantly on the endothelial cells of the pulmonary vasculature. Angiotensin
II plays a pivotal role in controlling blood pressure and sodium homeostasis through
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its effect on blood vessels, zona glomerulosa of the adrenal cortex, and the kidney [26].
Additionally, the disequilibrium of the renin-angiotensin-system (RAS) impacts the in-
flammatory pathways in the lungs and is linked to the development of acute respiratory
distress syndrome (ARDS), including the coronavirus disease 2019 (COVID-19) induced
lung injury [27,28].

2.3. Thrombopoietin

The liver is the source of hematopoietic growth factors and iron transport proteins
such as hepcidin. Thrombopoietin, a key hematopoietic cytokine synthesized in the liver,
induces megakaryocyte progenitor expansion and differentiation. It additionally assists in
the maintenance and expansion of hematopoietic stem cells [6]. Thrombopoietin also deter-
mines the lineage of primitive progenitor stem cells and is unique among the hematopoietic
cytokines by its effect on both primitive, as well terminally differentiated, cells [29].

2.4. Betatrophin and Proprotein Convertase Subtilsin-Kexin Type 9 (PCSK9)

The liver plays a critical role in maintaining lipid balance. Betatrophin, now referred
to as angiopoietin-like protein 8 (ANGPTL8), and PCSK9 are critical regulators of lipid
metabolism. Though initial reports suggested that betatrophin can stimulate the growth of
beta cells of the pancreas, subsequent studies have disproved this [30]. ANGPTL8 modu-
lates the activity of lipoprotein lipase (LPL) through its interaction with ANGPTL3 and
stabilizes triglyceride levels [31]. Though the exact mechanism by which this hepatocyte-
derived factor regulates metabolism is not clearly understood, it has been linked to obesity,
diabetes, hypothyroidism, and polycystic ovary syndrome (PCOS). It has the potential
to emerge as a critical therapeutic target in the management of metabolic disorders [32].
PCSK9, synthesized in the liver and several other organs, is a regulatory protein for
low-density-lipoprotein (LDL) receptors [33]. The development of PSCK9 inhibitors as
lipid-lowering tools is a significant breakthrough in the management of dyslipidemia and
atherosclerotic cardiovascular disease [34].

2.5. Hormone-Transport Proteins

The liver produces several important proteins that act as carriers for various hormones
and thus indirectly modulate critical endocrine functions. Thyroid-binding globulin,
transthyretin, and albumin produced in the liver are all involved in the transportation of
thyroxine and tri-iodothyronine [10]. Cortisol is mainly bound to corticosteroid-binding
globulin, again produced from the liver [35]. Sex hormone-binding globulin not only carries
estradiol and testosterone, but can also serve as an early biomarker and a therapeutic target
for PCOS [36]. The levels of these proteins are altered in different physiological and
pathological states [37,38].

3. Endocrine Manifestations of Hepatic Disease

The liver modulates the functioning of the endocrine system directly or indirectly in
multiple ways. Liver dysfunction is thus predictably associated with various endocrine
disorders. The significant anomalies have been detailed below and depicted in Figure 1.
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3.1. Insulin Resistance and Diabetes

Diabetes is a leading cause of the development of NAFLD and cirrhosis. On the
other hand, cirrhosis causes insulin resistance and increases the probability of developing
diabetes, with a reported prevalence ranging from 30–70% in different studies [39–41]. The
hyperglycemia arising from liver dysfunction is referred to as hepatogenous diabetes and
is pathophysiologically distinct from type 2 diabetes mellitus (T2DM) [42]. The fasting
plasma glucose (FPG) and glycated hemoglobin (HbA1c) are often normal in hepatogenous
diabetes, and an abnormal oral glucose tolerance test (OGTT) is usually required to establish
the diagnosis [43]. The mechanism of the development of diabetes. in cirrhosis is complex
and only partially understood. Insulin resistance from altered secretion of adipokines,
inflammatory cytokines, incretins, and free fatty acids play a significant contributory
role [43,44].

Additionally, hypoxia-inducible factors and advanced glycosylation end-products
(AGEs) can result in impaired insulin secretion [43,45]. Hepatitis C virus itself decreases
insulin sensitivity by altering insulin signaling and increasing endoplasmic reticulum
stress [46–48]. Hepatic and systemic insulin resistance often precedes the onset of cirrhosis
and is present in individuals with NAFLD [49,50].
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3.2. Hypoglycemia

Hypoglycemia is commonly encountered in patients with advanced cirrhosis, espe-
cially if a concurrent infection is present [51,52]. Hypoglycemia occurs in up to 40% of cases
of acute liver failure and is associated with increased mortality [53,54]. The mechanism
behind hypoglycemia is depletion of glycogen stores, decreased gluconeogenesis, and
impaired insulin clearance by the liver [55,56]. Non-islet cell tumor hypoglycemia (NICTH)
is a rare paraneoplastic manifestation of hepatocellular carcinoma (HCC) [57]. Low serum
insulin, C-peptide, and beta-hydroxybutyrate in combination with high IGF-2 characterize
NICTH [58].

3.3. Gonadal Dysfunction

Hypogonadism and gynecomastia are well-recognized manifestations of cirrhosis of
the liver. The possible mechanisms include decreased production of sex hormone-binding
globulin, decreased hepatic clearance of estrogen, primary testicular defect, hypothalamic-
pituitary dysfunction, and direct toxic effects of alcohol on gonads [59,60]. Women with
cirrhosis can manifest menstrual irregularities such as oligomenorrhea or amenorrhea,
primarily resulting from hypothalamic-pituitary dysfunction [61]. Undernutrition and
elevated serum prolactin can also produce irregularities in the menstrual cycle [62].

Cirrhosis in men can manifest with features of hypogonadism such as loss of secondary
sexual characters and decreased libido [63]. Gynecomastia is reported in up to 44% of men
with cirrhosis, and ascribed to the elevated estrogen:testosterone ratio [64,65]. Testosterone
levels are low in patients with cirrhosis, and progressively decrease while the severity of the
liver disease increases [66]. Low testosterone is responsible for body hair loss, sarcopenia,
osteoporosis, anemia, and fatigue, and is a marker of increased mortality in cirrhosis [67,68].
Primary hypogonadism, indicated by an elevation in serum levels of luteinizing hormone
(LH), can occur in alcohol-induced cirrhosis. It can be attributed to the direct toxic effect of
alcohol on the testis [69,70]. Hypogonadotropic hypogonadism that partially reverses after
liver transplantation is described in most other forms of cirrhosis [65]. Low testosterone
levels stimulate the synthesis of sex-hormone-binding globulin (SHBG) in cirrhosis. SHBG
levels are elevated in liver disease, except in advanced stages where the synthetic capacity
of the liver is diminished [66].

3.4. Skeletal Manifestations

Alteration in bone metabolism generally occurs in cirrhosis of the liver. Hepatic
osteodystrophy refers to the skeletal manifestations of cirrhosis and encompasses osteo-
porosis and, in rare cases, osteomalacia and rickets [71]. The metabolic bone disease in
cirrhosis is multifactorial and results from nutritional factors, proinflammatory state, syn-
thetic defects, and hypogonadism [72]. Primary biliary cirrhosis (PBC) has been mainly
linked to a low bone-turnover state resulting from decreased production of growth factors
such as IGF-1, elevated levels of lithocholic acid (known to prevent osteoblast formation),
and vitamin K deficiency [73]. Osteoporosis and fragility fractures are recognized but
under-diagnosed complications of cirrhosis, and can be prevented by early diagnosis and
treatment [74].

3.5. Thyroid Disorders

The autoimmune disorders often tend to coexist, and thyroid dysfunction and high
prevalence of thyroid autoantibodies have been observed in autoimmune hepatitis, PBC,
and primary sclerosing cholangitis [75]. Hepatitis C infection is also associated with the
development of thyroid disorders [76]. A meta-analysis of five studies after adjusting for
heterogeneity suggested that hepatitis C infection increased the chance of the development
of thyroid cancer [77]. The serum concentration of thyroid-binding globulin (TBG) is
elevated in HCC, and normalizes after resection of the tumor [78,79].
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3.6. Adrenal Insufficiency

Adrenal insufficiency is reported in patients with cirrhosis during septic shock and
decompensated liver disease [80]. The term hepato-adrenal syndrome has been used to
define relative adrenal insufficiency occurring in patients with cirrhosis. Though the exact
mechanism is not clearly understood, diminished hepatic synthesis of cholesterol resulting
in the deficiency of substrate for steroid synthesis in the adrenal cortex is a proposed
hypothesis [81].

3.7. Growth Disorders in Children

Children with cirrhosis commonly exhibit restricted linear growth [82]. Even though
GH levels are high in cirrhosis, decreased IGF-1 and IGFBP3 synthesis by the liver induce
growth hormone resistance. Thus, administration of exogenous growth hormone has
minimal benefit in children with cirrhosis and short stature [83]. Liver transplantation
partially restores linear growth rate, but delayed puberty and reduced final adult height
are still common [84].

4. Hepatic Manifestations of Endocrine Disease

Endocrine and metabolic diseases are a common cause of hepatic dysfunction. The
common endocrine causes of liver dysfunction have been depicted in Table 2. NAFLD
resulting from metabolic disorders such as diabetes, obesity, and dyslipidemia has emerged
as one of the leading causes of chronic liver disease over the past two decades. Several
other hormonal disturbances affect the functioning of the liver directly or indirectly.

4.1. Non-Alcoholic Fatty Liver Disease

NAFLD has a bidirectional and complex relationship with metabolic syndrome and
insulin resistance. NAFLD refers to a group of disorders characterized by fat accumulation
in the liver in the absence of other secondary causes. The spectrum of NAFLD encompasses
steatosis or steatohepatitis with associated fibrosis, and can progress to cirrhosis. The risk
for HCC is also elevated in patients with NAFLD [85]. Insulin resistance, a key component
of metabolic syndrome, plays an essential role in the pathogenesis of NAFLD [86]. Obesity,
T2DM, and dyslipidemia are strongly associated with the development of NAFLD, though
the exact pathophysiologic link is a subject of research [87].

Several factors such as genetic and epigenetic factors, nutrition, adipose tissue dys-
function, gut microbiota, inflammation, oxidative stress, adipocytokines, and hepatic iron
have been implicated, however the influence of insulin resistance in the pathogenesis of
NAFLD remains central [88]. Uninhibited adipose tissue lipolysis resulting from systemic
insulin resistance, coupled with increased lipogenesis leads to increased delivery and
deposition of free fatty acids in the liver [89]. The toxicity of accumulated lipids in hepatic
cells triggers further inflammation and damage. Free fatty acids stimulate endoplasmic
reticulum stress and mitochondrial pathways of apoptosis. Lipoapoptosis induces hepatic
fibrosis and further progression to cirrhosis [90].

In recent years, NAFLD and non-alcoholic steatohepatitis has emerged as an important
risk factor for development of HCC even in the absence of cirrhosis [91]. The carcinogenesis
results from alteration in complex signaling pathways mediated by genetic, immunologic,
metabolic, and endocrine interactions [92]. Insulin resistance and hyperinsulinemia as-
sociated with NAFLD augment IGF-1 synthesis in the liver [93]. Stimulation of insulin
receptor and IGF-1 receptor initiates insulin receptor substrate-1 pathway activation and
subsequent downstream induction of PI3K and MAPK pathways [94]. The activation of
these pathways induce cell proliferation, prevent apoptosis, and act as the link between
insulin resistance and carcinogenesis of HCC [95].

NAFLD is the leading cause of chronic liver disease in many parts of the world
and metabolic syndrome, diabetes, and obesity remain its primary drivers [96]. The
strong connection between insulin resistance and NAFLD, NASH, and HCC reinforces the
importance of the intricate relationship between endocrine pathways and liver.
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4.2. Secondary NAFLD from Other Endocrine Disorders

Steatosis or steatohepatitis has been observed in multiple other endocrine anoma-
lies such as hypothyroidism, Graves’ disease and other causes of thyrotoxicosis, PCOS,
Cushing’s syndrome, acromegaly, and pheochromocytoma [97]. Hypothyroidism is a
risk factor for NAFLD. A recent meta-analysis of 26 studies demonstrated that thyroid
stimulating hormone (TSH) levels can correlate with development and progression of
NAFLD [98]. However, other reports did not establish the link [99]. Such an association
is mechanistically plausible given the effect of thyroid hormone on fat deposition in the
liver and other body parts [100]. The prevalence of NAFLD is reported to be only 20% in
Cushing’s syndrome, in spite of the presence of several features of metabolic syndrome
such as central obesity and insulin resistance [101]. The low prevalence of NAFLD could
result from the immunosuppressive effect of cortisol, especially the low grade chronic
inflammation mediated by interleukin-6 [102]. PCOS is also associated with NASH, and
the two conditions share common genetic and metabolic factors [103]. GH deficiency also
increases the risk of NAFLD as already discussed in the previous section.

4.3. Other Hepatic Manifestations of Endocrine Disorders

The liver can be the site of metastases for many endocrine cancers such as adrenal
carcinoma, pancreatic carcinoma, and testicular and ovarian tumors [104]. The unique
constellation of clinical symptoms observed in carcinoid syndrome usually occurs after
extensive hepatic metastases from gastrointestinal carcinoids. The liver otherwise me-
tabolizes the bioactive products secreted into the portal circulation by the tumors [105].
Cholestasis can be a hepatic manifestation of thyroid disorders [106]. Neonatal cholestasis
can be an indicator of the presence of congenital combined pituitary hormone deficiency or
congenital hypothyroidism [107,108].

Table 2. Hepatic manifestations of endocrine disorders.

Hepatic
Manifestation Endocrine Disorders References

Non-alcoholic fatty
liver disease

Insulin resistance, diabetes, obesity, and
dyslipidemia Watt [86]

Hepatic steatosis or
steato-hepatitis

Cushing’s syndrome, acromegaly, Graves’ disease
and other causes of thyrotoxicosis, polycystic
ovary syndrome, male hypogonadism, and

pheochromocytoma

Lonardo [97]

Hepatic metastasis
Adrenal cancer, pancreatic cancer, ovarian and

testicular neoplasm, and malignant
pheochromocytoma

Ridder [104]

Neonatal cholestasis
Congenital combined pituitary hormone

deficiency, congenital hypothyroidism, and
HNF1B-MODY (previously MODY-5)

Chan [107],
Korkmaz [108]

Acute hepatic
congestion (with

jaundice)
Myxedema coma Villalba [109]

Cholestasis Thyrotoxicosis Abebe [110]

Congestive
hepatomegaly Thyrotoxic heart failure Piantanida [106]

Mauriac syndrome Poorly controlled diabetes mellitus Subedi [111]
HNF—hepatocyte nuclear factor, MODY—maturity-onset diabetes of young.

5. Sexual Dimorphism in Liver Disorders

Many liver diseases show differential gender distribution. NAFLD is more common in
men during the reproductive age group, but is more frequent in women after menopause,
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indicating a possible protective role of estrogen [112]. HCC occurs more commonly in men,
while the risk of autoimmune liver diseases such as primary biliary cirrhosis and autoim-
mune hepatitis is more common in women [113]. Women also show higher vulnerability
to alcohol-related liver diseases [114]. Apart from sex hormones, differences in xenobiotics,
immune function, genetic alterations, and receptor expression are presumed to drive the
dichotomy [115].

6. Liver Function Biochemical Markers as Predictors of Endocrine Dysfunction

In several studies, liver enzymes have correlated with the development of incident
diabetes [116]. γ-glutamyltransferase (GGT) has been proposed as a marker of oxidative
stress and is associated with the future risk of diabetes. GGT levels have also been con-
sidered an indicator of hepatic fat deposition, which is related to insulin resistance [117].
In several reports, GGT and alanine aminotransferase in early pregnancy predicted the
future occurrence of gestational diabetes mellitus [118,119]. Table 3 summarizes the liver
enzymes which have been linked to the future development of metabolic disorders.

Table 3. Liver function biochemical markers as predictors of endocrine dysfunction.

Abnormality in Liver
Function Significance References

Raised GGT Probable role in the prediction of future risk
of diabetes Kaneko [116]

Elevated ALT Probable role in the prediction of future risk
of diabetes Kaneko [116]

Elevated ALT and GGT in
early pregnancy

Correlates with development of gestational
diabetes mellitus

Lee [118],
Zhao [119]

Elevated liver enzymes Possible marker of insulin resistance and
metabolic syndrome

Marchesini
[120]

GGT—γ-glutamyltransferase, ALT—alanine aminotransferase.

7. Hepato-Endocrine Syndromes

We have used the term “hepato-endocrine syndromes” to describe disorders with
a common etiology that manifest as combined hepatic and endocrine dysfunction. The
various hepato-endocrine syndromes are enumerated in Table 4. Disorders of iron and
copper metabolism such as hemochromatosis and Wilson’s disease are notable examples
of this syndrome [121,122]. Polyglandular autoimmune syndromes type 1 and type 2 can
develop autoimmune hepatitis and primary biliary cirrhosis, respectively, as their hepatic
manifestations [123]. Hepatitis C virus infection can be associated with thyroiditis and
hypothyroidism [124].

Table 4. Hepato-endocrine syndromes.

Disease Hepatic Manifestation Endocrine Dysfunctions

Metabolic disorders

Hemochromatosis [121] Hepatic fibrosis, cirrhosis, and
hepatocellular carcinoma

Diabetes, hypopituitarism, secondary
hypogonadism, and secondary

hypothyroidism

Wilson’s disease [122]

Transaminitis, steatosis, acute
hepatitis and acute liver failure

(with an associated
Coombs-negative hemolytic
anemia), chronic hepatitis,

and cirrhosis

Fanconi syndrome, distal renal tubular
acidosis, nephrolithiasis, gigantism,
hypoparathyroidism, pancreatitis,

impotence, infertility, and repeated
spontaneous abortions
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Table 4. Cont.

Disease Hepatic Manifestation Endocrine Dysfunctions

Metabolic disorders

Glycogen storage disorders:
Glycogen storage disease I
(von Gierke disease)—90%

of cases [125]

Glucose-6-phosphatase deficiency
in liver and muscle,
hepatomegaly, and
hepatic adenomas

Hypoglycemia, lactic acidosis,
hypertriglyceridemia, and

hyperuricemia; short stature, and
delayed puberty

Autoimmune disorders

Polyglandular autoimmune
syndrome 1 [123] Autoimmune hepatitis

Hypoparathyroidism and autoimmune
adrenal insufficiency (along with

chronic mucocutaneous candidiasis)

Polyglandular autoimmune
syndrome 2 [123] Primary biliary cirrhosis

Addison’s disease plus either an
autoimmune thyroid disease or type 1

diabetes mellitus associated with
hypogonadism, and other

endocrinopathies

Infections

Hepatitis C infection [124] Chronic hepatitis C, cirrhosis, and
hepatocellular carcinoma

Thyroid autoimmunity, hypothyroidism,
and higher prevalence of thyroid cancer

Hepatitis B infection [126] Chronic hepatitis B, cirrhosis, and
hepatocellular carcinoma Increased risk of diabetes mellitus

Malignancy

Paraneoplastic endocrine
syndromes [127] Hepatocellular carcinoma Hypoglycemia, hypercholesterolemia,

and hypercalcemia

8. Hepatic Effect of Endocrine Drugs

The endocrine drugs can have harmful as well as beneficial effects on the liver. Both
anabolic steroids and estrogens can cause cholestasis, hepatic adenoma, focal nodular
hyperplasia, and other hepatic disorders [128,129]. Acute liver failure has been reported
with diverse agents such as propylthiouracil (used for hyperthyroidism) and high doses of
methylprednisolone [130,131]. Orlistat, a commonly used therapy for weight loss, has also
been described to cause subacute and acute liver failure [132].

On the other hand, the anti-diabetic agents such as pioglitazone and possibly sodium-
glucose cotransporter-2 (SGLT2) inhibitors and glucagon-such as peptide-1 receptor agonist
(GLP1RA) might possibly have a beneficial effect on NAFLD [133]. Glucocorticoid is
indicated for the treatment of autoimmune hepatitis [134]. Somatostatin and vasopressin
analogs decrease portal blood flow and help control esophageal variceal bleeding [135].

9. Endocrine Effects of Drugs Used in Hepatology

Spironolactone, commonly used for the management of ascites in patients with cir-
rhosis, is an anti-androgen which has beneficial effects in PCOS in women, but causes
painful gynecomastia in males [136,137]. Interferon-alpha used for management of hep-
atitis C infection can result in thyroid dysfunction [138]. Beta-blockers have often been
associated with erectile dysfunction [139]. Table 5 depicts the common drug interactions in
hepatocrinology.



Med. Sci. 2021, 9, 39 10 of 16

Table 5. Pharmacological interactions in hepatocrinology.

Hepatic Effects of Endocrine Drugs

Drugs Adverse Effects

Anabolic androgenic steroid [128] Hepatic adenoma, hepatocellular carcinoma, cholestasis, and peliosis
hepatis.

Estrogen/oral contraceptive
pills [129]

Intrahepatic canalicular cholestasis, hepatic adenomas, focal nodular
hyperplasia, hemangioma or hamartoma, peliosis hepatis, and Budd

Chiari syndrome

Tamoxifen [140] NAFLD

Propylthiouracil, methimazole,
carbimazole [130] Hepatitis, cholestasis, and acute liver failure

Corticosteroids [131]
Hepatic enlargement, steatosis, glycogenosis. NAFLD, exacerbate

chronic viral hepatitis, and high doses of intravenous
methylprednisolone—acute liver failure (sometimes fatal)

Vasopressin receptor
antagonist [141] Transaminitis and acute liver failure

Orlistat [132] Cholelithiasis, cholestatic hepatitis, and acute and subacute liver
failure

Drugs Beneficial effects

Pioglitazone [133] Beneficial effect on NAFLD

GLP-1RA [133] Possible beneficial effect on NAFLD

SGLT-2 inhibitors [133] Possible beneficial effect on NAFLD

Saroglitazar [133] Possible beneficial effect on NAFLD

Corticosteroids [134] Treatment of autoimmune hepatitis and prevention of rejection of
liver transplant

Somatostatin analogs (octreotide
and others) [135] Treatment of variceal bleeding (decreases portal blood flow)

Vasopressin analogs
(terlipressin) [135] Treatment of variceal bleeding (decreases portal blood flow)

Endocrine Effects of Drugs Used in Hepatology

Drugs Adverse effects

Spironolactone [137] Gynaecomastia, and hypogonadism in men

Beta-blockers [139] Erectile dysfunction

Interferon-alpha [138] Hypothyroidism, autoimmune (Hashimoto’s) thyroiditis, destructive
thyroiditis, and Graves’ disease

Drugs Beneficial effects

Ursodeoxycholic acid [142] Possible beneficial effect in metabolic syndrome

Spironolactone [136] Treatment of PCOS
NAFLD—non-alcoholic fatty liver disease, PCOS—polycystic ovary syndrome, GLP-1RA glucagon-like pep-
tide receptor agonist, SGLT-2—sodium glucose cotransporter-2, GGT—γ-glutamyltransferase, and ALT— ala-
nine aminotransferase.

10. Conclusions

The spectrum of hepatocrinology envelops diverse interactions between hepatic and
endocrine systems in health and disease. We have coined this portmanteau term to increase
awareness among clinicians about the complex, multifaceted relationships between these
two disciplines. Both diabetes and NAFLD are emerging epidemics, and early recognition
of the interconnection between these commonly prevalent disorders might assist in pre-
venting advanced complications such as cirrhosis and HCC. Chronic liver disease results in
multiple endocrine dysfunctions in all stages of life. Children with cirrhosis have stunted
linear growth; in reproductive age groups hypogonadism remains a concern; and the
elderly are affected by osteoporosis. Many of these relations remain unappreciated, and
the complications undiagnosed in clinical practice. We hope that the study of hepatocrine
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interplay under a well-structured rubric will make clinicians aware of these often-missed
interactions and improve patient outcome.
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