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Abstract

Cilia are microtubule-based organelles that protrude from the surface of eukaryotic cells to

generate motility and to sense and respond to environmental cues. In order to carry out

these functions, the complement of proteins in the cilium must be specific for the organelle.

Regulation of protein entry into primary cilia has been shown to utilize mechanisms and

components of nuclear gating, including nucleoporins of the nuclear pore complex (NPC).

We show that nucleoporins also localize to the base of motile cilia on the surface of trachea

epithelial cells. How nucleoporins are anchored at the cilium base has been unclear as

transmembrane nucleoporins, which anchor nucleoporins at the nuclear envelope, have not

been found to localize at the cilium. Here we use the directed yeast two-hybrid assay to iden-

tify direct interactions between nucleoporins and nephronophthisis proteins (NPHPs) which

localize to the cilium base and contribute to cilium assembly and identity. We validate

NPHP-nucleoporin interactions in mammalian cells using the knocksideways assay and

demonstrate that the interactions occur at the base of the primary cilium using bimolecular

fluorescence complementation. We propose that NPHP proteins anchor nucleoporins at the

base of primary cilia to regulate protein entry into the organelle.

Introduction

Cilia are microtubule-based organelles that protrude from the surface of most mammalian

cells. Motile cilia function to move cells or the fluid around cells whereas primary cilia function

to sense extracellular cues during development and tissue homeostasis [1–3]. Defects in the

formation or function of cilia lead to numerous human diseases, termed ciliopathies [4,5],

which can manifest as multi-organ syndromes [e.g. nephronophthisis (NPHP), Meckel-Gru-

ber Syndrome (MKS), Joubert syndrome (JBTS)] with a variety of phenotypes including retinal

degeneration, obesity, skeletal abnormalities, cystic organs, and situs inversus.

Cilia require a unique protein complement for their function as motile and sensory organ-

elles. However, the cilium is not entirely enclosed by a membrane barrier but rather is open to

the cytoplasm at its base. The cilium base thus acts as a gate to regulate the entry of ciliary pro-

teins. This region is called the transition zone as this is the location where the triplet
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microtubules of the mother centriole transition to the doublet microtubules of the axoneme. A

number of proteins identified due to their mutation in human ciliopathies localize at or near

the transition zone and function in regulating the entry of ciliary proteins. Based on biochemi-

cal and genetic analyses [6–8], these proteins have been placed into four functional modules:

1) the Inversin (INVS) compartment containing NPHP2 (inversin), NPHP3, NPHP9 (NEK8),

and ANKS6 (NPHP16) proteins, 2) the NPHP1/4 complex containing NPHP1, NPHP4, and

NPHP8 (RPGRIP1L) proteins, 3) the NPHP5/6 complex containing NPHP5 (IQCB1) and

NPHP6 (CEP290) proteins, and 4) the membrane-associated MKS complex containing MKS1,

B9D1, B9D2, Tectonic1, Tectonic2, TMEM231, TMEM216, TMEM67, and CCD2A (MKS6)

proteins.

Recent work has suggested that gated entry from the cytoplasm into the cilium utilizes simi-

lar molecules and mechanisms as gated entry into the nucleus [9–12]. First, a size-exclusion

barrier restricts the passive diffusion of proteins larger than ~40 kDa into the nuclear compart-

ment [13,14] and a similar size-exclusion barrier restricts protein entry into the cilium [15–

18]. Second, importins and the small G protein Ran provide the selectivity and directionality,

respectively, for facilitated entry of large proteins and protein complexes into the nucleus [19–

21] and have also been found to regulate the ciliary localization of kinesin motors, Hedgehog

signaling components, and membrane-associated proteins [22–28]. Third, nucleoporins com-

prise the pores in the nuclear envelope at which both the passive diffusion barrier and active

transport processes regulate nucleo-cytoplasmic shuttling [29,30] and also localize to the base

of primary and motile cilia and regulate entry into the cilium [16,17,31–34].

Each nuclear pore complex (NPC) is comprised of ~30 different nucleoporin (Nup) pro-

teins that assemble into defined subcomplexes [29,30]. Two subcomplexes, the outer ring com-

plex (or coat complex) and the inner ring complex (or adaptor complex), form concentric

rings embedded within the nuclear envelope (Fig 1). The ring complexes surround a central

channel which contains nucleoporins with intrinsically disordered regions rich in phenylala-

nine and glycine residues (FG Nups) that form the permeability barrier. Additional subcom-

plexes extend into the cytoplasm as ~50 nm long filaments or into the nucleoplasm as a

basket-shaped structure.

Only a subset of the nucleoporins have been localized to the base of the cilium, in particular

nucleoporins of the outer ring complex, the inner ring complex, and the central channel (Fig

1) [16,17,31–34]. However, none of the known transmembrane nucleoporins of the mamma-

lian NPC (i.e. Pom121, gp201, Ndc1) could be localized to the base of the cilium [17], suggest-

ing that different proteins anchor nucleoporins at the base of the cilium. Here we provide

several lines of evidence that NPHP proteins bind to nucleoporins and may thus provide a

scaffold for nucleoporin localization and function at the ciliary gating zone.

Results

Nucleoporins localize to the base of primary and motile cilia

A number of nucleoporins have been localized to the base of the primary cilium using immu-

nofluorescence including the central channel nucleoporin Nup62 (Fig 2A, [17]), the inner ring

nucleoporins Nup93, Nup98, and Nup188 [16,31,32], and the outer ring nucleoporin Nup85

[16]. Whether nucleoporins also localize to the base of motile cilia has received less attention.

We stained rat trachea epithelial cells with antibodies to various nucleoporins under condi-

tions known to be favorable for immunostaining nucleoporins within the dense environment

of the NPC. Antibodies to the central channel nucleoporin Nup62, the inner ring nucleoporin

Nup98, and the outer ring nucleoporins Nup96 and Nup133 showed strong staining of both

NPHP and nucleoporin interactions at the primary cilium
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the nuclear envelope and the cilium base in multi-ciliated epithelial cells (Fig 2B–2E). Thus,

nucleoporins likely function as ciliary gating components for both primary and motile cilia.

Interactions between NPHP and nucleoporin proteins in a directed two-

hybrid assay

A two-hybrid screen for proteins that interact with nephrocystin-4 (C. elegans homolog of

NPHP4) identified npp-8 (C. elegans homolog of the inner ring nucleoporin Nup155) as an

interacting protein (M. Barr, personal communication). We thus used a directed two-hybrid

assay to test for interactions between mammalian NPHP and nucleoporin proteins. Full-length

versions of mammalian components of the TZ modules (INVS, NPHP1/4, NPHP5/6, and

MKS complexes) and nucleoporin subcomplexes (outer ring, inner ring, central channel, and

cytoplasmic filaments) were fused in-frame to a DNA activating domain (AD) or a DNA bind-

ing domain (BD) and expressed in yeast of different mating types. Pairwise interactions were

tested by mating strains expressing BD-fusion and AD-fusion proteins. Analysis of

NPHP-NPHP and Nup-Nup pairwise matings identified known interactions (S1 Fig), con-

firming the validity of the assay. For example, our directed two-hybrid analysis identified pre-

viously noted interactions between NPHP1 and NPHP4 and between NPHP2 and NPHP8

[35–38] and also identified new self-interactions of NPHP2 and NPHP3 (S1A Fig). For Nup-

Nup interaction analysis, many of the BD-Nup fusion proteins were transcriptionally active
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Fig 1. Schematic of nuclear and ciliary gating complexes. (A) At the nuclear envelope (NE), nucleoporins in NPCs are organized into subcomplexes including outer

ring (OR, dark blue), inner ring (IR, medium blue), central channel (ch, light blue), cytoplasmic filaments (CF, dark green), nuclear basket (green), and transmembrane

(red). (B) At the base of the primary cilium, OR, IR and channel nucleoporins localize at the transition zone (TZ) with NPHP proteins (orange). Purple lines indicate

microtubules.

https://doi.org/10.1371/journal.pone.0222924.g001

NPHP and nucleoporin interactions at the primary cilium

PLOS ONE | https://doi.org/10.1371/journal.pone.0222924 September 25, 2019 3 / 19

https://doi.org/10.1371/journal.pone.0222924.g001
https://doi.org/10.1371/journal.pone.0222924


ch
an

ne
l N

up
62

 
in

ne
r r

in
g 

N
up

98
ou

te
r r

in
g 

N
up

96
ou

te
r r

in
g 

N
up

13
3

DAPI ac. α-tubulin nucleoporinnucleoporin merge

ch
an

ne
l N

up
62

 
in

ne
r r

in
g 

N
up

98
ou

te
r r

in
g 

N
up

96
ou

te
r r

in
g 

N
up

13
3

ch
an

ne
l N

up
62

 

A.

B.

C.

D.

E.

Fig 2. Inner ring, outer ring, and central channel nucleoporins localize to the base of motile cilia. (A) RPE-1 cells were stained

with antibodies to the channel nucleoporin Nup62 (gray). (B-E) Epithelial cells isolated from rat trachea were stained with

antibodies against (b) the channel nucleoporin Nup62, (C) the inner ring nucleoporin Nup98, or the outer ring nucleoporins (D)

NPHP and nucleoporin interactions at the primary cilium
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and thus their interactions could not be assessed in this context (S1B Fig). For the remaining

nucleoporins, strong interactions were observed for the inner ring nucleoporin Nup155 with

components of both the inner and outer ring complexes. Strong interactions were also observed

for the outer ring nucleoporin Nup133 with components of both the inner and outer ring com-

plexes. These results are consistent with previous two-hybrid analysis of Nup-Nup interactions

as well as recent x-ray and cryo-electron microscopy structures of the mammalian NPC [39,40].

To identify interactions between NPHP and nucleoporin proteins, matings were carried

out between strains expressing BD-NPHP and AD-Nup constructs (Fig 3A) as well as between

strains expressing BD-Nup and AD-NPHP constructs (Fig 3B). For the INVS module, positive

interactions were observed for several members of this complex with both the outer ring and

inner ring nucleoporin complexes. Specifically, NPHP2 displayed strong interactions with the

inner ring nucleoporins Nup205 and Nup155, the outer ring nucleoporins Nup160 and

Nup133, and the cytoplasmic filament nucleoporin Nup88 (Fig 3A and 3B). NPHP3 interacted

weakly with the inner ring nucleoporin Nup160 (Fig 3A), and NPHP9 interacted with the

inner ring nucleoporin Nup155 and weakly with the outer ring nucleoporins Nup133 and

Nup43 (Fig 3B). For the NPHP1/4 module, positive interactions with nucleoporins were

detected for two members of this complex. NPHP4 interacted weakly with the inner ring

nucleoporin Nup205 and the outer ring nucleoporin Nup133 (Fig 3A and 3B), consistent with

the identification of inner ring nucleoporins Nup205 and Nup93 in IP-mass spectrometry

analysis of NPHP4-interacting proteins from IMCD3 cells [37]. NPHP8 interacted with the

outer ring nucleoporins Nup160 and Nup85 (Fig 3A). For the NPHP5/6 complex, positive

interactions were observed for NPHP5 with the inner ring nucleoporin Nup155, the outer ring

nucleoporin Nup133, and the cytoplasmic filament protein Nup88 (Fig 3B). An interaction

between NPHP5 and inner ring nucleoporins is consistent with previous work that identified

Nup188 in IP-mass spec analysis from RPE cells [37].

Interactions between NPHP and nucleoporin proteins in the

knocksideways assay

To validate NPHP-nucleoporin interactions in a cellular context, we used the knocksideways

approach (Fig 4A [41,42]). A similar approach involving the recruitment of nucleoporins to

ectopic sites in mammalian cells has been utilized to analyze interactions within and between

subcomplexes without disruption of the endogenous NPC architecture or function [43,44].

For our analysis, NPHP proteins were tagged with mCherry (mCh) and targeted to the

mitochondrial surface by fusion with the mitochondrial targeting sequence of Omp25 (NPHP-

mCh-mito fusions). We chose to focus on the INVS module protein NPHP2, the NPHP1/4

module proteins NPHP1 and NPHP4, and the NPHP5/6 module protein NPHP5 based on a)

their interactions with nucleoporins in the two-hybrid assay (Fig 3) and b) their ability to local-

ize correctly to the mitochondrial surface as mCh-mito fusion proteins (Fig 4, S2 and S3 Figs).

Likewise, we chose to focus on the inner ring nucleoporins Nup93, Nup35, and Nup155 and

the outer ring nucleoporins Nup133, Nup107, and Nup37 based on a) their interactions with

several NPHP proteins in the two-hybrid assay (Fig 3) and b) their ability to be expressed in a

soluble form in mammalian cells (Fig 4, S2 and S3 Figs).

The NPHP-mCh-mito fusion proteins were co-expressed with EGFP-tagged nucleoporin

proteins in COS-7 cells. When expressed alone, the EGFP-Nup proteins localized to the

Nup96 and (E) Nup133. All cells were counter stained with antibodies to acetylated α-tubulin (magenta) to mark the ciliary

axoneme and with DAPI (blue) to mark nuclei. Yellow arrows indicate the base of the cilia.

https://doi.org/10.1371/journal.pone.0222924.g002
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nuclear envelope, as expected, but also displayed varying amounts of cytosolic, diffuse and/or

annulate lamellae localization. We reasoned that co-expression with the mCh-mito control

protein (Fig 4A left panel, S2 Fig) or with a non-interacting NPHP-mCh-mito protein (S3 Fig)

would not alter this localization pattern whereas co-expression with an interacting NPHP-

mCh-mito protein would redirect the EGFP-Nup protein to the mitochondrial surface (Fig 4A

right panel).

When targeted to the mitochondrial surface, the INVS module protein NPHP2-mCh-mito

was able to redistribute a portion of the inner ring nucleoporins Nup35 and Nup155 to the

mitochondrion (Fig 4B, 4C and 4H), consistent with the ability of NPHP2 to interact with

Nup155 in the directed two-hybrid assay (Fig 3). NPHP2-mCh-mito was also able to recruit

the outer ring nucleoporin Nup133 to the mitochondrion (Fig 4D and 4H), consistent with the

interaction observed in the directed two-hybrid assay (Fig 3). However, NPHP2-mCh-mito

was not able to recruit the EGFP-tagged inner ring nucleoporin Nup93 nor the outer ring

nucleoporins Nup107 or Nup37 to the mitochondrial surface (Fig 4H).

In a similar manner, we found that when the NPHP5/6 module protein NPHP5 was local-

ized to the mitochondrial surface as a NPHP5-mCh-mito fusion protein, it was able to recruit

the inner ring nucleoporins Nup35 and Nup155 and the outer ring nucleoporin Nup133 to the

organelle (Fig 4E–4H) but was not able to recruit the inner ring nucleoporin Nup93 nor the

outer ring nucleoporins Nup107 or Nup37 to the mitochondrial surface (Fig 4H). For the

NPHP1/4 module, we found that NPHP1-mCh-mito was unable to recruit any of the tested
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Fig 3. Directed yeast two-hybrid assay reveals NUP-NPHP interactions. The indicated transition zone proteins (INV, NPHP1/4, NPHP5/6, MKS complexes)

and nucleoporin proteins were fused to a DNA binding domain (BD) or transcription activation domain (AD). Yeast of different mating types were mated pairwise

to test for protein-protein interactions. Transcriptional activation allowing growth of diploid yeast was observed after 3 days and scored as strong growth (dark

green), medium growth (medium green), or weak growth (yellow-green). Each pairwise mating was repeated at least three times. CF, cytoplasmic filament

nucleoporin. ch, central channel nucleoporin.

https://doi.org/10.1371/journal.pone.0222924.g003
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nucleoporins to the mitochondrion (Fig 4H, S3A–S3C Fig) whereas NPHP4-mCh-mito was

able to recruit the inner ring nucleoporin Nup155 and the outer ring nucleoporin Nup133 to

the mitochondrion in some cells (Fig 4H, S3E and S3F Fig).
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Localization of NPHP-nucleoporin interactions to the base of the cilium

To determine whether interactions between NPHP and nucleoporin proteins occur at the base

of the primary cilium, we utilized the bimolecular fluorescence complementation (BiFC) assay

[45]. In this assay, a yellow fluorescent protein (YFP) variant is split in half, yielding N-termi-

nal (YN) and C-terminal (YC) fragments that can be fused to proteins of interest. When

expressed alone, the YN and YC fragments display little to no self-association and are non-

fluorescent. However, when the YN and YC fragments are brought into close proximity via a

close spatial association of their fusion partners, the fragments assemble a YFP molecule and

display fluorescence. YFP fluorescence thus provides a readout of both a protein-protein inter-

action and the location of that interaction. A similar assay was used to verify Nup-Nup interac-

tions within the nuclear pore complex [40] and between nucleoporins and transiting proteins

at the base of the primary cilium [34].

For our analysis, the NPHP proteins were tagged with Cerulean (Cer) at their N-termini to

identify transfected cells and with YC at their C-termini to test for interactions with nucleo-

porin proteins. The nucleoporins were tagged at their N-termini with YN and with a myc tag

to verify fusion protein expression. Co-expression of NPHP-YC and YN-Nup proteins that do

not interact results in localization of both proteins to the base of the cilium but no YFP fluores-

cence (Fig 5A). In contrast, co-expression of NPHP-YC and YN-Nup proteins that localize in

close spatial proximity at the base of the cilium reconstitutes YFP fluorescence at this location

(Fig 5B).

For nucleoporins, the inner ring and outer ring subcomplexes are stable entities and the

incorporation of an expressed, tagged subunit requires several days of protein expression and

subcomplex turnover [17,40]. In addition, in our hands, localization to the nuclear envelope

and cilium base is most reliable for expression of the smaller nucleoporin subunits. We thus

expressed YN-tagged versions of the inner ring nucleoporin Nup35 and the outer ring nucleo-

porin Nup43 for this assay. For NPHP proteins, we utilized YC-tagged versions of the INVS

module protein NPHP2, the NPHP1/4 module protein NPHP4, and the NPHP5/6 module

protein NPHP5.

When the INVS module protein NPHP2-YC was co-expressed with the inner ring nucleo-

porin YN-Nup35 in NIH 3T3 cells, both proteins localized to the base of the cilium and their

close proximity resulted in YFP fluorescence in 19/30 cells (BiFC signal, Fig 5C and 5E). These

results suggest that NPHP2 is in close spatial proximity to the inner ring nucleoporin Nup35

at the base of the cilium. In 2 of the cells where BiFC was observed, the expressed NPHP2-YC

and YN-Nup35 proteins and the BiFC signal were observed at the TZ. However, in 17 of the

cells where BiFC was observed, the expressed NPHP2-YC and YN-Nup35 proteins and the

BiFC signal extended from the TZ into the cilium shaft, suggesting that the irreversible nature

of the BiFC interaction crosslinks the NPHP2 and Nup35 proteins and thereby alters their

turnover and/or their trafficking within the cilium. When NPHP2-YC was co-expressed with

the outer ring nucleoporin YN-Nup43, a BiFC signal could not be detected (0/17 cells) despite

their colocalization at the base of the cilium (Fig 5D and 5E).

For the NPHP1/4 module protein NPHP4-YC, co-expression with the inner ring nucleo-

porin YN-Nup35 resulted in a BiFC signal at the base of the cilium in 4/35 cells whereas co-

expression with the outer ring nucleoporin YN-Nup43 resulted in no BiFC signal (0/12 cells)

(Fig 5E, S4A Fig). For the NPHP5/6 module protein NPHP5-YC, BiFC with the inner ring

nucleoporin YN-Nup35 was observed in 8/24 cells and with the outer ring nucleoporin

YN-Nup43 in 3/20 cells (Fig 5E, S4B Fig). Taken together, these results support the hypothesis

that interactions between NPHP proteins and nucleoporins can serve to anchor nucleoporins
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at the base of the primary cilium to regulate trafficking between the cilioplasm and the

cytoplasm.

Discussion

Recent work has uncovered important roles for nucleoporins outside the NPC. In addition to

their proposed role in gated entry into the cilium, nucleoporins have been implicated in
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regulating, for example, chromatin organization and gene expression [46,47] and in various

aspects of spindle assembly, kinetochore organization, and cytokinesis during mitosis [48–51].

The complement of nucleoporins at each subcellular location, as well as their functions and

spatial organization, are only beginning to be discovered and it is thought that different cellu-

lar contexts may require different nucleoporin composition [52,53]. In particular, the trans-

membrane nucleoporins are the least conserved across evolution and their roles have been

difficult to decipher in part owing to apparent functional redundancy [30]. For example, dele-

tion of the three known integral membrane nucleoporins in Aspergillus nidulans in not lethal

[54] and alternative mechanisms for anchoring of outer and inner ring nucleoporins to the

nuclear envelope membrane have been proposed [55–57]. Our inability to detect transmem-

brane nucleoporins at the base of the primary cilium [17] led us to hypothesize that cilium-spe-

cific proteins could function to anchor inner and outer ring nucleoporins at the base of the

cilium. Here, we identify direct interactions of nucleoporins with NPHP proteins using a yeast

two-hybrid assay and verify these interactions and co-localizations in mammalian cells. Based

on these results, we hypothesize that NPHP proteins may play a functional role in the anchor-

ing of nucleoporins at the base of the cilium.

Nucleoporins of the outer and inner ring complexes interact with TZ

proteins

Using a directed two-hybrid assay, we identified numerous interactions between nucleoporins

of the inner and outer ring subcomplexes and NPHP proteins of the INVS, NPHP1/4, and

NPHP5/6 modules (summarized in Fig 6). We then confirmed multiple interactions between
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nucleoporins and NPHP proteins using the knocksideways and BiFC assays in mammalian

cells (summarized in Fig 6). While a negative result in any of these assays does not rule out an

interaction between two proteins, these positive results provide strong support for the hypoth-

esis that NPHP proteins interact with nucleoporins at the base of the cilium.

We identified direct interactions of the inner ring protein Nup155 with NPHP2 and

NPHP9 of the INVS complex and NPHP5 of the NPHP5/6 complex. We also identified

direct interactions of the inner ring protein Nup205 with NPHP2 of the INVS complex.

These results are consistent with previous work where pull down/mass spec analysis identi-

fied the inner ring nucleoporins Nup188, Nup205, and Nup93 as co-precipitating with the

NPHP1/4 and the NPHP5/6 complexes [37]. In the NPC, Nup155 molecules form a scaf-

fold adjacent to the membrane of the nuclear envelope and can also bridge the inner ring

and outer ring complexes whereas Nup205 is localized closer to the central channel [29,30].

It seems plausible that a similar arrangement may occur at the base of the cilium with

Nup155 close to the ciliary membrane and Nup205 located near the doublet microtubules.

Consistent with this hypothesis, Nup155 and other components of the inner ring subcom-

plex were identified as being in close proximity to tectonic and TMEM components of the

membrane-associated MKS complex using a BioID-based proximity labeling approach

[36].

We identified strong interactions of the outer ring protein Nup133 with NPHP2 of the

INVS complex and NPHP5 of the NPHP5/6 complex. We also identified direct interactions of

the outer ring protein Nup160 with NPHP2 of the INVS complex and NPHP8 of the NPHP1/4

complex. In the NPC, Nup133 and Nup160 are located adjacent to the membrane of the

nuclear envelope [29,30]. At the base of the cilium, it seems plausible that these outer ring

nucleoporins contact NPHP proteins close to the membrane of the primary cilium. Consistent

with this prediction, nucleoporins of the outer ring subcomplex were identified in proximity

mapping studies of B9D2 of the membrane-associated MKS complex [36].

NPHP proteins in the INVS, NPHP1/4, and NPHP5/6 modules contribute

to nucleoporin binding

Our directed two-hybrid analyses indicate that multiple NPHP proteins can make direct inter-

actions with nucleoporins of the outer and inner ring complexes. A functional role for recruit-

ing nucleoporins was confirmed for NPHP2 of the INVS module and NPHP5 of the NPHP5/6

module. Our previous work found that NPHP5 is accessible to transmembrane and signaling

proteins transiting the ciliary gating zone [34], and here we report that NPHP5 interacts with

nucleoporins known to localize proximal to the nuclear membrane in the NPC, suggesting

that NPHP5 could form at least part of a nucleoporin anchoring complex at the outer regions

of the ciliary gating zone. Furthermore, fluorescence recovery after photobleaching (FRAP)

analysis demonstrated that NPHP5 displays little turnover at the base of the primary cilium

[34], again consistent with a structural role in anchoring gate components.

NPHP2 is the major organizer of the INVS compartment is required for localization of

NPHP3, NPHP9 and ANKS6 to this compartment [38,58–61]. NPHP2 has also been shown to

co-immunoprecipitate with the NPHP1/4 module components NPHP1 and NPHP4 and is

required for the proper localization of NPHP1 at the TZ [35,62,63]. We found that NPHP2 is

capable of binding to a number of nucleoporins and thus may serve a more general scaffolding

role at the base of the primary cilium than previously considered. NPHP2 may be membrane-

associated [64,65], a finding that would place its close spatial proximity to the inner ring

nucleoporin Nup35 near the membrane of the primary cilium.
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The location of the INVS compartment with respect to the TZ, and its function in cilium

assembly and gating, have been difficult to define. In mammalian cells, expressed GFP-NPHP2

localized to entire primary cilium in primary mouse fibroblasts and the monocilium in the

mouse node [66] or at the basal body and along the length of motile cilia of mouse trachea epi-

thelial cells [67]. In zebrafish and C elegans, GFP-NPHP2 localizes the proximal region of the

cilium [38,65,68]. However, the GFP-tagged version of NPHP2 may not reflect the localization

of the endogenous protein as the INVS compartment as marked by GFP-NPHP2 displays high

variability across cells in the length of its extension along the axoneme [37]. Antibody staining

for the endogenous NPHP2 protein has also produced variable results ranging from staining

of the entire cilium in MDCK cells [69] to staining of the proximal region of the axoneme in

polarized MDCK cells and mouse renal epithelial cells [58,61,62,64] to a spot that co-localizes

with but does not extend beyond TZ markers in mouse embryo and NIH-3T3 fibroblasts [63].

Thus, there may be cell type-specific differences in protein composition and localization of the

INVS compartment.

Nucleoporins in ciliary gating and ciliopathies

Nucleoporins of the outer ring, inner ring, cytoplasmic filament, and central channel subcom-

plexes have been localized to the base of the primary cilium at a location that corresponds to

the TZ [16,17,31–34]. Here, we show that inner ring and central channel nucleoporins also

localize as a single spot at the base of motile cilia in respiratory epithelial cells, suggesting a

conserved function in regulating entry into the ciliary compartment. Localization of nucleo-

porins to the base of the cilium has, however, been controversial as other groups have failed to

observe some of the same nucleoporins at the base of the primary cilium [15] and/or have

localized nucleoporins to barrel-shaped cylinders surrounding the mother and daughter cen-

trioles [31]. Differences in nucleoporin localization are likely due to differences in fixation and

staining methods between the studies. Indeed, a recent study demonstrated that immunoloca-

lization of a number of ciliary proteins is sensitive to the fixation and permeabilization meth-

ods utilized [70]. In our hands, immunolabeling of nucleoporins at the base of the cilium

requires similar fixation methods as used for immunolabeling nucleoporins in the NPC where

antibody access can be hindered by the density and biophysical properties of the NPC environ-

ment [71,72].

A role for nucleoporins in gating protein transit between the cytosol and cilium was first

suggested when microinjection of function-blocking reagents decreased ciliary entry of the

kinesin-2 motor KIF17 [17]. Later work used a crosslinking approach to block nucleoporin

function at the base of the cilium [33]. Recent work provided definitive proof that nucleo-

porins at the base of the cilium determine the size-exclusion barrier as depletion of the

inner ring nucleoporin Nup98 permitted the entry of proteins greater than 70 kDa into the

cilium [16]. A member of the outer ring complex, Nup85, was demonstrated to be required

for proper cilium localization of Nup98 [16]. Consistent with their role in determining cili-

ary protein content and function, mutations in nucleoporins have been found to correlate

with ciliopathies in human patients. In particular, a duplication of the inner ring compo-

nent Nup188 was found in a patient with heterotaxy in which altered left-right patterning of

the internal organs can lead to a severe form of congenital heart disease [73]. Further work

showed that depletion of the inner ring components Nup188 and Nup93 resulted in an

inability to generate primary cilia in cultured mammalian cells and motile cilia in the epi-

dermis of Xenopus embryos [73]. Ciliary functions of nucleoporins are thus an important

consideration when linking patient mutations in nucleoporins to the underlying biology of

the cell.
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Materials and methods

Plasmids

Bait and prey constructs for the directed yeast two-hybrid assay were made by subcloning

nucleoporin and NPHP genes into the pGBKT7 and pACT2 vectors, respectively, using conve-

nient restriction enzyme sites or by amplification by PCR followed by subcloning using conve-

nient restriction sites. Nucleoporin sequences used for subcloning were obtained from the

following sources: EGFP-HsNup35, EGFP-HsNup37, EGFP-HsNup43, MmNup62-EGFP3,

HsNup93-EGFP3, and EGFP-HsNup98 (EUROSCARF); HsNup155 (Mammalian Gene Col-

lection MGC:33787 IMAGE: 5295664), MmNup188 (MGC:106061 IMAGE: 4916413),

HsNup205 (MGC:168237 IMAGE:9020614), and HsNup88 (MGC:8530 IMAGE:2822595)

from Dharmacon; pSV2-Lac1-CFP-MmNup85 and EGFP-HsNup160 (gifts of Dr. Douglass

Forbes); EGFP-HsNup107 and EGFP-HsNup133 (gifts of Dr. Kyle Roux). NPHP sequences

used for subcloning were obtained from the following sources: pENTR-HsNPHP3,

-MmNPHP5, and -HsNPHP8 (gifts of Dr. Peter Jackson); pENTR-NPHP1, pENTR-NPHP2,

pENTR-NPHP4 (gifts of Dr. Friedhelm Hildebrandt); pGLAP5-B9D1 (gift of Dr. Jeremy

Reiter); pEGFP-mCep290/NPHP6 (gift of Dr. Joseph Gleeson, Addgene plasmid #27379

RRID:Addgene_27379); pENTR-MKS1 and pENTER-Nek8/NPHP9 (gifts of Drs. Tao Xu and

Jean-Francois Rual).

For the knock sideways assays, the sequence encoding amino acids 170–206 of rat Omp25

(GenBank: AF107295.1 [74]) was synthesized (Life Technologies) and subcloned into the

mCherry-C1 vector (Clontech). To generate NPHP2-mCherry-Omp25, NPHP4-mCherry

Omp25, and NPHP5-mCherry-Omp25, the coding sequences of NPHP2, NPHP4 or NPHP5

were inserted using convenient restriction enzyme sites.

For the bimolecular fluorescence complementation (BiFC) assays, we found that an N-ter-

minal fragment (aa 1–172) of the YFP variant mCitrine expressed with the C-terminal frag-

ment (aa 155–238) of the YFP variant Venus resulted in low self-assembly (and low

background fluorescence) but high BiFC fluorescence [34,75]. NPHP proteins were tagged

with the fluorescent protein Cerulean (Cer) to assess protein expression and localization and

with the YFP C-terminal (YC, C-terminal half of Venus) fragment. Cer-NPHP4-YC and Cer-

NPHP5-YC were described previously [34] and Cer-NPHP1-YC and Cer-NPHP2-YC were

constructed in a similar manner. Nucleoporin proteins were tagged with the YFP N-terminal

(YN, N-terminal half of mCtrine) fragment by synthesizing a DNA sequence encoding YN fol-

lowed by a flexible linker (aa sequence GGSG) and a myc tag (EQKLISEEDL) (Life Technolo-

gies) that was used to replace the EGFP sequence in the plasmids EGFP-HsNup35,

EGFP-HsNup37, and EGFP-HsNup43.

Directed yeast two-hybrid assay

Yeast two-hybrid bait and prey plasmids were transformed into yeast strains AH109 and Y187,

respectively, and protein-protein interactions were assessed by yeast mating. Briefly, yeast

strain AH109 expressing pGBKT7-Nup, pGBKT7-NPHP, or empty vector constructs was

mated to yeast strain Y187 expressing pACT2-Nup, pACT2-NPHP, or empty vector constructs

in 96 well plates. Diploid yeast were subsequently plated on double (-leu,-trp) and triple (-leu,-

trp,-his) dropout plates and screened for growth two days later. Successful mating was indi-

cated by growth on -leu,-trp drop out plates. Positive Nup-Nup, NPHP-NPHP, and Nup-

NPHP interactions were evidenced by growth on -leu,-trp,-his plates. Strong interactions gave

rise to yeast colonies within two days of plating while weaker interactions appeared after three

days.
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Cell culture

COS-7 cells (purchased from ATCC: CRL-1651) and NIH-3T3 cells (purchased from ATCC:

CRL-1658) were cultured in DMEM (Gibco) supplemented with 10% Fetal Clone III

(Hyclone) and 1% GlutaMAX (Gibco) and transiently transfected with Trans-IT LT1 (Mirus).

NIH-3T3 cells were transferred to serum-free medium immediately prior to transfection to

accumulate cells in G1 for visualization of the primary cilium.

Antibodies and microscopy

Antibodies were purchased against K40-acetylated α-tubulin (mouse monoclonal 6-11B-1,

Sigma T7451; 1:10,000), myc epitope tag (rabbit polyclonal Sigma C3956; 1:500), Nup62

(mouse monoclonal BD Biosciences 610497; 1:250), Nup96 (rabbit polyclonal NOVUS

NB100-93325; 1:250), and Nup133 (rabbit polyclonal Bethyl A302-385A; 1:750). Rabbit poly-

clonal antibodies against Nup98 were a gift from Dr. Richard Wozniak (1:2500). Secondary

antibodies were from Jackson ImmunoResearch (1:500).

The trachea was dissected from adult rats and epithelial cells were dissociated with a tooth-

pick, spun onto coverslips, and immediately fixed with 3.7% formaldehyde in PBS for 10 min-

utes and quenched with 50 mM NH4Cl/PBS for 5 min. The cells were blocked, washed, and

incubated with antibodies in IF buffer (0.1% Triton X-100, 0.02% SDS, 10 mg/ml BSA in PBS)

and mounted using Prolong Gold (Invitrogen). Confocal imaging was performed on Leica

SP5X and Olympus Fluoview 500 confocal microscopes with a 60 x 1.40 numerical aperture

(N.A.) objective. All experimental procedures were approved by the University of Michigan

Committee on the Use and Care of Animals (#PRO00008901) and performed in accordance

with the recommendations in the Guide for the Care and Use of Laboratory Animals of the

National Institutes of Health.

COS-7 cells were transfected with NPHP-mCherry-Mito and EGFP-NUP plasmids and

fixed 24 hours post-transfection with 3.7% formaldehyde in PBS, quenched with 50 mM

NH4Cl/PBS, then mounted using Prolong Gold (Invitrogen) and imaged. NIH-3T3 cells were

transfected with Cer-NPHP-YC and YN-myc-Nup plasmids and then fixed 48 hours post-

transfection with 3.7% formaldehyde/PBS, quenched with 50 mM NH4Cl/PBS, and then

blocked, washed, and incubated with antibodies in IF buffer. All antibody incubations were for

1 hour, followed by three washes of IF buffer. Fluorescence images were obtained using an

inverted epifluorescence microscope (Nikon TE2000-E) with 60x oil immersion objective (N.

A. 1.4) and a Photometrics Cool Snap HQ camera.

Supporting information

S1 Fig. Directed yeast two-hybrid analysis of NPHP-NPHP and NUP-NUP interactions.

Yeast of different mating types expressing proteins fused to a DNA binding domain (BD) or

transcription activation domain (AD) were mated pairwise. Transcriptional activation allow-

ing growth of diploid yeast was observed after 3 days. (A) NPHP-NPHP interaction analysis.

(B) NUP-NUP interaction analysis.

(EPS)

S2 Fig. Control mCh-mito construct for knocksideways assay. The mCh-mito construct

localizes to the mitochondrial surface but fails to recruit the inner ring nucleoporins (A)

GFP-Nup35 and (B) Nup155-EGFP3 or the outer ring nucleoporin (C) GFP-Nup133 to the

mitochondrial surface.

(EPS)
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S3 Fig. Analysis of NPHP1 and NPHP4 in the knocksideways assay. (A-C) NPHP1-mCh-

mito localizes to the mitochondrial surface but fails to recruit the inner ring nucleoporins (A)

GFP-Nup35 and (C) Nup155-EGFP3 or the outer ring nucleoporin (C) GFP-Nup133 to the

mitochondrial surface. (D-F) NPHP4-mCh-mito localizes to the mitochondrial surface but

fails to recruit the inner ring nucleoporin (D) GFP-Nup35 and the outer ring nucleoporin (F)

GFP-Nup133 but does recruit the inner ring nucleoporin (E) Nup155-GFP to the mitochon-

drial surface. Scale bars, 10 μm. Yellow text indicates the number of cells positive (pos.) or neg-

ative (neg.) for a knocksideways interaction.

(EPS)

S4 Fig. BiFC analysis of NPHP4 and NPHP5 with nucleoporins. (A) Co-expression of Cer-

NPHP4-YC with the inner ring nucleoporin YN-myc-Nup35 results in a positive BiFC interac-

tion in 4/30 cells. (B) Co-expression of Cer-NPHP5-YC with the inner ring nucleoporin YN-

myc-Nup35 results in a positive BiFC interaction in 8/24 cells. Scale bar, 5 um. Yellow text in

the top right corners indicate the number of cells scoring negative or positive for a BiFC inter-

action across two independent experiments. Yellow arrows indicate the base of the primary cil-

ium.

(EPS)
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