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Resistance to anti-cancer drugs is a major cause of treatment failure. While several
intracellular mechanisms of resistance have been postulated, the role of extrinsic factors
in the development of resistance in individual tumor cells is still not fully understood. Here
we used a hybrid agent-based model to investigate how sensitive tumor cells develop
drug resistance in the heterogeneous tumor microenvironment. We characterized the
spatio-temporal evolution of lineages of the resistant cells and examined how resistance
at the single-cell level contributes to the overall tumor resistance. We also developed
new methods to track tumor cell adaptation, to trace cell viability trajectories and
to examine the three-dimensional spatio-temporal lineage trees. Our findings indicate
that drug-induced resistance can result from cells adaptation to the changes in
drug distribution. Two modes of cell adaptation were identified that coincide with
microenvironmental niches—areas sheltered by cell micro-communities (protectorates)
or regions with limited drug penetration (refuga or sanctuaries). We also recognized
that certain cells gave rise to lineages of resistant cells (precursors of resistance) and
pinpointed three temporal periods and spatial locations at which such cells emerged.
This supports the hypothesis that tumor micrometastases do not need to harbor cell
populations with pre-existing resistance, but that individual tumor cells can adapt and
develop resistance induced by the drug during the treatment.

Keywords: cell viability trajectory, cell spatio-temporal evolution, lineage tree of survivors, precursor of
resistance, agent-based models

INTRODUCTION

Drug resistance is one of the main impediments in effective anti-cancer therapy. While tumors
may first respond well to chemotherapeutic agents, they often start growing back during or
after the treatment period and become tolerant to the treatment. Several different intrinsic
mechanisms of drug resistance have been postulated (Holohan et al., 2013; Housman et al.,
2014; Cree and Charlton, 2017), including alteration of drug targets, changes in the expression
of efflux pumps, increased ability to repair DNA damage, reduced apoptosis, elevated cell
death inhibition, and altered proliferation. Some extrinsic factors contributing to drug resistance
have also been postulated. A pivotal role can be played by the tumor microenvironment
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(Correia and Bissell, 2012; Sun, 2016) due to reciprocal
communication between tumor cells and the surrounding
stromal components. This includes interactions with fibroblasts
and emergence of cancer associated fibroblasts, cross-talk with
immune cells, and sensing cues from the extracellular matrix
(ECM), as well as ECM remodeling. Tumor cells can modify
their microenvironment by creating specific niches, including
pre-cancerous, pre-metastatic or stem cell niches (Barcellos-Hoff
et al., 2013; Hambardzumyan and Bergers, 2015; Huch and
Rawlins, 2017). Additionally, the changes in tumor vasculature
and interstitial fluid pressure may lead to creation of regions
that are poorly penetrated by therapeutics, forming drug-
limited pharmacologic sanctuaries or refugia (Cory et al.,
2013; Puhalla et al., 2015) that influence tumor response
to therapeutics. However these extrinsic factors are still not
well understood.

Of particular interest is the heterogeneous and dynamically
changing tumor microenvironment. As a result, spatially and
temporarily variable gradients of drugs can be formed in the
stroma, and tumor cells can be, therefore, exposed to different
drug levels during the treatment period. It has been shown
experimentally by Wu et al. (2013) that aggressive breast
tumor cells can respond to drug gradients by migrating toward
the regions of high concentration of doxorubicin and low
cell population, and are able to adapt to high drug levels.
Subsequently, they become tolerant to the drug and repopulate
the region despite the high drug concentration. Fu et al. (2015)
used mathematical modeling to investigate how the heterogeneity
in drug penetration through the microenvironment effects tumor
response to treatment. They showed that resistance arises first
in cells located in regions with poor drug penetration, named
pharmacological sanctuaries, and then populate areas with
higher drug levels. Our own research showed that the non-
homogeneous drug distribution within the tumor tissue that
results in emergence of tissue regions with poor drug penetration
but with normal oxygenation levels may lead to the emergence of
acquired resistance (Gevertz et al., 2015; Perez-Velazquez et al.,
2016). Similar results were previously generated using different
mathematical models. Chisholm et al. (2015) investigated
transient emergence of a drug tolerant population of cells using
models of reversible phenotypic evolution, and concluded that a
combination of non-genetic instability, stress-induced adaptation
and selection are responsible for the emergence of weakly-
proliferative and drug-tolerant tumor cells. Cho and Levy (2017)
used a continuous model to show that cancer cells of different
resistance levels can coexist in spatially-different areas in tumor
tissue. Feizabadi (2017) used mathematical modeling to show
that certain chemotherapy strategies are highly unsuccessful,
and even damaging to the patient, under the assumption that
the drug can induce resistance during the treatment period.
Greene et al. (2018, 2019) developed mathematical approach
to differentiate between spontaneous and induced resistance to
drugs and proposed in vitro experiments that can determine
whether treatment can induce resistance. The authors also
designed optimized treatment protocols that can prolong the
time before resistance develops.

Several experimental studies considered scenarios in which
resistance is acquired by the tumor cells as a result of their
exposure to the drug, either through epigenetic alteration, drug-
induced genetic changes or non-genetic phenotype switching.
Pisco et al. (2013) and Pisco and Huang (2015) used
a combination of laboratory experiments and mathematical
modeling to show that the emergence of multi-drug resistance
in leukemic cells can be induced by the lasting stress response
to the drug. In this case, the tumor cells exploited their
phenotypic plasticity by modifying efflux capacity in a non-
genetic but inheritable way. Goldman et al. (2015) and Goldman
(2016) showed that exposure of breast tumor cells to high
concentration of taxanes can induce phenotypic transitions
toward chemotherapy-tolerant stem-like state that can confer
drug resistance. Moreover, the authors demonstrated that this
adaptive resistance process can be halted by carefully designed
order of administered drug combinations. Other examples of
drug-induced resistance pointed to modifications in chromatin
configuration in lung cancer cells (Dannenberg and Berns,
2010; Sharma et al., 2010), changes in expression of stress
adaptation-related proteins in prostate cancer cells (Ferrari et al.,
2017), or switching to mesenchymal phenotype in melanoma
cells (Su et al., 2017) as the mechanisms of increased cell
tolerance to the drug. In all these studies, the exposure of
tumor cells to chemotherapy caused non-genetic changes that
allowed the tumor cells to tolerate drug treatment and evade
drug-induced death.

In this paper, we used mathematical modeling to examine
how individual tumor cells can adapt to alterations in drug
distribution within the tumor microenvironment in order to
acquire resistance to the drug. By tracking cells individually
and reconstructing their behavioral history, we were able to
provide insights into the complex spatio-temporal changes that
occur in cell microcommunities and to explain how they avoid
drug-induced death leading to therapy failure. In particular, we
developed a concept of 3D spatio-temporal lineage trees that
trace both genealogy and spatial locations of cells that survived
the simulated treatment. This is an extension of classical lineage
trees used to depict tumor clonal expansion in a form of a flat
graph with an initiating cell connected to its children cells, that
are connected to their descendants until the terminal nodes are
reached (Navin and Hicks, 2010; Davis et al., 2017). The 3D
spatio-temporal lineage trees allow us to identify the cells that
drive a resistant phenotype in the sense that all their successors
are resistant to the drug. The existence of such “special” cells
has been reported previously under various names: drivers
(Hutchinson, 2016; Nikbakht et al., 2016), superstars (Cheeseman
et al., 2014a,b), or starter cells (Perez-Velazquez et al., 2015).
We refer to these cells as precursors of drug resistance. The
current study focuses on analyzing the behavior of individual
resistant cells which is an extension of our previous work at
the population level. This approach allowed us to develop novel
evaluation methods, such as the 3D lineage trees, and also
to identify the third microenvironmental niche prone to the
emergence of resistant cells. Overall, this paper contributes to a
better understanding of drug-induced resistance.
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MATERIALS AND METHODS

We used a hybrid multi-cell lattice-free model (MultiCell-LF)
that combines the off-lattice individual tumor cells with the
continuous description of oxygen and a cytotoxic drug. The cells
can physically interact with one another, and respond to levels
of oxygen and cytotoxic drug absorbed from cell’s vicinity. Low
levels of oxygen (hypoxia) result in cell quiescence (Qiu et al.,
2017). Exposure to the drug leads to cell damage – while we
model this as a generic process, one can consider a more specific
processes, such as the DNA damage (genotoxicity; Swift and
Golsteyn, 2014) or cell membrane damage (lysis; Collins and
Kao, 1989). Moreover, cells can become more tolerant to the
drug they are exposed to, as shown in Sharma et al. (2010) and
Pisco and Huang (2015). This cell’s response to different levels
of oxygen and drug is a mechanism of cell adaptation to the
microenvironment.

Drug and Oxygen Kinetics
The model is defined on a small patch of the tumor tissue with
four irregularly positioned stationary vessels (Figures 1A,B).
Both drug γ and oxygen ξ are intravenously supplied, diffuse
through the tissue, are absorbed by the cells, and the drug is
subject to decay. We model a small drug molecule of diffusivity
comparable to oxygen diffusion (Schmidt and Wittrup, 2009) and
with the same supply rate from the vessels. However, the drug
is absorbed by the cells twice faster than oxygen (Schmidt and
Wittrup, 2009). Drug γ and oxygen ξ kinetics are given by the
following equations:

∂γ(x, t)
∂t

=Dγ ·1γ(x, t)︸ ︷︷ ︸
diffusion

− dγ · γ (x, t)︸ ︷︷ ︸
decay

− ργ

∑
i
χR (Xi, x)︸ ︷︷ ︸

uptake by the cells

+ Sγ

∑
j
χRv

(
Vj, x

)
︸ ︷︷ ︸

supply

(1)

∂ξ(x, t)
∂t

=Dξ ·1ξ(x, t)︸ ︷︷ ︸
diffusion

− ρξ
∑

i
χR (Xi, x)︸ ︷︷ ︸

uptake by the cells

+ Sξ
∑

j
χRv

(
Vj, x

)
︸ ︷︷ ︸

supply

. (2)

where, Dγ and Dξ are the drug and oxygen diffusion coefficients,
ργ and ρξ are the drug and oxygen uptake rates, Sγ and Sξ are
the drug and oxygen supply rates, and dγ is the drug decay rate.
In numerical implementation, we take the smaller of the cellular
demand ργ /ρξ and the current drug/oxygen level to assure that
both concentrations do not fall below zero. Here, x represents the
Cartesian coordinate system, Xi are the coordinates of discrete
cells, Vj are the coordinates of discrete vessels, and χ is the
indicator function of the local neighborhood of radius R around
the cells Xi or of radius Rv around the vessels Vj, respectively:

χR (Y, x) =
{

1 if ||x− Y|| < R
0 otherwise

(3)

The initial condition consists of a stable oxygen gradient and
no drug. The sink-like boundary conditions are imposed to
implicitly represent the lymphatic system.

Individual Cell Dynamics
Each cell Ci(t) is defined by its position Xi(t), a fixed radius R, cell
current age Ai(t) and cell maturation age Amat

i . Cell division takes
place upon reaching maturation age (30 h with 5% fluctuations
between the cells to avoid synchronized cell division (Mehrara
et al., 2007; Hafner et al., 2016), provided that the host cell is
not overcrowded by other cells (14 cells within 2 cell diameters),
and it is not located in the hypoxic areas (Qiu et al., 2017).
If the level of oxygen in a cell’s neighborhood falls below the
hypoxia level (5% of vascular supply), the cell becomes quiescent
and will not proliferate (flowchart in Figure 1C). Upon division
of cell Ci(t), two daughter cells Ci1 (t) and Ci2 (t) are created
instantaneously. One daughter cell takes the coordinates of the
mother cell, whereas the second daughter cell is placed near the
mother cell at a random angle θ:

Ci2 (t) = Ci (t)+ R (cos θ, sin θ) . (4)

The current ages of both cells are initialized to zero, and their
cell maturation ages are inherited from their mother cell with a
small noise term. To preserve cell volume, the repulsive forces are
introduced between overlapping cells (Gevertz et al., 2015; Perez-
Velazquez et al., 2016). Since both daughter cells are placed in a
distance equal to one cell radius, the repulsive forces are exerted
to push the cells apart until they reach the distance equal to cell
diameter. The repulsive forces are defined as overdamped springs:

dXi

dt
=

1
ν

∑
j=1...M

f rep
i,j , where

f rep
i,j =

{
Frep (2R−

∣∣∣∣Xi − Xj
∣∣∣∣) Xi−Xj

||Xi−Xj||
, if

∣∣∣∣Xi − Xj
∣∣∣∣ < 2R

0, otherwise,
(5)

here, ν is the damping coefficient, Frep is the repulsive spring
stiffness, and 2R is the spring resting length; M denotes the
number of cells that overlap with Xi.

Upon division, both daughter cells inherit mothers’ damage
level and tolerance level, while the drug absorbed by the mother
cell is split into half between both daughter cells (Schmidt and
Wittrup, 2009; Greene et al., 2019).

Cell Resistance Mechanism
Cell’s resistance mechanism is modeled as a competition between
the level of drug-induced damage accumulated by the cell and
the level of damage that the cell can withstand (tolerance)
without committing to death. However, the cell can also adapt
by increasing its tolerance level if it is exposed to the drug for
a certain time (flowchart in Figure 1C; Gevertz et al., 2015;
Perez-Velazquez et al., 2016).

Cell damage Cdam
i (t) is increased proportionally to the newly

absorbed amount of drug (we assume that the drug absorbed
in the past has already exerted its damage effect). The rate
of internal drug decay is taken to be the same as in the
extracellular microenvironment. This drug-induced damage can
be counterbalanced by cell natural ability for damage repair at
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FIGURE 1 | Components of the MultiCell-LF model. (A) A snapshot showing an irregular drug gradient (high level-white, low level-black) and individual tumor cells
color-coded according to their viability (low viability-dark green, high viability-light green). (B) The same time snapshot showing oxygen gradient (high level-white, low
level-black) and tumor clones marked by a unique symbol assigned to their initial ancestor cell (65 different symbols). Red circles in both panels represent four
non-symmetrically located vessels. (C) A flowchart showing the relationship between cell behavior and (from left to right) the tumor microenvironment; oxygen levels
that regulate cell proliferation or quiescence; drug levels that regulate cell survival, adaptation or death; upon cell division daughter cells inherit from the mother cell:
the damage, tolerance level and half of the accumulated drug. Panel (C) adopted from Shah et al. (2016).

rate pγ (three times faster that the damage rate (Gevertz et al.,
2015; Perez-Velazquez et al., 2016):

dCdam
i

dt
= ργ

∑
x

χR (Xi, x) (1− dγ)︸ ︷︷ ︸
drug decay︸ ︷︷ ︸

newly absorbed drug

− pγCdam
i (t)︸ ︷︷ ︸

repair

(6)

Cell exposure to high drug concentrations γexp (at least 1% of the
vascular supply) for a long enough time texp (at least 2% of the
cell cycle) results in cell adaptation and in increased cell tolerance
to the drug Ctol

i (t) (at a slow rate of 1tol = 0.01% of the baseline
tolerance value; Gevertz et al., 2015; Perez-Velazquez et al., 2016):

dCtol
i

dt
=

{
1tol if Cγ

i (t) ≥ γexp for a time ≥ texp
0 otherwise

(7)

where the amount of accumulated drug Cγ
i (t) depends on its

continuous absorption (at a constant rate ργ) and decay (at a
rate dγ):

dCγ
i

dt
= ργ

∑
x

χR (Xi, x)︸ ︷︷ ︸
uptake

− dγCγ
i (t)︸ ︷︷ ︸

decay

(8)

Similarly as for Equation (1), in numerical implementation we
take into account that cell demand for the drug may exceed the
amount available in cell microenvironment, thus we take the
smaller of the cellular demand ργ and the current drug level to
assure that drug concentration is non-negative.

Cell death depends on whether cell damage Cdam
i (t) exceeds

the tolerance level Ctol
i (t). The dead cells are removed from the

system. Thus, cell resistance to the drug depends on competition
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between the level of its damage and the level of damage the cell
can withstand without committing to death.

Initially, there is a small micrometastasis consisting of 65 cells
with the same baseline tolerance level, no damage, and identical
proliferative properties. Each cell responds to the environmental
cues, such as the level of sensed oxygen (that regulates cell
quiescence or proliferation) and the amount of absorbed drug
(that induces cell damage and modulates cell adaptability). The
levels of drug and oxygen that the cell is exposed to during its
lifetime can vary because the cell can move from one part of the
tissue to another, and because drug gradient can change if the
overall number of tumor cells changes. The full flowchart of cell
behavior is shown in Figure 1C. During the simulation, we trace
location and viability (the difference between tolerance and actual
damage) of each individual cell. When the values of cell damage
and tolerance steadily diverge over time, the cell is considered
resistant to the drug.

Viability Trajectories of Individual Cells
Cell viability is defined as a difference between the level of
cell tolerance to drug-induced damage and actually accumulated
damage. The larger the viability value, the more non-responsive
to the absorbed drug the cell is. The viability trajectory shows
how the viability value is changing in time for a given cell and
all its predecessors. The viability trajectory is generated backward
starting from the last iteration at which the cell was alive, and
going back the cells’ lifespan, the lifespan of that cell’s mother, the
mother’s mother, and so on until the one of the initial 65 cells is
reached (compare Figures 2B, 3A–D, 4B, 5).

Classification of Viability Trajectories
and Cell Adaptation Process
To classify how a given cell adapts to the drug exposure, we
took into account both its viability trajectory and its recorded
drug uptake over the last 20 cell cycles. Visually, there were two
significantly distinguishable patterns: cells with constant drug
uptake, and cells with rapidly increasing viability trajectories
(concave shape). Therefore, the following classification criteria
were chosen: (i) the amount of absorbed drug is constant; (ii)
the viability curve is monotonically increasing over at least 95%

of the considered time interval (numerical second derivative of
the viability curve is negative); (iii) the remaining cases. As a
result, we identified: (i) linear adaptation pattern (constant drug
uptake and almost linear viability trajectories); (ii) a superlinear
adaptation pattern (concave viability trajectories with diminished
drug uptake); (iii) intermediate pattern where cellular uptake was
diminishing but the viability trajectory was fluctuating for the
majority of time (compare Figures 3B–D and the figure insets).

Cells 3D Spatio-Temporal Routes/3D
Lineage Trees
A 3D cell route shows a spatio-temporal evolutionary history
of a given tumor cell; that is, it shows all recorded locations of
that cell and all cell’s predecessors within the tissue patch. The
3D route is created backwards in time by linking positions (in
the x-z plane, locations within a tissue at a given time) of a
given cell taken at consecutive time points (y-axis) until the cell’s
birth time is reached, and then repeating this procedure for all
cell’s predecessors until the beginning of the simulation. The 3D
spatio-temporal routes can be traced for multiple cells of the same
predecessor forming a 3D spatio-temporal lineage tree (compare
Figures 4A, 5A,Bii). These 3D lineage trees are an extension
of classical lineage trees used to depict tumor clonal expansion.
These figures synthesize information regarding cell locations, cell
lineage and time in one single image.

Lineage Trees of Survivors
For each of the initial 65 cells, the whole classical binary lineage
tree can be constructed that contains all successors of this cell.
A lineage tree of survivors is a subtree of the whole lineage
tree and contains only these tree branches that lead to cells
that survived the whole treatment (compare Figures 5A,Bi and
Supplementary Figures S4–S18).

Precursors of Resistance
The precursors of resistance are these cells for which all
successors survived the treatment at the end of simulation.
The precursor of resistance is identified by inspecting the
lineage tree generated by that cell; if the lineage tree does not
contain any dead cells, its initiating cell is considered to be a

FIGURE 2 | Distribution of non-resistant cells. (A) A temporal histogram of dying cells. (B) Individual viability trajectories for each dying cell. (C) A density map of final
locations of cells before they were annihilated by the drug-induced damage. Colors correspond to the number of cells killed at the given location during the whole
simulation.
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FIGURE 3 | Individual cell adaptation to drug exposure. (A) Temporal evolution of viability trajectories of all tumor cells that survived the treatment (gray lines) and the
average viability value (yellow dashed line). (B–D) Viability trajectories for individual cells from three distinct populations of cells with (B) superlinear, (C) linear, and (D)
intermediate viability patterns; the insets show drug uptake by each cell from a given subpopulation during the final period of treatment corresponding to 29 cell
cycles of the simulated time: (B) significant decrease in drug uptake, (C) constant drug uptake, and (D) small or short-time decrease in drug uptake. (E) Spatial
configurations of tumor cells at six different time points; colors correspond to cell subpopulations from (B–D); black dots indicate cells that did not survive to the end
of simulation. The larger red circles represent four vessels. All time points are shown in terms of the number of cell cycles (cc).

precursor. We treat the cells that left the computational domain
as alive, thus allow them to be successors of the precursor cells
(compare Figures 5A,Bi).

RESULTS

We previously analyzed a parameter space of this model
and identified regimes for which the whole tumor developed
resistance (Gevertz et al., 2015; Perez-Velazquez et al., 2016).
Here, we summarize these results briefly. A small colony of
65 sensitive tumor cells was exposed to a drug diffusing from
four irregularly placed vessels for the period of about 200 cell
cycles. Initially, the tumor increased in size until some cells
started responding to drug-induced damage and dying; but the
remaining cells finally adapted their tolerance. After about 84
cell cycles, the tumor reached a stable population. The average
cell viability showed also a steady increase that confirmed the
emergence of a resistant tumor. The evolution of tumor resistance
on the population level is presented in Supplementary Figure S1.
This showed that a small homogeneous cell colony exposed
to a drug gradient can acquire resistance. The final tumor
contained the offsprings of 15 initial cells only; the successors
of the remaining 50 initial cells went extinct. The rest of the
paper is devoted to analysis of resistance at the individual
cell level, whether spatial structure of the tumor and tumor
microenvironment play a role in the emergence of resistance, and
which cell lineages drive resistance of the whole tumor.

Temporal Distributions of Dying Cells
Confirm the Drug-Induced Resistance
The fate of each cell depends on both the accumulated damage
and the level of damage that the cell can withstand without
committing to death. To determine how the resistance is acquired
in individual cells, we need to understand the conditions leading
to cell death. Initially, each cell has some baseline tolerance
level and no accumulated damage. With time, the absorbed drug
induces damage to the cell, while the cell can also adapt to the
surrounding extracellular conditions that leads to increase in its
tolerance. The cell dies when the level of cell damage exceeds the
level of cell tolerance to damage. During the simulated treatment,
the initially sensitive cells either develop resistance or respond to
the treatment and die. In fact, about 75% of the initial 65 cells
did not produce offsprings that were able to survive to the end of
the treatment period. Since some cells located near the domain
boundaries might have been pushed outside of the observed
tissue region by the pressure from their growing neighbors, these
cells are assumed to move to the other tissue areas and are
removed from our system. Here, we only consider cells that
remained inside the tissue domain until they were annihilated by
the drug. The summary of spatial and temporal analysis of dying
cells is shown in Figure 2.

During the initial period of treatment, no cells were dying
(no cell counts in histogram in Figure 2A) since they must
accumulate the drug-induced damage to overcome the baseline
tolerance level. However, the viability trajectories for numerous
cells decreased during this time (Figure 2B) confirming that
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FIGURE 4 | 3D Spatio-temporal routes of the representative resistant cells. Twelve resistant cells with a common predecessor were traced in space and time. All line
colors correspond to cell viability categories: concave (green), linear (red), and intermediate (blue). (A) Three snapshots of routes traversed by the selected cells
within a dynamically changing drug gradient in the background (high to low: yellow-red-blue; four large circles indicate the vessels). (Ai) initial overlap in cell routes
(time corresponding to 33 cell cycles, 3 cells); (Aii) separation of individual cell routes and significant distances traveled by the cells (about 67 cell cycles, 9 cells);
(Aiii) final map of cell routes showing very small changes in cell locations over an extended time (about 196 cell cycles, 12 cells). (B) Viability trajectories for the
selected cells (i–iii correspond to the time points from A). (C) Projections on the xz plane of the individual routes for all 12 cells. A black star indicates the initial
position of the common predecessor cell.

these cells were accumulating damage. Each curve in this graph
corresponds to one cell and traces in time the viability values
of this cell and all its predecessors, back to one of the initial
65 cells. This period corresponds to a steady tumor growth
shown in Supplementary Figures S1i,ii. The first peak in
cell death histogram and a time interval when cell viability
trajectories reached zero match the significant reduction in the
overall tumor size (Supplementary Figure S1iii). The second
peak in the death histogram is much smaller since a large
number of cells have already developed resistance and only a
small subpopulation of cells remained still sensitive to the drug
(compare to steady tumor growth in Supplementary Figures
S1iv,v). After the time corresponding to about 84 simulated cell
cycles, no more cells have died. Similarly, all viability trajectories
for these dying cells reached the zero value at or before this
time (Figure 2B). This confirms that all remaining tumor cells
in the observable tissue patch have developed a drug-induced
resistance. Spatially, the tissue regions that are most prone to
cell death are situated either near the single vessel in the top-
right corner or in the region near the tissue center between the
remaining three vessels (Figure 2C). It is worth noting, that
in our previous work (Gevertz et al., 2015), we identified the

model parameter regimes for which the tumors got extinct, thus
the development of drug-induced resistance is not an intrinsic
property of our model.

Cell Adaptation to Drug Exposure Can
Progress in Three Distinct Ways
To determine how individual cells contributed to the overall
tumor resistance, we analyzed the viability trajectories of each
cell that survived the treatment (Figure 3A). These graphs
confirm our previous observations of several phases in the
evolution of resistance in the individual tumor cells: from initial
identical viability values, to viability decrease due to the damage
being accumulated, to a transient increase in viability when
the mechanism of tolerance became activated (initial max),
to prolonged reduction in viability values due to accumulated
damage approaching the individual cell tolerance level leading
to cells adaptation to the drug (prolonged min), to a continuous
increase in cell viability when the tolerance mechanism gains
a lead. Despite the fact that all surviving cells originated from
identical predecessor cells and that they shared very similar
viability trajectories for the first 55 cell cycles, we identified
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FIGURE 5 | Lineage trees of survivors and cellular precursors of drug resistance. (Ai) shows all successors of cell #6 that survived the treatment (lineage tree of
survivors). The cells which have no dead successors (the precursor cells of resistance) are shown by red arrows. The corresponding spatio-temporal routes of all
surviving cells that arose from cell #6 are shown in (Aii) and indicate changes in cells position during the treatment, and final cell locations within the tissue with a
drug gradient. The corresponding viability trajectories are shown in (Aiii); line colors correspond to those in Figure 4. (Bi–iii) shows the lineage tree of survivors, the
precursor of resistance and, the 3D spatio-temporal routs, and the viability curves for all daughter cells generated by cell #26. (Ci) shows distributions of all
precursor cells along the full set of viability trajectories, with spatial localizations of all precursor cells within the tumor tissue shown in (Cii); colors represent time of
cell birth: early (green), middle (magenta), and late (cyan); red circles show vessel locations. All time points indicate time corresponding to the number of cell cycles.

three patterns of cell adaptation that resulted in drug-induced
resistance (Figures 3B,D).

The first cell subpopulation is characterized by rapid increase
in viability values that form concave curves of distinct durations
(Figure 3B). In all these cases, there is also a reduced absorption
of the drug for a significant length of time (at least 29 cell cycles,
inset in Figure 3B). The diminished drug uptake is a result
of drug concentration being below the cell’s demand. A closer
analysis of cell spatial distributions over time shows that this
subpopulation occupied tissue regions distant from the vessels
and, more importantly, was surrounded by other cells (green

circles in Figures 3Ei–vi). This was a combined effect of cells’
proliferation and their passive relocation due to physical pressure
from other growing cells. Since the cells remained in the areas
poorly penetrated by the drug for a prolonged time, it resulted in
rapidly increasing cell viability that is manifested by the concave
shape of the viability curves. The second subpopulation consists
of cells with nearly linear increase in viability values (Figure 3C)
and with constantly high drug absorption (inset in Figure 3C).
The early predecessors were located in between the three central
vessels (red circles in Figures 3Eii,iii), and thus were exposed to
moderate drug concentrations. This resulted in faster increase

Frontiers in Physiology | www.frontiersin.org 8 April 2020 | Volume 11 | Article 319

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00319 April 15, 2020 Time: 19:3 # 9

Pérez-Velázquez and Rejniak Lineages of Drug-Induced Resistance in Micrometastases

of drug-induced tolerance than drug-induced damage and in
the steady increase in cell viability values. The fluctuations in
almost linear viability patterns arose from competition between
gained tolerance, acquired damage and damage repair. This
led to repopulation of the space between the blood vessels
(Figure 3Eiv). Subsequently, the cells were able to survive in
the areas well penetrated by the drug, even in the vicinity
of the blood vessels Figures 3Eiv–vi). The remaining resistant
cells manifest an intermediate behavior with regards to drug
absorption, as it decreases over a very short time near the end of
the treatment period (Figure 3D) but not as pronounced as in the
subpopulations with concave viability curves. This subpopulation
also acquired a quite distinct spatial pattern on a border between
two other subpopulations (Figures 3Eiii–vi). These cells are
transient in the sense that their characteristics may change during
the treatment. For example, a cell with linear viability values may
become transient if it gets surrounded by other cells, and becomes
protected from drug exposure (cell C1 in Figure 4Aiii). Similarly,
a transient cell can give birth to a cell that falls into the category
of concave viability if it moves to the poorly penetrated area (cell
C2 in Figure 4Aiii).

The 3D Cellular Routes Delineate
Spatio-Temporal Dynamics of Cell
Adaptation
To more closely examine how cells from all three categories
can adapt to the treatment, we selected 12 cells (four from each
category) with one common predecessor (Figure 4) and traced
their locations within the tissue during the whole simulation.
The 3D spatio-temporal routes traversed by each cell are shown
in Figure 4A at three different time points together with the
drug profile at that time. Here, the xz-plane represents cell
positions within the tissue, and y-axis represents the time.
Note, that the drug distribution profile at each time point is
different despite the continuous drug influx from the vessels
because drug absorption depends on the total number of
cells in the tissue, and this cell number varies in time. The
presented exemplary cells were chosen intentionally to show a
variety of spatial and temporal dynamics that may lead to cell
survival, adaptation and acquired resistance. The corresponding
12 viability trajectories are presented in Figure 4B to confirm
characteristics of each cell. Since these cells have a common
predecessor, there is a period of time when both the viability
trajectories and the 3D routes overlap and thus the number of
observable curves is limited (Figures 4A,Bi). However, these
curves eventually split up in both figures into eight separate
lines (Figures 4A,Bii). Furthermore, individual cells were able
to move at significant distances from the position of their
common predecessor (Figures 4Aii,C). This was due to the
pressure imposed by other growing cells. From this point on, the
viability trajectories steadily increased (Figure 4Biii), but cells’
routes deviated only insignificantly forming almost horizontal
lines (Figure 4Aiii). This was due to cell overcrowding by
numerous neighbors that resulted in cells’ prolonged dormancy,
without division. This ultimately contributed toward cell survival
and steady increase in cell viability. We intentionally selected

a case in which the initial predecessor cell was able to give
rise to successors from each of the three categories. However,
out of 15 initial cells which successors survived the whole
treatment, four generated cells in all three categories, three
produced cells in two categories and eight gave rise to cells in a
single category.

Lineage Tree Analysis Identifies the Cells
That Drive Resistance
Less than a quarter of cells that formed the initial micrometastasis
(15 out of 65) produced successors that survived the whole
chemotherapeutic treatment. Here we examined the lineages of
each subpopulation in order to identify how drug resistance
developed for each of them. We inspected the full lineage
trees for each of the survived subpopulation and identified
subtrees containing only those branches that led from the
initial cell to cells that survived the whole treatment. The
branches leading to dead cells were omitted. If one of
the daughter cells left the domain, but the other survived,
its symbol was indicated along the vertical line connecting
that cell with its mother cell. These structures represent
the lineage trees of survivors. Two representative examples
generated by the initial cells with indices #6 and #26 are
shown in Figures 5A,Bi. The corresponding spatio-temporal
routes traversed by these cells are shown in Figures 5A,Bii.
Additional snapshots of spatio-temporal routes at different
time points are shown in Supplementary Figures S2, S3.
The cell viability trajectories are shown in Figures 5A,Biii.
These examples illustrate different cases of cellular adaptation
observable among all survived subpopulations. The cells for
which viability increases linearly are located in well-penetrated
areas. These cells were able to survive the drug insult for
a prolonged time since they were surrounded by other
cells that absorbed the drug creating a protective niche
(Figures 5Aii,iii). Cells with concave viability trajectories are
located in poorly penetrated areas, often equidistant from the
vessels, where damage induced by the drug is lower that the
ability of the cell to repair damage (Figures 5Bii,iii). For
some lineage trees of survivors, their spatio-temporal routes
may have multiple spatially separated branches due to the
proliferation and pressure from neighboring cells. In other
cases, the routes do not deviate significantly in space and form
horizontal lines. This is due to overcrowding that limits cell
proliferation and migration (other 3D routs are discussed in
Supplementary Figures S4–S18).

For each lineage tree of survivors, we identified the subtrees
that do not contain any dead cells; that is, all branches of
these subtrees point either to cells that survived the whole
treatment or to cells that left the domain (these cells have positive
viability values, so they are alive). The roots of such subtrees are
considered to be the precursors of drug resistance, since none of
their successors underwent drug-induced death. The precursor
cells are indicated by black rectangles and red arrows in the
trees shown in Figures 5A,Bi (for clarity, the branches leading
to the cells that left the domain are omitted from the graphs).
In total, there were 224 precursor cells emerging from all 15
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lineage trees of survivors. They all are pictured in Figure 5Ci
along the viability trajectories to indicate the time at which they
emerge. In Figure 5Cii, these cells are cumulatively projected on
the tissue space to show the initial locations of the precursor cells.
The cell colors correspond to a time period at which they first
appeared. The very first precursor cells have arisen in the area
poorly penetrated by the drug between the single vessel in the top-
right corner, and the three other vessels (cells shown in green in
Figure 5C). Such areas are known as drug sanctuaries or refugia.
The next cohort of precursor cells emerged in the center of the
tissue between the three blood vessels (indicated by magenta
dots in Figure 5C). While, in principle, these areas can be better
penetrated by the drug, they actually form protective niches
(protectorates) in which the precursor cells may be shielded from
the exposure to the drug by the surrounding cells. The final
cohort of precursor cells (indicated by cyan dots in Figure 5C)
was emerging over a longer period of time and mostly in the areas
located closer to the tissue boundaries in the hypoxic or nearly-
hypoxic niches. Interestingly, none of the precursor cells were
located directly at the concave viability trajectories. This indicates
that all precursor cells emerged as a result of a direct competition
between drug-induced cell damage and acquired tolerance, and
that the increase in cell viability was amplified (in fast superlinear
fashion) in cells that have already developed resistance.

DISCUSSION

We presented here a study analyzing how resistant cell lineages
arise in micrometastases exposed to a systemic chemotherapeutic
treatment. This research is an extension of our previous
work (Gevertz et al., 2015; Perez-Velazquez et al., 2016)
that focused on the emergence of drug-induced resistance
on a cell population level. While we followed the previous
mathematical model setup and considered a small tumor
growing in a heterogeneous microenvironment, the individual-
cell perspective and novel evaluation methods allowed us to
identify a new microenvironmental niche prone to the emergence
of resistant cells. In addition to previously reported refugia
characterized by low drug penetration due to their distance from
the vasculature and the hypoxic or near-hypoxic niches in which
cells were able to thrive and repair the drug-induced damage,
we also located areas in which cells were not exposed to lethal
drug concentrations because they were shielded by other cells
absorbing the excess of the drug—the protectorates. We also
recognized that certain cells gave rise to lineages of resistant cells
(precursors of resistance) and correlated three temporal periods
with three different spatial locations at which such cells emerged.
This supports the hypothesis that tumor micrometastases do
not need to harbor cell populations with pre-existing resistance,
but that individual tumor cells can adapt and develop resistance
induced by the drug during the treatment.

The novel analysis and visualization methods developed here,
such as the lineage trees of survivors, the method to identify
the precursors of resistance and the 3D sptatio-temporal routes
and 3D lineage trees can enhance the library of tools used
with other hybrid mathematical models (Kim et al., 2013;

Karolak and Rejniak, 2019; Chamseddine and Rejniak, 2020) to
analyze tumor evolution and clonality.

Moreover, we showed that once the cells have developed
resistance, they were able to elevate their viability either in a
fast superlinear manner or in a slower, linear fashion, depending
whether they moved toward the refugia areas or not; a small
population of transient cells that could transfer from the linear
to superlinear populations was also observable. This is in line
with the theory of mixed models of tumor evolution (Davis et al.,
2017), in which different evolution forms can occur in parallel or
can shift from one form to another as a result of changes in tumor
size or due to microenvironmental selection forces.

Our results can be also placed within a context of tumor
ecology (Kenny et al., 2006; Korolev et al., 2014), such as the
ecological concepts of microenvironmental niche partitioning
and niche construction (Scott and Marusyk, 2017). In the former
case, different cell subpopulations are driven into distinct tissue
compartments by the microenvironmental selection forces – we
observed that certain cell subpopulations were harbored within
the refugia areas or within the hypoxic niches. In the latter,
the cells are able to modify their own surroundings to create
a favorable microenvironment – we observed the formation
of cellular protectorates characterized by microenvironmental
conditions distinct from the surrounding areas. This spatial
heterogeneity in tumor microenvironments is often referred
as ecological habitats (Chang et al., 2017; Sala et al., 2017)
that can lead to unique fitness landscapes and selection for
different cell phenotypes and genotypes, even under the same
extrinsic pressure such as anti-cancer therapy. Our simulations
showed that individual cell viability was changing over time that
encourages revisiting the idea of a static fitness landscape, and
supports the view that cell fitness is not a constant value, but a
function of the environmental context (Rozhok and DeGregori,
2015; Scott and Marusyk, 2017). While we did not explicitly
model any genetic mutations, the observable changes in tumor
cell viability could be potentially linked to changes in cell
gene expression.

Ultimately, the link between ecological changes within the
tumor microenvironment and tumor evolutionary changes
will reflect on patients’ clinical outcome. While the systemic
chemotherapy is often used in the clinical protocol in order
to minimize the tumor metastatic spread, it should be taken
into account that such therapy may stimulate progression of the
nearly-killed cells toward resistance. Therefore, the approaches
targeting the resistance-inducing strategies may prove more
effective than targeting the tumor cells directly. This is similar in
concept to eco-evo drugs from the field of microbial antibiotic
resistance (Baquero et al., 2011). Some such preconditioning
mechanisms have been tested in cancer cells and already showed
promise (McDunn and Cobb, 2005; Pisco et al., 2013; Huang,
2014); however, more research in this area is needed.
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