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A B S T R A C T   

In the current scenario, novel coronavirus disease (COVID-19) spread is increasing day-by-day. It is very 
important to control and cure this disease. Reverse transcription-polymerase chain reaction (RT-PCR), chest 
computerized tomography (CT) imaging options are available as a significantly useful and more truthful tool to 
classify COVID-19 within the epidemic region. Most of the hospitals have CT imaging machines. It will be fruitful 
to utilize the chest CT images for early diagnosis and classification of COVID-19 patients. This requires a radi-
ology expert and a good amount of time to classify the chest CT-based COVID-19 images especially when the 
disease is spreading at a rapid rate. During this pandemic COVID-19, there is a need for an efficient automated 
way to check for infection. CT is one of the best ways to detect infection inpatients. This paper introduces a new 
method for preprocessing and classifying COVID-19 positive and negative from CT scan images. The method 
which is being proposed uses the concept of empirical wavelet transformation for preprocessing, selecting the 
best components of the red, green, and blue channels of the image are trained on the proposed network. With the 
proposed methodology, the classification accuracy of 85.5%, F1 score of 85.28%, and AUC of 96.6% are 
achieved.   

1. Introduction 

Corona viruses are a family of enveloped Ribonucleic acid (RNA) 
viruses [1] which are distributed widely among mammals and birds that 
causes principally respiratory or enteric diseases in rare cases neuro-
logical illness or hepatitis [2]. Corona virus (COVID-19) which allegedly 
started to spread from the Wuhan district in China has now been 
declared as global pandemic by the World Health Organisation (WHO) 
[3,4]. To Date (1st June 2020) it has infected over 7961307 people and 
has been a cause for the death of 434471 people. In total 213 countries 
and territories have been infected by COVID-19. Although all parts of 
the world have been affected by this virus the major impact has been 
seen in countries like USA, Italy, India, China, Spain, Brazil, Russia, 
United Kingdom, Peru, Iran, Turkey where cases are more than 1,00,000 
[5]. 

It is a highly contagious disease and spreads by droplets via coughing 
or sneezing [6]. Due to lack of cure or vaccine, it is essential to control 

the spread of this disease by early detection and self-isolation of the 
infected patients. The infection can be detected by using tests, based on 
reverse transcription polymerase chain reaction (RT-PCR) [7]. Unfor-
tunately, the testing is limited due to global shortage of testing kits. 
Moreover, RT-PCR has high false-negative rates [8] and is dependent on 
quality of sample collection. There is also a shortage of personnel to 
collect sample and it is a time-consuming process. Failure to reliably 
detect new cases not only prevents the patient from receiving appro-
priate treatment but also risks the spread to healthy subjects. 

On the other hand, computed tomography (CT) imaging can reliably 
detect typical radiographic features in patients with pneumonia caused 
by COVID-19 [9]. Thus serious complications are noted in patients with 
symptoms such as difficulty in breathing or shortness of breath [10,11] 
that can be life threatening. In patients with severe disease, respiratory 
failure requires use of ventilator for supportive care. Therefore, diag-
nosis can be reliably and rapidly made based on radiographic changes in 
these patients even in the initial RT-PCR negative patients [12]. 
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However, use of CT imaging is limited by the lack of expert radiol-
ogists to analyze and report these CT images. The proposed automated 
analysis of CT images method can be used to detect COVID-19, reducing 
the time required to analyze the scans and in turn reducing the workload 
of the doctors. It is also observed that chest X-ray also shows promising 
results in COVID-19 detection [13] but use of CT imaging turns out to be 
a better choice than X-ray imaging because of the fact that chest CT 
imaging produces more detailed view than chest X-ray imaging as it can 
capture small bones, soft tissues and blood vessels all the same time. 
Moreover for detailed diagnosis, patient has to rely on chest CT imaging 
rather than chest X-ray imaging. Additionally, false detection rate and 
false alarm rate of RT-PCR test is very high. Therefore, an alternate 
method is required for COVID-19 identification with high sensitivity. 
The papers from Bernheim et al. [14], Das et al. [15], Nayak et al. [16] 
and Singh et al. [17] and Sharma et al. [18] also show that patients 
suffering from COVID-19 showed some visible changes in chest imaging 
such as bilateral changes, which also highlights the fact that relying only 
on RT-PCR for COVID-19 detection is not the only option. 

In this research paper, proposed method performs an automatic 
classification of the COVID-19 infected patients using the images of the 
chest CT. This enables to minimize the workload of already exhausted 
front-line health professionals who are working day and night to control 
the situation. This is very relevant in the current scenario of already 
stretched medical workforce in the developing countries. 

Current techniques being proposed which use CT scan, among them 
major researchers are directly using raw CT scan to the neural network. 
The paper from Mishra et al. [19] used various DenseNet based con-
volutional neural network (CNN) models for COVID-19 detection and 
claimed DenseNet121 to produce the best results. Also paper from 
Jaiswal et al. [20] used the same approach and claimed DenseNet201 to 
produce overall good results for COVID-19 detection. 

However in the proposed method CNN and empirical wavelet 
transformation (EWT) are employed on CT scans of normal subjects and 
COVID-19 affected patients. This paper focuses on the benefits of EWT, 
combined with proposed network architecture. Before applying EWT on 
the image, it has been split into different components which are red (R), 
green (G), and blue (B), and the EWT is applied to analyze which fre-
quency components of which channels are mostly affected due to this 
virus. The EWT can be used to split CT scan information in image into 
different frequency sub-bands, For this experiment CT scan is divided 
into 5 different sub-bands. The data set used for this research consists of 
1252 CT scan images of COVID-19 positive patients and 1230 images of 
CT of patients who were not infected by COVID-19. 

This paper proposes a novel approach of COVID-19 detection by 
applying EWT on each RGB channel of chest CT scan for feature selec-
tion and then applying DenseNet121 to select the best component. The 
use of EWT for feature extraction helps in improving the overall results 
of this proposed method as compared to using DenseNet121 directly. 
The paper from Chaudhary [21,22], shows us that using EWT or slight 
modifications in EWT for feature extraction has been one of the favorite 
choice amongst researchers. 

The aims of this paper are as follows: 
1) To overcome the high false negative value of RT-PCR, chest CT 

scan images are used in this paper to detect and diagnose of COVID-19 
disease. 

2) To propose a fusion of advance signal processing EWT technique 
and deep learning techniques to overcome the limitation of RT-PCR by 
reducing the high false negative values for classification of COVID-19(+) 
and COVID-19(-) patients. 

3) The proposed model is studied on different sub-bands for R, G, and 
B region of CT scans using EWT for feature extraction and later using 
deep learning techniques to get classification from extracted informa-
tion. EWT has been a very popular method for feature extraction which 
has shown promising results at times [23]. 

4) To compare the proposed work with other state-of-the-art 
methods in terms of various performance metrics such as accuracy, 

F1-score, and AUC measure. 
The rest of the paper is structured as follows: Section II provides 

details about the dataset used in the research. Section III provides a 
detailed overview of the proposed method, EWT, CNN architecture, 
DenseNet architecture, and transfer learning. The results and discussion 
of the proposed method are represented in section IV. Finally, section V 
concludes the paper. 

2. Data set 

For this study, the publicly available SARS-CoV-CT dataset [24] is 
used which contains 1252 CT scan images of positive SARS-CoV-2 
(COVID-19) and 1230 CT scan images of the patients that are not 
infected by the SARS-COV-2 (COVID-19). The SARS-Cov CT dataset was 
collected from real patients in hospitals from Sao Paulo, Brazil. The 
detailed characteristic’s of each patient is skipped by the hospital due to 
privacy concerns. The dataset is also publicly available on Kaggle at the 
following link https://www.kaggle.com/plameneduardo/sarscov2-cts 
can-dataset. 

Fig. 1 depicts the number of patients used for composing this dataset. 
60 Covid positive patients were considered of which 32 were males and 
28 were females. Similarly 60 Covid negative patients were considered 
of which 30 were males and 30 were females. 

Fig. 2, show a few sample CT scan images from the used dataset. The 
first two columns shows COVID-19 positive chest CT scan images of 
patients whereas the other two columns shows COVID-19 negative chest 
CT scan images. 

3. Proposed method 

In the proposed method, a CNN based approach is applied to EWT on 
chest CT scan images of both the patients who were suffering and were 
not suffering from COVID-19. This approach employs data augmenta-
tion and transfer learning. Also more standard techniques were used for 
augmentation of data such as resizing of image to a scale of 256 x 256, 
random cropping of images from a scale of 0.5 to 1 and also by randomly 
flipping images horizontally with a uniform probability distribution 
function. Thus, generating 15 images per image from our data set. 
Transfer learning is a technique that is used to re-train a CNN model that 
is designed for other similar tasks. DenseNet121 [25] has been employed 
for transfer learning in the proposed method. An overview of proposed 
method can be visualised in Fig. 3. Initially, the COVID-19 CT scan 
database is split into training, validation, and testing data randomly 
with dataset size of 1000, 100, 152 images respectively before data 
augmentation. Further, the CT scan images are split into R, B, and G 
channels. EWT filtering is applied to the R, G, and B channels respec-
tively. A different model is trained for each component created by the 
EWT. Data augmentation [26] is applied to the dataset to prevent the 
model from overfitting due to the limited number of CT scan images 
present in the dataset. Finally, the dataset is fed to a modified model of 
the pre-trained variant of DenseNet121 (ChexNet) [27], this process is 
repeated for each component. 

3.1. 2D-Empirical wavelet transform (EWT) 

There are various signal decomposition methods which have been 
studied to decompose physiological signals such as electroencephalo-
gram (EEG), electrocardiogram (ECG), and electromyogram (EMG). Few 
of them are empirical mode decomposition (EMD) [28], multivariate 
EMD (MEMD) [29], eigenvalue decomposition (EVD) [30], EWT [31], 
and 2-D EWT[32]. The EWT method has been studied for cross-term 
reduction in Wigner-Ville distribution in [33] and automatic detection 
of coronary artery disease in [34]. The EVD method has been employed 
for EMG signal analysis [35]. The EMD and MEMD methods find ap-
plications in brain computer interface (BCI) to handle the non- 
stationarity nature of the data [36–40]. In this paper, 2D-EWT [31,32] 
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is used for signal decomposition. It is a adaptive method of signal 
decomposition [31] which is based on information content of the input 
signal [33]. Unlike Fourier or wavelet transform [41] it does not use pre- 
defined basis functions. The Fourier spectrum range in EWT is from 0 to 
π and it segmented in N parts (N − 1 intermediate segmentation point). 

Segment limit is denoted by ωn where starting and ending limits are 
denoted by ω0 = 0 and ωN = π. The transition phase is centered around 
ωn which has a width of 2λωn where 0 < λ < 1. Littlewood-Paley 
wavelets [42] are used for bandpass filtering with empirical scaling 
functions δ1(W) which are as follows: 

Fig. 1. Number of subjects and patients used for composing this dataset.  

Fig. 2. The figure shows some sample chest CT scan images of COVID-19 positive and COVID-19 negative patients from the used dataset.  
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Fig. 3. Overview of the proposed model.  
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δ1(W) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if |W|⩽(1 − λ)ω1

cos[
π
2

f (λ,ω1)] if (1 − λ)ω1⩽|W|⩽(1 + λ)ω1

0 otherwise

(1)  

and empirical wavelets ζn(W) is as follows: if n ∕= N-1 

ζn(W) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1 if (1 + λ)ωn⩽|W|⩽(1 − λ)ωn+1

cos[
π
2

f (λ,ωn+1)] if (1 − λ)ωn+1⩽|W|⩽(1 + λ)ωn+1

sin[
π
2

f (λ,ωn)] if (1 − λ)ωn⩽|W|⩽(1 + λ)ωn

0 otherwise

(2)  

if n = N-1 

ζN− 1(W) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if (1 + λ)ωN− 1⩽|W|

sin[
π
2

f (λ,ωN− 1)] if (1 − λ)ωN− 1⩽|W|⩽(1 + λ)ωN− 1

0 otherwise

(2)  

where f(λ,ωn) and f(λ,ωn+1) can be represented as: 

f (λ,ωn) = f (
1

2λωn
(|W| − (1 − λ)ωn)), and  

f (λ,ωn+1) = f (
1

2λωn+1
(|W| − (1 − λ)ωn+1))

Also f(z) satisfies the following condition: 

f (z) =

⎧
⎨

⎩

0 if z⩽0
1 if z⩾1
f (z) + f (1 − z) = 1 ∀z ∈ [0, 1]

Steps of Littlewood-Paley EWT algorithm for images [43] decom-
position is as follow:  

1. Compute the 1D Pseudo-polar fast Fourier transform (PPFFT) of 
image I. The 2D spectrum of PPFFT is respresented as P(Θ, W) and 
take average with respect to Θ: 

X|W| =
1

NΘ

∑NΘ − 1

r=0
P(Θr, |W|) (1)    

2. Boundaries are detected on X|W|using scale-space approach and 
corresponding filter bank B =

{
δ1, {ζn}

N− 1
n=1

}
is designed.  

3. Then we filter I along the rows (i.e. along Θ) using B which in turn 
gives N subband images. 

3.2. Convolution Neural Network (CNN) 

The CNN [44] is one of the most advanced neural networks used 
nowadays which has a lot of applications in the field of computer vision 
[45]. It consists of multi-layered neural networks which makes it really 
powerful when inputs are images because it is capable of achieving some 
kinds of shifts and also deformation invariance which makes it really 
capable of handling images. It consists of a number of layers namely, the 
input layer which is the first layer and passes raw data to further con-
nected layers for processing. Then comes the convolution layer which is 
also called the learning layer, it performs the dot product between the 
filter and image having size the same as the filter. Rectified linear unit 
(ReLU) is a threshold layer the applies max(0, x) as its activation func-
tion [46]. For reducing the spatial dimension of the received data a max- 
pooling layer or avg-pooling layer is often used [47]. Another layer that 
is used is called a fully connected layer in which neurons of fully con-
nected to the neurons of the just previous layer. A normalized 

exponential function is used in the softmax layer which normalizes the 
data between 0 to 1. Finally comes the output layer which provides the 
output of the CNN along with the label and loss function. 

3.3. DenseNet 

CNN can be efficient to train, substantially deeper, and more accu-
rate, if they contain shorter connections between layers close to the 
input and those close to the output. In dense convolutional network 
(DenseNet) [25], there is a connection with each layer to every other 
layer in a feed-forward fashion. Input for each layer is the feature-maps 
of all the previous layers, and current layer’s feature-map is used as 
input to all the next layers. DenseNet helps to avoid and reduce the 
impact of the vanishing gradient problem, as well as strengthen feature 
propagation, encourage feature reuse, and the number of parameters are 
reduced substantially. 

More Details about different type of DenseNet architecture – Den-
seNet121, DenseNet169, DenseNet201 [25]. Proposed method uses 
DenseNet to keep model simpler also easier to compute due to fewer 
parameters than rest of the models. Also, DenseNet architectures have 
been observed to achieve faster convergence then the rest. 

3.4. Transfer learning 

The entire DenseNet model trained from scratch requires a collection 
of large labeled dataset and powerful hardware resources. Due to 
hardware limitations and small size of the dataset, it becomes infeasible 
to train the network from scratch so to overcome this transfer learning 
[48] technique is used in this work for better results. In transfer learning 
the knowledge gained from solving a problem is used and transferred to 
solve a similar problem. In this a pre-trained model is used which is 
already trained for other similar tasks. In this technique, by changing a 
certain parameter a pre-trained DenseNet model is trained on new data 
for similar classification tasks. The layer weights are adjusted according 
to the new training data. With the proposed method, a pre-trained 
DenseNet121 model is employed which is trained in a new data using 
the transfer learning. A new head is applied to pretrained weights of 
DenseNet121 in proposed methods consisting of a dense layer and sig-
moid activation, most suitable for binary classification. 

4. Results and discussion 

In this paper, a COVID-19 disease classification model is proposed to 
classify whether a person is infected from COVID-19 or not, using the CT 
scan of a person’s chest. Feature extraction is an important aspect for 
deep learning. Past studies such as [49,50] have shown the significance 
of frequency oriented data. EWT technique extracts data from CT-scan 
according to the frequency sub-bands. Wavelet transformation is used 
in previous study such as [51] for classification using brain CT-scans and 
principal component analysis(PCA) and K-nearest neighbours (KNN), 
basic machine learning techniques. A novel process is proposed combing 
EWT for feature extraction and deep learning techniques such as transfer 
learning for classification and significant improvement in performance 
has been observed in this study over past studies. Initially, images are 
split into R, G and B channels, and further EWT is applied on the image 
[43] of each channel and 5 images (each containing information of 
different frequency bands) are obtained for each channel, making a total 
of 15 images for 1 CT scan. After splitting the dataset into training and 
testing, transfer learning on DenseNet121 is applied and the results are 
obtained. This study also tries to learn which sub-band of frequency 
fetches the most helpful information from the image for classification of 
COVID-19. 

Results from the proposed model are represented through precision- 
recall curve [52] shown in Figs. 4–6 for R, G and B channels respectively. 
The bigger the area covered, better is the performance. 

Fig. 4, shows the results from R channel, 5th sub-band which 
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represents the highest frequency band, It has shown the highest area 
under curve (AUC) of 0.9443 followed by the 1st sub-band with a score of 
0.8196 which represents lowest frequency sub-band and after that mid 
ranging frequency sub-bands lies in the order of 2nd, 3rd and 4th with 
scores of 0.7197, 0.5728, 0.57. The model performance of DenseNet121 
on 5th component Red channel with transfer learning has got even 
higher to 0.966 with help of fine-tuning deep learning techniques. 

Similarly Fig. 5, shows the results from B channel where the highest 
frequency band has shown the highest AUC of 0.9278 followed by the 
lowest frequency band with the score of 0.8448 and Fig. 6 which shows 
the results from G channel has shown the highest AUC of 0.9271 

followed by 0.7956 shown by the highest frequency and the lowest 
frequency sub-bands respectively. 

Different DenseNet variations were tried while experimentation. 
From Table 1, different performance measure can be observed with 
respect to different model variants of DenseNet, as the complexity in-
creases in the table there is a chance to improve the performance, all the 
performance metrics shows the improvement in results, and with help of 
transfer learning using ChexNet [27] pre-trained weights on Dense-
Net121, a margin of 10% improvement is observed. 

From the graphs observed in Figs. 4–6, it can be noted that 5th 

component of the red channel gives the best results. Training accuracy 
for the proposed method is 95.2%, F1 score is 95.16%, and AUC is 
97.71%. While, testing accuracy for the proposed method is 85.5%, the 
F1 score is 85.28% and AUC is 96.6%. And also we have obtained pre-
cision, specificity, and sensitivity for the training data set up to 
96.5%,96.6% and 95.3% respectively and precision, specificity, and 
sensitivity for testing data set up to 98%, 99%, and 87% respectively. 

Table 2 shows that the DenseNet169 out performs DenseNet169 
variant from [53] and the proposed method (on DenseNet121 with TL) 

Fig. 4. Precision-recall curve of red channels.  

Fig. 5. Precision-recall curve of blue channels.  

Fig. 6. Precision-recall curve of green channels.  

Table 1 
Comparison among different DenseNet variants and effects of Transfer Learning 
on Accuracy, F1 Score and AUC.  

Model Accuracy (%) F1-score (%) AUC score (%) 

DeseNet121 74.50 65.70 91.68 
DenseNet169 81.00 76.50 93.90 
DenseNet201 82.00 78.50 95.10 
DenseNet121 with TL 85.50 85.28 96.60  

Table 2 
Comparison among existing models and the proposed model on Accuracy, F1 
Score and AUC.  

Model Accuracy (%) F1-score (%) AUC Score (%) 

DenseNet-169 [53] 79.50 76.00 90.10 
ResNet-50 [53] 77.40 74.60 86.40 
DenseNet169 81.00 76.50 93.90 
DenseNet121 with TL 85.50 85.28 96.60  
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outperforms more so when compared to already existing models. Also 
the results show that the best outcome is achieved for the high- 
frequency components of each channel i.e 5th component of R gives 
the best accuracy followed by 5th component of B channel and 5th 

component of G channel. Therefore, the proposed method has better 
performance with simpler structure than current counter-parts. The 
proposed method shows an almost 2.2% increase in accuracy from the 
previously existing models proposed by other research groups. F1 score 
and AUC score are also better in the proposed method. During the fine- 
tuning of model hyper-parameters also played a major role. For per-
formance improvement different learning rates were used among which 
1e-3 showed the best results, with greater learning rate the model 
seemed to get faster convergence but with the cost of performance i.e. 
under-fitting, while in lower learning rate at 1e-5 slower convergence 
but better training performance at the cost of over-fitting, i.e. worsened 
validation results. 

5. Conclusion 

In this work, we have built a method to tackle the situation of testing 
and identifying COVID-19 patients. The results of our proposed method 
show that with the help of EWT better feature extraction has been 
possible to get improved performance from the same deep learning 
techniques. Also there has been one more conclusion from the study that 
high-frequency components from the CT scan have more useful infor-
mation therefore improved predictability for COVID-19, and amongst 
them, results of the R channel are more prominent than B and G chan-
nels. The proposed method reduces the pressure from the radiologists by 
minimizing their work as well as cross-verifying the results from the 
testing kits. This proposed work will make a better way to handle the 
situation and help countries do more tests than possible to date. This 
study will inspire work in different fields having a significance of CT 
scans or other frequency oriented data for usage of this novel method for 
better performance. 
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