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Type III interferons: Balancing tissue tolerance and
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Type III IFNs, or IFN-λ, are the newest members of the IFN family and were long believed to play roles that were redundant
with those of type I IFNs. However, IFN-λ displays unique traits that delineate them as primary protectors of barrier integrity at
mucosal sites. This unique role stems both from the restricted expression of IFN-λ receptor, confined to epithelial cells and to
a limited pool of immune cells, and from unique immunomodulatory properties of IFN-λ. Here, we discuss recent findings that
establish the unique capacity of IFN-λ to act at the barriers of the host to balance tissue tolerance and immune resistance
against viral and bacterial challenges.

Introduction
Type III IFNs, also known as IFN-λ, are the latest addition to
the IFN family. They were discovered by two independent
groups in 2003 as new members of the broad class II cytokine
family and are structurally related to cytokines of the IL-10
family, but they have functions that are similar to those of
type I IFNs (Sheppard et al., 2003; Kotenko et al., 2003;
Kotenko, 2011). The type III IFN family consists of four cyto-
kines: IFN-λ1 (IL-29), IFN-λ2 and IFN-λ3 (IL-28A and IL28B,
respectively), and IFN-λ4. IFN-λ1 is only expressed in humans
(it is a pseudogene in mice), whereas IFN-λ2 and IFN-λ3 are
expressed in both species and are the most related to each
other, displaying 96% amino acid sequence identity (Kotenko,
2011; Sheppard et al., 2003). IFN-λ4 is absent in mice, and in
humans its expression is suppressed either at the mRNA or
protein level (Hong et al., 2016).

As with other IL-10 family cytokines, IFN-λ signals through a
heterodimeric receptor that comprises the common IL-10
receptor-β (IL-10RB) chain plus the cytokine binding–specific
chain IFN-λ receptor 1 (IFNLR1; Kotenko, 2011; Sheppard et al.,
2003). However, the downstream signaling pathway and func-
tional output of receptor binding share many characteristics
with the responses that are elicited by type I IFNs via the IFN-
α/β receptor (IFNAR). In fact, both cytokine receptor complexes
activate the same JAK family kinases, except for JAK2, which is
activated only downstream of IFN-λ (Odendall et al., 2014;

Odendall and Kagan, 2015). Activated JAKs in turn recruit and
phosphorylate STAT family members, which then migrate into
the nucleus and, together with IFN-regulatory factor 9 (IRF9),
mediate the transcription of overlapping sets of IFN-stimulated
genes (ISGs; Kotenko, 2011; Lazear et al., 2015a, 2019; Andreakos
et al., 2019; Pervolaraki et al., 2019). Finally, both classes of cy-
tokines are induced in response to viral infection and contribute
to antiviral immunity (Odendall and Kagan, 2015; Kotenko, 2011;
Lazear et al., 2019).

Despite their many similarities to other IFNs, IFN-λ is now
emerging as highly specialized group of cytokines, and different
aspects of its biological activity have been recently reviewed
(Andreakos et al., 2019; Lazear et al., 2019; Ye et al., 2019c). Our
review focuses on the unique capacity of IFN-λ to counter
pathogen invasion at mucosal sites, where they stimulate
pathogen clearance while curbing inflammation to maintain
barrier integrity. This specialization of IFN-λ stems partly from
the restricted expression of their receptor, partly from the tro-
pism of IFN-λ production, and partly from the unique immu-
nomodulatory properties of this class of IFNs. The type I IFN
receptor IFNAR consists of the two chains, IFNAR1 and IFNAR2,
and is expressed in virtually every nucleated cell, albeit low
levels of mRNA expression have been shown at certain barrier
sites, such as the gut (Mahlakõiv et al., 2015; Lin et al., 2016). In
contrast, expression of the IFN-λ–specific receptor IFNLR1 is
tightly regulated (Ding et al., 2014; Mordstein et al., 2010;
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Sommereyns et al., 2008; Hermant et al., 2014). At homeostasis,
IFNLR1 is expressed at high levels in cells of epithelial lineage
(Sommereyns et al., 2008; Hernández et al., 2015; Mordstein
et al., 2010; Pott et al., 2011) and in a selected pool of immune
cells, with highest levels found in neutrophils (Blazek et al.,
2015; Galani et al., 2017; Koltsida et al., 2011; Espinosa et al.,
2017; Broggi et al., 2017). This distribution ensures that cells
forming the barrier epithelia can rely on a specific IFN system
for protection from viral infections. Moreover, the same epi-
thelial cells preferentially express IFN-λ over type I IFNs in
response to viral infections (Galani et al., 2015, 2017; Mahlakõiv
et al., 2015). In this scenario, the IFN-λ system is triggered in
response to mucosal infections that threaten barrier integrity
and directly promotes maintenance of barrier function by pro-
tecting epithelial cells. Also, innate IFN-λ expression pathways
are similar to those that govern expression of type I IFNs, but
they involve their own sets of pattern recognition receptors
(Odendall et al., 2017), distinct IRF transcription factors, and
signaling adaptors (Odendall et al., 2014; Swider et al., 2014); and
exhibit a different dependence on NF-κB (Iversen et al., 2010;
Ank et al., 2008).

However, what really sets the two IFN systems apart is
their differential capacity to modulate the immune response
(Zanoni et al., 2017; Ye et al., 2019c). Type I IFNs promote a
strong inflammatory response and induce cell-mediated im-
munity, thereby contributing to the activation of cytotoxic
lymphocytes and natural killer cells (Stetson and Medzhitov,
2006; González-Navajas et al., 2012). While type I IFNs can
efficiently prevent viral infections by promoting sterilizing
immunity, sustained type I IFN signaling during an infection
can severely compromise mucosal barrier functions by pro-
moting inflammatory cytokine and chemokine secretion and
massive recruitment of inflammatory cells (Trinchieri, 2010;
Davidson et al., 2014).

While our understanding of IFN-λ’s capacity to modulate the
immune system is in its infancy, some emerging patterns con-
figure the IFN-λ as probarrier cytokines. For example, IFN-λ
acts directly on neutrophils to downmodulate tissue-damaging
responses such as the release of granules and the production of
reactive oxygen species (ROS; Broggi et al., 2017). Also, IFN-λ
dampens neutrophil migration to the inflamed tissues and the
formation of neutrophil extracellular traps (Blazek et al., 2015;
Chrysanthopoulou et al., 2017). Moreover, while IFN-λ and type
I IFNs are both able to induce ISG expression in neutrophils,
albeit with different magnitude and kinetics, only type I IFNs
can trigger the expression of inflammatory cytokines (Galani
et al., 2017).

In addition to directly influencing innate immune functions,
IFN-λ also promotes humoral adaptive immunity indirectly by
stimulating airway epithelial cells (Ye et al., 2019b) and influ-
ences lung DCs’ function to promote T-cell memory (Hemann
et al., 2019), thereby favoring long-term protection and less
damaging immune responses. Here, we describe in detail how
IFN-λ helps to maintain mucosal homeostasis at different bar-
rier sites and highlight the unique functions of IFN-λ that set it
apart from type I IFNs and configure them as gatekeepers
against mucosal infections.

The respiratory tract
The respiratory system is continuously in contact with the en-
vironment. We breathe approximately 25,000 times per day,
and we constantly expose our nasal, bronchial, and lung mu-
cosae to a variety of microbes. It is thus not surprising that
respiratory tract infections, especially those of viral origin, are
among the most common illnesses (van Woensel et al., 2003).
However, despite this constant exposure of nasal and lung
mucosae, we are relatively protected from such viral infections,
which are often confined to the upper respiratory tract. In this
context, the specific role of type III IFNs in mucosal protection is
of particular relevance; however, even though IFN-λ is produced
in the respiratory tract in response to a variety of viral patho-
gens (Crotta et al., 2013; Mahlakõiv et al., 2012; Okabayashi et al.,
2011; Baños-Lara et al., 2015), most mechanistic insights into the
function of IFN-λ in the airways have been gained in the context
of influenza A virus (IAV) infection.

In response to IAV infection, epithelial cells in the respiratory
tract express higher levels of type III IFN transcripts and pro-
teins than the expression of type I IFNs, as described in vitro for
epithelial cell lines and cultured primary tracheal epithelial cells
(Davidson et al., 2016; Crotta et al., 2013) and in vivo for bron-
chial epithelial cells (Galani et al., 2017). Epithelial cells from the
respiratory tract respond to type I as well as type III IFNs
(Mordstein et al., 2010; Crotta et al., 2013), and, accordingly,
control of IAV infection in Ifnar−/− as well as Ifnlr1−/− animals is
impaired in most experimental mouse models (Mordstein et al.,
2010; Crotta et al., 2013; Davidson et al., 2014, 2016; Wack et al.,
2015; Galani et al., 2017; Wang et al., 2017b).

Of note, though, these animal models are generated by ap-
plying high doses of the virus directly to the lower airways,
which bypasses the more physiological process of infection.
Indeed, the spread of IAV in humans relies on contact between
small doses of virus and the upper airways, where most viral
infections are controlled and prevented from evolving into more
serious lower respiratory tract infections. When mouse models
are fine-tuned to reflect the dynamics of physiological infection,
the specific role of IFN-λ emerges more clearly. One such ap-
proach to more closely mimic the dynamics of IAV transmission
in humans was introduced by Galani et al. (2017), who system-
atically dissected the respective roles of IFN-λ and type I IFNs
across a range of infectious doses. They found that at sublethal
doses of infection, which more closely reflect the natural ex-
posure to IAV in humans, only mice that were defective in Ifnlr1
exhibited higher viral titers andmore severe lung inflammation.
This correlates with production of high levels of IFN-λ, espe-
cially at the early stage of the infection. Conversely, when the
mice are challenged with a lethal dose of IAV, both IFN systems
are required for maximal protection, but even under these
conditions, early production of IFN-λ is essential for controlling
viral titers, as assessed early in IAV encounter.

Another shortcoming common to most experimental models
of IAV infection is that the virus is either delivered directly
intratracheally or delivered intranasally in large volumes, in
essence bypassing the upper airways. Klinkhammer et al. (2018)
used an elegant approach to more closely mimic the natural
course of infection. They administered IAV intranasally in a very
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limited volume that prevented the direct delivery of the virus to
the trachea and lung. They were thus able to study how the IAV
spreads from the upper to the lower airways. They showed that
under these conditions, IFN-λ efficiently decreases IAV infection
in nasal epithelial cells and is required to limit IAV from
spreading to the trachea and lung. As a consequence, Ifnlr1−/−

mice showed higher viral titers in nasal secretions, and the IAV
infection spread to cohoused sentinel mice more efficiently
(Klinkhammer et al., 2018).

Thus, IFN-λ is more efficient in controlling sublethal in-
fections at the site of exposure, whereas type I IFNs become
essential once the infection spreads to the lower respiratory
tract. Notably, although type I IFNs and IFN-λ are both able to
stimulate similar levels of ISG transcription in cultured primary
epithelial cells as well as in epithelial cell lines (Galani et al.,
2017; Davidson et al., 2016; Crotta et al., 2013; Klinkhammer
et al., 2018), when IFNs are administered in vivo, a fraction of
nasal epithelial cells remains unresponsive to type I IFNs and is
preferentially infected by IAV; this partially explains the higher
efficiency of IFN-λ in protecting against IAV infection in the
upper airways. The importance of IFN-λ in the upper airways is
highlighted by the recent discovery that commensal bacteria
that colonize the upper airways are able to induce a primed
antiviral state in the lung by inducing IFN-λ (Kim et al., 2019);
this IFN-λ–dependent antiviral state is sufficient to protect mice
from subsequent IAV infections.

Besides inducing an antiviral state via ISG induction, at least
two additional mechanisms must be considered with regard to
how IAV infection is restricted by IFN-λ: (i) regulation of the
inflammatory process and (ii) modulation of the adaptive im-
mune response. IFN-λ directly protects the respiratory tract
epithelia, as demonstrated in conditional mouse models that are
deficient in IFN-λ signaling in respiratory epithelial cells (Galani
et al., 2017) and in bone marrow chimeras (Crotta et al., 2013;
Galani et al., 2017). However, in response to IAV infection, IFN-λ
can directly as well as indirectly modulate the immune response
in order to ensure long-term protection against IAV (Lazear
et al., 2019; Ye et al., 2019b; Andreakos et al., 2019) and to pro-
tect the mucosae from collateral damage (Davidson et al., 2016;
Galani et al., 2017).

Of the immune cells, neutrophils express the highest levels of
Ifnlr1, and IFN-λ can modulate the activation status of purified
neutrophils in vitro (Galani et al., 2017; Blazek et al., 2015;
Chrysanthopoulou et al., 2017; Broggi et al., 2017). The impor-
tance of neutrophil regulation during IAV infection is high-
lighted in mouse models wherein both neutrophil-specific and
respiratory epithelial cell–specific conditional Ifnlr1−/− have a
higher viral burden, whereas mice that have a neutrophil-
specific knockout of Ifnlr1 have a higher inflammatory signa-
ture (Galani et al., 2017). Indeed, during IAV infection, epithelial
cells and neutrophils are both infected, and IFN-λ is able to
protect both cell types from infection by inducing ISG produc-
tion. However, while type I IFNs also induce the transcriptional
regulation of proinflammatory cytokines in neutrophils, IFN-λ
only induces ISGs; thus, IFN-λ contributes to antiviral defense
but not to an increase in the inflammatory signature. These
results nicely mirror the capacity of IFN-λ treatment to induce a

lower inflammatory signature in IAV-infected mice compared to
mice that are treated with IFN-α prior to IAV infection, even
though both cytokines induce a similar reduction in IAV levels
(Davidson et al., 2014, 2016).

An additional layer of protection against respiratory viral
infection can be ascribed to the capacity of IFN-λ to indirectly
stimulate protective adaptive immunity. In fact, while the ma-
jority of immune cells (including B cells) do not respond to IFN-λ
in mice, Ifnlr1−/− mice that are infected with IAV have lower
levels of hemagglutinin-specific IgG1 and IgA, whereas admin-
istration of IFN-λ concomitantly with the infection (or with
vaccination) enhances the humoral adaptive response. Notably,
bone marrow chimera experiments show that IFN-λ influences
humoral adaptive immunity indirectly and stimulates the pro-
duction of thymic stromal lymphopoietin (TSLP) from lung M
cells, which in turn acts on CD103+migratory lung dendritic cells
(DCs) to promote germinal center reactions (Ye et al., 2019a). In
contrast, exposure to type I IFNs under the same conditions
favors the development of IgG2c independently of TSLP induc-
tion (Ye et al., 2019c). IFN-λ also modulates the function of lung
DCs to promote skewing of the immune response toward a T
helper type 1 cell response (Koltsida et al., 2011; Hemann et al.,
2019). Following IAV infection, IFN-λ influences CD103+ DC
functions to promote T-cell memory and protect mice from
heterologous viral challenge (Hemann et al., 2019). Although
mice that lack the IFNLR1 exclusively in DCs are less efficient in
generating CD8+ memory T cells, DCs seem to respond ex vivo
only to very high doses of recombinant IFN-λ3 (Hemann et al.,
2019), suggesting that not only direct IFN-λ signaling in DCs but
also indirect activities of IFN-λ on other cells mightmodulate the
immune response elicited against IAV.

Overall, in response to viral pathogens, IFN-λ protects the
airway mucosae by (i) restricting viral replication in epithelial
cells at the point of entry, thereby limiting the spread of the
virus to the lower airways; (ii) stimulating protective adaptive
immunity; and (iii) limiting inflammation and damaging leu-
kocyte responses to maintain barrier integrity (Fig. 1).

While the majority of viral infections are self-limiting and do
not spread to the lower airways, the most severe cases are often
accompanied by secondary bacterial superinfections (Krammer
et al., 2018). The mechanisms by which viral infections predis-
pose the host to bacterial superinfections are still not completely
understood; however, the IFN response appears to play an im-
portant role (Parker, 2017). Thus, while IFN-λ serves the func-
tion of promoting the mucosal barrier, its capacity to limit
the inflammatory response could additionally contribute to the
immunosuppressed status of IAV-infected hosts and to the
pathogenesis of secondary bacterial superinfections. Accord-
ingly, Ifnlr1−/− mice are partially protected from Staphylococcus
aureus and Streptococcus pneumoniae superinfections (Pires and
Parker, 2018; Planet et al., 2016), whereas mice that are ad-
ministered an IFN-λ–overexpressing adenoviral vector have a
higher bacterial burden in their lungs (Rich et al., 2019). The
molecular and cellular mechanisms that underpin this action of
IFN-λ are yet to be defined; however, Ifnlr1−/− mice reportedly
clear bacteria more efficiently (Planet et al., 2016; Pires
and Parker, 2018) and display higher levels of antimicrobial
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peptides in the lung than IFN-λ–competent mice (Planet et al.,
2016). In contrast, overexpression of IFN-λ in vivo, concomi-
tantly with IAV infection, reduces the number of neutrophils in
the bronchoalveolar lavage and impairs the capacity of these cells
to phagocytose and kill bacteria (Rich et al., 2019).

While the contribution of IFN-λ to barrier integrity is best
investigated following IAV infections in mice, studies on human
cell lines have highlighted a role for IFN-λ in the response
against human-restricted viral pathogens such as respiratory
syncytial virus (RSV; Chi et al., 2006; Okabayashi et al., 2011;
Hillyer et al., 2018) and metapneumovirus (Baños-Lara et al.,
2015). IFN-λ is preferentially secreted by primary epithelial cells
in response to RSV (Okabayashi et al., 2011); however, both IFN
systems seem to be necessary for controlling RSV in epithelial
cell lines and primary T cells (Chi et al., 2006; Hillyer et al.,
2018). Interestingly, in order to escape control by type III
IFNs, RSV has evolved the ability to counteract IRF1-dependent
IFN-λ secretion by inducing epidermal growth factor signaling
(Kalinowski et al., 2018; Hillyer et al., 2012). In agreement with

these data, the levels of expression of IFN-λ and Ifnlr1measured
in nasal lavages of RSV-infected pediatric patients correlate with
disease severity (Selvaggi et al., 2014; Pierangeli et al., 2018).

Finally, IFN-λ can also be induced in the lung outside the
context of viral infection. In a model of Aspergillus fumigatus–
induced pneumonia, IFN-λ stimulates pathogen clearance by
enhancing ROS production in neutrophils in a STAT1-dependent
manner, in contrast to what is observed in vitro in response to
bacterial or inflammatory stimuli and in vivo in a model of in-
testinal inflammation (Broggi et al., 2017), suggesting that IFN-λ
can modulate inflammation differently in response to different
classes of pathogens (Espinosa et al., 2017).

The gastrointestinal system
The delicate balance between pathogen resistance and mainte-
nance of barrier function is of pivotal importance in the gas-
trointestinal tract, as it is home to the highest number and
greatest diversity of commensal microbes in the body. IFN-λ is
unique in protecting the intestine from enteric viral infections

Figure 1. IFN-λ protects the airways against IAV infection. IFN-λ is produced in the upper airways in response to IAV infection and protect the nasal
epithelium early after IAV encounter. In the lower airways, at early time points and low infection IAV titers, IFN-λ is sufficient to protect the host from IAV
infection. IFN-λ directly induces ISGs in epithelial cells and neutrophils and prevents viral infection but do not induce proinflammatory cytokine production.
IFN-λ stimulates long-lasting adaptive immunity by inducing TSLP secretion by airway M cells, which in turn stimulates CD103+ DCs to promote germinal
center response. CD103+ DCs also respond directly to IFN-λ stimulation to promote CD8+ T-cell memory. At high viral titers, type I and type III IFNs are both
needed for host protection. The production of type I IFNs is associated with a stronger inflammatory response and with the secretion of proinflammatory
cytokines. GC B cells, germinal center B cells; Tfh, T follicular helper cell. Images were created with BioRender.
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while maintaining an anti-inflammatory state that safeguards
the barrier function. Here, too, the tropism of IFN-λ production
and sensing is key to its function. In contrast to the airway ep-
ithelium, the gut intestinal epithelial cells (IECs) respond pref-
erentially to IFN-λ in vivo (although epithelial cell lines and
isolated primary IECs are able to respond to both IFNs ex vivo;
Pott et al., 2011), whereas lamina propria lymphocytes mainly
respond to type I IFNs. This creates a compartmentalized system
in which IFN-λ protects the barrier epithelia, whereas type I
IFNs intervene only when the barrier has been breached. This
selective responsiveness is reflected in receptor expression: IECs
express high transcript levels of Ifnlr1 and lower levels of Ifnar1
and Ifnar2 transcripts, whereas lamina propria lymphocytes
only express the type I IFN receptor (Bhushal et al., 2017; Lin
et al., 2016; Mordstein et al., 2010; Feng et al., 2008; Pott et al.,
2011; Mahlakõiv et al., 2015). Responsiveness to IFN-λ is also
influenced by the epigenetic and polarization status of IECs (Pott
et al., 2011; Bhushal et al., 2017; Lin et al., 2016; Ding et al., 2014).
Moreover, the two receptor systems have been recently shown
to cross-regulate each other’s downstream signaling pathway.
Epithelial cell lines where IFNLR signaling is blocked induce
higher levels of ISGs when stimulated with type I IFNs, whereas
depletion or blockade of IFNAR1 and IFNAR2 negatively regu-
lates the sensitivity of IFN-λ (Pervolaraki et al., 2019). This effect
is independent of regulation of receptor expression and acts at
the level of STAT1 phosphorylation (Pervolaraki et al., 2019).

Another layer of compartmentalization is conferred by the
differential induction of IFN types; in particular, IECs prefer-
entially express IFN-λ in response to viral infection in vivo
(Mahlakõiv et al., 2015; Hernández et al., 2015). In vitro evidence
derived from human epithelial cell lines suggests that the sub-
cellular localization of the signaling adaptor mitochondrial
antiviral-signaling protein (MAVS) dictates the preferential in-
duction of one class of IFNs over the other (Odendall et al., 2014;
Odendall and Kagan, 2015): the association of MAVS with per-
oxisomes induces IFN-λ, whereas type I IFNs are induced in
response to activation of mitochondrial MAVS. The particularly
abundant pool of peroxisomes in epithelial cells explains the
preferential induction of IFN-λ (Odendall et al., 2014).

The existence of such compartmentalization is supported by
results of analyzing variations in the capacity of different fam-
ilies of IFNs to control viruses with dissimilar tropisms. Indeed,
IFN-λ preferentially controls viruses that infect epithelial cells,
whereas type I IFNs are fundamental to the control of viruses
that bypass the epithelial layer and can spread systemically. A
clear example of such tropism is seen during norovirus infec-
tion: human norovirus causes acute gastroenteritis that typically
resolves within 1–2 d, with viral shedding persisting in the stools
of asymptomatic patients for several days (Karst et al., 2014;
Robilotti et al., 2015). The mouse relative norovirus (MNV-1) can
induce either an acute illness that is typically controlled by the
adaptive immune system (Chachu et al., 2008a; 2008b) or a
persistent infection characterized by continuous fecal shedding
(Thackray et al., 2007; Kernbauer et al., 2014). Over the years, a
variety of MNV strains have been isolated that trigger either
acute or persistent infection (Thackray et al., 2007) and
have been thoroughly characterized (Nice et al., 2018). Acute

norovirus bypasses epithelial barriers and infects immune cells
in the intestinal lamina propria before spreading systemically
(Nice et al., 2013; Strong et al., 2012). Consistent with the
compartmentalized system that exists in the gut, the acute vi-
rus strain is completely dependent on type I IFNs for clearance,
as Ifnar−/− mice and Stat1−/− mice succumb to the infection
(Karst et al., 2003; Nice et al., 2016). In contrast, the persistent
strain of norovirus, which only infects tuft cells of epithelial
lineage (Wilen et al., 2018), is controlled specifically by IFN-λ
(Baldridge et al., 2015; Nice et al., 2015): therapeutic adminis-
tration of IFN-λ is sufficient to completely clear persistent
norovirus, even in the absence of an adaptive immune system.
Furthermore, if conditional epithelial cell–specific Ifnlr1−/−mice
are infected with the persistent norovirus strain, they are in-
sensitive to IFN-λ administration and present higher viral tit-
ers and viral shedding than WT mice (Baldridge et al., 2017).
Another testament to the importance of IFN-λ in the control of
the epithelial tropic form of MNV comes from microbiome
studies in which bacterial depletion by antibiotic treatment
favors norovirus clearance in WT mice. However, this effect is
abrogated only in Ifnlr1−/− mice, whereas deletion of Ifnar1,
Ifngr1, and sensors such as retinoic acid-inducible gene I (RIG-
I), TLRs, and their signaling adaptors did not alter the pheno-
type (Baldridge et al., 2015). This effect of commensal bacteria
only affects the persistence of norovirus, because neither an-
tibiotic treatment nor IFNLR1 deficiency affects MNV strains
that do not infect the epithelium, such as the acute strain CW3.

The importance of IFN-λ in controlling persistent norovirus
is also evident from the viewpoint of the pathogen: the viral
nonstructural protein NS1 that is required for IEC tropism of
persistent norovirus is genetically different in strains that in-
duce acute infections (Nice et al., 2013), and it has been recently
implicated in conferring resistance to IFN-λ control (Lee et al.,
2019).

Another pathogen that reveals the specialization of the two
classes of IFNs in the gut is reovirus, which infects epithelial
cells and also directly spreads in the underlying lamina propria.
Type I IFNs are necessary to contain systemic spread, and,
consequently, Ifnar1−/− mice develop lethal reovirus infections
that cause encephalitis (Johansson et al., 2007). The infection
of epithelial cells, however, is completely dependent on IFN-λ
because reovirus is only detectable in epithelial cells of Ifnlr1−/−

mice (Mahlakõiv et al., 2015), and conditional epithelial knock-
out mice have a higher viral burden in the intestine (Baldridge
et al., 2017) and shed significantly more virus in the feces
(Mahlakõiv et al., 2015).

Rotavirus, which prominently infects epithelial cells, is effi-
ciently controlled by IFN-λ (Hernández et al., 2015; Pott et al.,
2011), and only Ifnlr1−/− (and not Ifnar1−/−) mice shed more virus
in the feces and display higher viral titers and stronger epithelial
damage (Hernández et al., 2015; Pott et al., 2011). However,
depending on the mouse strain, the use of homologous or het-
erologous viral strains, and the age of the mouse, type I IFNs and
IFN-λ may have overlapping functions in the control of rotavi-
rus infections (Lin et al., 2016; Ingle et al., 2018; Feng et al.,
2008). In particular, although adult IECs do not respond to
type I IFNs in vivo, the IECs from neonatal mice respond to both
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classes of IFNs, indicating that both IFN systems are required
during development for optimal protection against rotavirus
(Lin et al., 2016). Infection models in human enteroids confirm
the central role of IFN-λ in the control of rotavirus infection
because infected enteroids preferentially induce high levels of
the IFN-λ transcript as opposed to that for type I IFNs, and
transcriptional upregulation of antiviral ISGs is abolished by
treatment with an antibody against IFNLR1 (Saxena et al., 2017).
However, antibody blockade of IFNLR1 does not alter the out-
come of rotavirus infection in human enteroids, suggesting that
rotavirus has adapted to overcome autocrine IFN-λ control or
that larger amounts of IFN-λ from hematopoietic sources are
necessary.

Although IFN-λ is most studied for its direct antiviral action
on IECs, recent studies also highlight the importance of these
cytokines in curbing excessive inflammation in acute models of
intestinal inflammation (Chiriac et al., 2017; Rauch et al., 2015;
Broggi et al., 2017). Indeed, IFN-λ acts on neutrophils in vitro to
downmodulate tissue-damaging functions such as ROS produc-
tion and degranulation through a unique nontranslational
mechanism that is also independent of STAT activation and ISG
transcription (Broggi et al., 2017). This is reflected in mouse
models of acute intestinal inflammation, where administering
dextran sulfate sodium to Ifnlr1−/− mice leads to an aggravated
pathological state characterized by a high level of oxidative
stress response. Moreover, IFN-λ2 administration greatly
ameliorates colitis in WT animals (Chiriac et al., 2017; Broggi
et al., 2017). Chimera experiments and the use of mice with
specific Ifnlr1 depletion only in neutrophils reveal that the pro-
tective effect of IFN-λ can be ascribed to the regulation of
neutrophil responses (Broggi et al., 2017). IFN-λ also protects
barrier integrity during acute intestinal inflammation in the
absence of an active viral infection. Indeed, low mRNA levels of
IFN-λ capable of inducing tonic ISG expression are detected in
the gut in homeostatic conditions (Mahlakõiv et al., 2015; Lin
et al., 2016; Ingle et al., 2019). Tonic production of IFN-λ has
been linked to the intestinal virome (Broggi et al., 2017). In fact,
when the mouse virome is perturbed following treatment with
an antiviral drug cocktail, tonic IFN-λ and IFN-β levels are low
(Yang et al., 2016; Broggi et al., 2017), and mice become more
susceptible to dextran sulfate sodium–induced colitis. The ab-
sence of protective IFN-λ is the likely cause of this increased
susceptibility because Ifnar−/− mice behave similarly to WT
mice, whereas Ifnlr1−/− mice largely phenocopy mice that have
been depleted of enteric viruses (Broggi et al., 2017). Treatment
of mice with antiviral drugs induces changes in the composition
of the intestinal virome, similar to the alterations observed in
patients with inflammatory bowel disease (Norman et al., 2015)
and in mouse models of chronic colitis (Duerkop et al., 2018).

Because most of the viruses identified in the mammalian gut
are bacteriophages, it is difficult to discriminate between direct
effects of the mammalian virome on the host immune system
and secondary effects based on remodeling of the bacterial mi-
crobiome (Virgin, 2014). The serendipitous discovery that a
previously unidentified strain of mouse astrovirus is sufficient
to protect immunodeficient hosts from norovirus infections
supports the hypothesis that commensal viruses induce IFN-λ

(Ingle et al., 2019). Mice colonized with astrovirus display basal
levels of IFN-λ produced by the gut epithelial cells that have
been infected by the virus, and colonization of Ifnlr1−/−micewith
this virus is ineffective in inducing protection. Therefore, basal
levels of IFN-λ induced by commensals poise the gut epithelium
to respond to viral infections. These levels of IFN-λ are sufficient
to protect the intestinal epithelium even in the absence of an
adaptive immune response (Ingle et al., 2019). This effect is
specific for IFN-λ: astrovirus colonization has no effect on in-
ducing type I or type II IFN.

In summary, IFN-λ provides a vital defensemechanism in the
gut. They protect the epithelium from viral infections, and the
tonic expression of IFN-λ maintains an anti-inflammatory state
that is fundamental in such a microbe-rich environment (Fig. 2).

Other barrier sites
Although IFN-λ has been most intensely studied in the respi-
ratory and gastrointestinal systems, additional barrier tissues
also depend on IFN-λ to maintain their integrity.

Although mouse hepatocytes do not express IFNLR1 and are
not responsive to IFN-λ, in humans, the IFNLR1 is expressed at
very high levels in hepatocytes, and IFN-λ plays an important
role in protection against liver viral infections. IFN-λ is ex-
pressed at high levels in the liver of patients with chronic
hepatitis C (CHC; Thomas et al., 2012) and in chimpanzees
experimentally infected with hepatitis C virus (HCV; Thomas
et al., 2012; Park et al., 2012). Moreover IFN-λ is preferentially
induced over type I IFNs in response to HCV or hepatitis B virus
(HBV) infection of human hepatocytes (Thomas et al., 2012;
Marukian et al., 2011; Park et al., 2012) and protect them from
HBV or HCV infection (Doyle et al., 2006; Marcello et al., 2006;
Robek et al., 2005). Accordingly, several genome-wide associ-
ation studies identified polymorphisms in IFN-λ genes that are
associated with the outcome of HBV or HCV infection and the
responsiveness to therapy, as extensively reviewed elsewhere
(Onabajo et al., 2019; Pagliaccetti and Robek, 2010; Hemann
et al., 2017; Boisvert and Shoukry, 2016). Before the introduc-
tion of direct-acting antiviral (DAA) drugs that target HCV
proteases and RNA polymerases, the main therapeutic option
against CHC was the combination of ribavirin and type I IFNs, a
treatment with many side effects prominently due to type I IFN
administration (Bruening et al., 2017). The efficacy of IFN-λ in
inducing HCV clearance in vitro and the limited pattern of
expression of IFNLR1 raised interest in the use of IFN-λ to treat
CHC. Indeed, patients treated with recombinant IFN-λ1 conju-
gated with polyethylene glycol (PEG–IFN-λ1) in combination
with ribavirin and/or DAAs exhibited lesser side effects,
whereas success rates in reducing detectable HCV RNA in the
blood were similar to those seen in patients treated with the
conventional PEG–IFN-α2a combination therapy (Muir et al.,
2010; Muir et al., 2014; Flisiak et al., 2016a; Flisiak et al.,
2016b). While the pursuit of IFN-λ as a therapeutic for CHC
has been stalled by the discovery of DAA drugs, these studies
highlighted the safety of PEG–IFN-λ therapies.

Other cells of epithelial lineage, such as those in the female
reproductive tract mucosa, respond to IFN-λ, and administra-
tion of IFN-λ is protective against infection by HSV-2 (Ank et al.,
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2006) and Zika virus (Caine et al., 2019). Recent studies high-
light a role for IFN-λ in protecting the placental barrier from
viral infection. Human trophoblasts cultured from full-term
placentas constitutively express IFN-λ1, and supernatant from
cultured primary human trophoblasts protects nonplacental
cells from infection with Zika virus or other teratogenic viruses.
This protective effect depends on IFN-λ because treatment with
human trophoblast supernatant is ineffective in cells that are
naturally unresponsive to type III IFNs or in cells wherein the
expression of Ifnlr1 is knocked down via RNA interference
(Bayer et al., 2016; Corry et al., 2017). IFN-λ acts in a paracrine
fashion, protecting nonplacental cells from viral infection, but
they also contribute to the autocrine protection of the placental
barrier. Indeed, cells of human chorionic villi express high basal
levels of ISGs in the absence of a viral infection; these levels
can be reduced when JAK signaling is blocked with use of
chemical inhibitors (Corry et al., 2017). Further indication of the
relevance of IFN-λ in protecting the fetus against transplacental
transmission of virus comes from mouse studies. Infection of

pregnant dams with Zika virus before placentation leads to
embryonic lethality in both WT and Ifnlr1−/− animals, but fol-
lowing full placentation, only the placentas of fetuses that lack
IFNLR1 permit efficient vertical transmission, which in turn
leads to higher rates of fetal malformation. When only the
pregnant dam is deficient in IFN-λ signaling, the heterozygous
Ifnlr1-sufficient progeny do not display higher viral burden or
fetal abnormalities, also supporting the relevance of IFN-λ sig-
naling in the fetal placenta and not in maternal tissues (Jagger
et al., 2017). Treatment ofWT pregnant damswith IFN-λ further
decreases vertical viral transmission, pointing to the therapeutic
potential of IFN-λ.

Finally, IFN-λ also contributes to barrier integrity at the
blood–brain barrier (BBB). When infected with the neuro-
virulent West Nile virus, higher viral burden in the central
nervous system of Ifnlr1−/− mice than in that of WT mice cor-
relates with increased permeability (Lazear et al., 2015b). Sim-
ilarly, mice deficient in both type I IFN and IFN-λ signaling
succumb after infection with the live attenuated strain of yellow

Figure 2. IFN-λ protects intestinal barrier functions. In homeostatic conditions, commensal viruses stimulate basal IFN-λ production that maintains both an
antiviral state and an anti-inflammatory environment. Basal ISGs induced by IFN-λ in IECs protect them from enteric viral infections. During enteric viral
infections, IFN-λ is preferentially induced and protects the mucosae from epithelial tropic viruses such as rotavirus, reovirus, and persistent strains of nor-
ovirus. Low transcript expression of IFNAR1/2 by IECs renders them largely dependent on IFN-λ for protection against viruses. In contrast, protection against
viruses that can bypass the epithelium and infect lymphocytes residing in the lamina propria, such as reovirus and acute strains of norovirus, is dependent on
type I IFNs. During acute intestinal inflammation, IFN-λ induced by commensals inhibits neutrophil-damaging functions and protects the mucosal barrier from
excessive damage. Images were created with BioRender.
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fever virus YFV-17D. In contrast, Ifnar−/− mice, though unable to
control viral titer as well as WT mice, survive the infection. The
lethality of the double mutant correlated with the enhanced
permeability of the BBB (Douam et al., 2017). The capacity of
IFN-λ to preserve the integrity and function of the BBB was also
recapitulated in vitro. Thus, treatment of brain microvascular
endothelial cells with IFN-λ increases transepithelial resistance
and decreased leakage of the West Nile virus across the barrier.
Of note, IFN-λ acts in a transcription- and STAT1-independent
manner in neutrophils as well as in endothelial cells, confirming
the existence of an IFN-λ–specific nontranscriptional pathway.

Conclusions and perspectives
Since their discovery, IFN-λ has been compared with type I IFNs
and has faced scrutiny in relation to its apparent redundancy,
but in the last 15 yr, we gained significant insights into the
uniqueness of this class of cytokines. Initially considered to be a
second layer of defense to protect barrier epithelia against viral
infections, new specialized functions of IFN-λ has continued to
emerge. To date, the most specialized role of IFN-λ is ascribed to
their specific immunoregulatory role, which (contrary to that of
type I IFNs) promotes a gentler inflammatory response that
better protects the integrity of barrier mucosae without com-
promising their capacity to fight pathogen invasion. Few im-
mune cell types (namely, neutrophils and DCs) directly respond
to IFN-λ signaling in mice, but the recent discovery of their
indirect immunomodulatory effects with profound and long-
lasting effects on adaptive immunity opens the gate for an
exciting field of study. While our knowledge of how IFN-λ
influences immune cells in mice is expanding, the translation of
these findings to humans is confounded by the different pattern
of expression of the IFNLR1 in human cells. For instance, neu-
trophils display the highest response to IFN-λ in mice, but
mature human neutrophils express lower transcript levels of
the receptor, which is upregulated in inflammatory conditions
(Broggi et al., 2017; Espinosa et al., 2017). Also in humans,
plasmacytoid DCs (Finotti et al., 2017, 2016a, 2016b; Kelly et al.,
2016) and macrophages (Wang et al., 2017b; Hou et al., 2009)
respond directly to IFN-λ. The existence of a soluble splice
variant of human IFNLR1 that is incapable of signaling and is
expressed mainly in immune cells further complicates the
study of IFN-λ biology in humans (Witte et al., 2009).

Additional insights into IFN-λ signaling derive from the
discovery of IFN-λ–specific functions that are not shared with
those of type I IFNs: for example, nontranscriptional pathways
that modulate neutrophil function or tightening of the BBB, or
the unknown pathway that induces TSLP production in the
airway epithelium downstream only of type III IFNs. Although
the JAK–STAT signaling pathways have been extensively stud-
ied, it is still unclear how different receptors that use similar
adaptors and result in similar patterns of STAT member phos-
phorylation give rise to different transcriptional responses
(Subramaniam et al., 2001). IFN-λ induces an intracellular re-
sponse that is remarkably similar to that triggered by type I
IFNs, but they can also use different signaling adaptors such as
JAK2 (Odendall et al., 2014; Odendall and Kagan, 2015) which
participate in noncanonical JAK–STAT signaling pathways that

rely on nuclear translocation of the cytokine–receptor complex
and histone phosphorylation to regulate transcriptional speci-
ficity downstream of IFN-γ (Johnson et al., 2019; Dawson et al.,
2009).

Moreover, both classes of IFNs can activate alternative
pathways, such as the MAPK pathway, and differences in the
capacity to activate these signaling cascades may contribute to
the unique roles of IFN-λ (Pervolaraki et al., 2017). Specific roles
of the two classes of IFNs can also stem from the differential
dynamics of ISG induction (Bolen et al., 2014; Marcello et al.,
2006; Jilg et al., 2014; Pervolaraki et al., 2018). Studies in human
hepatocytes and human colonoids indicate that although type I
IFNs induce transcription of ISG rapidly but transiently, IFN-λ
has a slower response that is sustained over time (Bolen et al.,
2014; Jilg et al., 2014; Pervolaraki et al., 2018; Forero et al., 2019).
Moreover, IFN-λ induces lower levels of ISGs in cells stimulated
with the same amount of type I IFN and IFN-λ (Zhou et al., 2007;
Crotta et al., 2013). Ram Savan’s group recently elucidated some
of the molecular basis of the different dynamics of these two
groups of IFNs (Forero et al., 2019). The early induction of ISGs
elicited by type I IFNs can be ascribed to their ability to induce
STAT1-dependent transcription of IRF1. IRF1 is induced at much
lower levels by IFN-λ than type I IFNs and is responsible not
only for promoting early ISG induction but also for shutting off
ISG transcription. Indeed, IRF1 uniquely promotes the tran-
scription of the negative regulator USP18 (Forero et al., 2019),
which selectively inhibits type I IFN signaling without affecting
IFN-λ signaling (Blumer et al., 2017). The capacity of type I IFNs
to efficiently induce the activation of IRF1 also explains their
increased inflammatory capacity compared with IFN-λ, because
IRF1 uniquely controls the transcription of proinflammatory
chemokines, such as CXCL10 and CXCL9 (Forero et al., 2019).
The differences between the two groups of IFNs are intrinsically
regulated by the specific signaling capacity of each receptor
complex and the respective ability to induce STAT1 dimer for-
mation (Pervolaraki et al., 2019; Forero et al., 2019). Further
exploration of the noncanonical intracellular pathways and the
kinetic of IFN-λ signaling will uncover IFN-λ–specific functions
that are not shared with other classes of IFNs.

In summary, what we know about IFN-λ biology positions
these cytokines as frontline defenses that protect our mucosal
barriers from viral threats and contribute to the maintenance of
an efficient barrier by finely modulating the immune response.
Further study of IFN-λ–specific signaling and of the nuances of
IFN-λ’s direct and indirect modulation of inflammation is war-
ranted to comprehend the full potential of IFN-λ.
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