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An emerging picture of the nature of immune systems across animal phyla reveals both
conservatism of some features and the appearance among and within phyla of novel,
lineage-specific defense solutions. The latter collectively represent a major and underap-
preciated form of animal diversity. Factors influencing this macroevolutionary (above the
species level) pattern of novelty are considered and include adoption of different life styles,
life histories, and body plans; a general advantage of being distinctive with respect to
immune defenses; and the responses required to cope with parasites, many of which afflict
hosts in a lineage-specific manner.This large-scale pattern of novelty implies that immuno-
logical phenomena can affect microevolutionary processes (at the population level within
species) that can eventually lead to macroevolutionary events such as speciation, radia-
tions, or extinctions. Immunologically based phenomena play a role in favoring intraspecific
diversification, specialization and host specificity of parasites, and mechanisms are dis-
cussed whereby this could lead to parasite speciation. Host switching – the acquisition of
new host species by parasites – is a major mechanism that drives parasite diversity and
is frequently involved in disease emergence. It is also one that can be favored by reduc-
tions in immune competence of new hosts. Mechanisms involving immune phenomena
favoring intraspecific diversification and speciation of host species are also discussed. A
macroevolutionary perspective on immunology is invaluable in today’s world, including
the need to study a broader range of species with distinctive immune systems. Many of
these species are faced with extinction, another macroevolutionary process influenced by
immune phenomena.

Keywords: macroevolution, immunology, host–parasite interactions, evolutionary immunology, host shifting,

biodiversity

INTRODUCTION
Recent years have witnessed a dramatic increase in our under-
standing of the diversity of immune systems across animal phyla
(Flajnik and Kasahara, 2010; Messier-Solek et al., 2010; Rast and
Litman, 2010; this volume). Availability of genome sequences from
a broad variety of animals coupled with an increased appreciation
for the diversity of their defenses has given the study of immu-
nity a much stronger evolutionary foundation, one that has been
further enriched by studies of plant immunity and responses of
bacteria and archaea to threats to their genomes (Horvath and
Barrangou, 2010). The increasing depth and breadth of immuno-
logical studies is also bringing to light a greater awareness of
the impact that immunity has had on all forms of life, espe-
cially parasites. Here “parasite” is used inclusively, referring to
infectious agents ranging from viruses to bacteria to protists to
multicellular helminths. The features uniting parasites are that
they infect hosts, provoke some degree of fitness-diminishing
harm, prompt the deployment of immune responses, and under-
take immune evasive actions. “Immune systems” are referred to as
those molecules, cells, tissues, and organs that protect hosts from
parasites (see caveats below). This discussion excludes a broad
range of behavioral defenses like preening (Bush and Clayton,

2006) or avoidance (e.g., Mooring et al., 2003; Garnick et al.,
2010).

Here I attempt to draw together ideas that begin to put
immunological phenomena into a broader macroevolutionary
context. Macroevolution is the study of patterns, and the evolu-
tionary processes that have generated them, at or above the species
level (Stanley, 1998; Levinton, 2001). It is the study of how and
why life has diversified, and attempts to document how and why
lineages of organisms have come into being and either given rise
to additional lineages or gone extinct. The process of speciation
is germane to macroevolutionary studies because it is the process
responsible for increasing the diversity of life forms. Extinction
and its causes are also an essential part of such studies.

The attributes of immune systems across the spectrum of ani-
mal diversity provide a new way to view and reinterpret the diver-
sity of animals. Immune systems exhibit unforeseen novelty and
thus offer new insights into major selective forces influencing ani-
mal life. Also, phenomena that are fundamentally immunological
provide fertile ground for investigating the impact of immunity as
a driver of biodiversity. The role of immune systems in macroevo-
lutionary processes is one that deserves recognition and more
study.
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In considering what is to follow, several caveats should be borne
in mind:

(1) We are just beginning to view molecular components of
immune systems from a broad sampling of animal phyla.
Detailed analyses are still few for how these presumptive
immune components actually function in defense, and how
critical their roles might be in protecting the organisms in
question.

(2) Also poorly known are the specific parasite threats faced by
the more obscure groups of animals serving as hosts.

(3) Many of the examples of immunological novelty presented
below emphasize differences at the phylum level. Some phyla
such as the Arthropoda, Mollusca, and Chordata are immense
in species numbers and undoubtedly collectively employ as
yet many undiscovered immune capabilities. Also, some of the
smaller animal phyla are essentially unexplored with respect
to their immune systems. Once understood, these additional
examples will only add to the overall diversity of immune
responses.

(4) It is not always easy to circumscribe “the immune system” or
an “immune response.” This is particularly so in cases where
potent defenses for parasites result from selection for variant
alleles for genes like hemoglobin B or apolipoprotein L-1 that
otherwise might not be considered a core part of the immune
system (Anstee, 2010; Barreiro and Quintana-Murci, 2010;
Genovese et al., 2010; Wheeler, 2010).

IMMUNOLOGICAL NOVELTY AMONG ANIMAL PHYLA: AN
UNDERAPPRECIATED FORM OF DIVERSITY
Discoveries relating to the innate immune systems of plants,
flies, and mammals have tended to accentuate the similarities
among them, implying a grand conservatism even across king-
doms with respect to basic immune system design and function.
Indeed, there are intriguing similarities between the membrane-
associated and intracytoplasmic receptors of plants and ani-
mals suggestive that some basic solutions to recognition and
response to parasites have been conserved since at least the
time animal and plant lineages diverged. However, particularly
given that some of these similarities are a likely result of con-
vergent evolution rather than indicative of a common origin
(Ausubel, 2005), conserved immune features are not the empha-
sis here. Rather, this overview accentuates the emergence of
immunological novelty among and within animal phyla (Figure 1;
Table 1).

The most basal animal group is the phylum Porifera, the
sponges (Srivastava et al., 2010). Sponges lack the complex tissue
and organ structure found in other animal phyla, and lack cells spe-
cialized for protection from parasites. Although sponge immuno-
biology is in its infancy, one of the best-known sponges, Suberites
domuncula, possesses membrane-spanning molecules that contain
an intracellular Toll-interleukin 1 receptor (TIR) domain, though
it lacks an external leucine-rich repeat pattern recognition receptor
more typical of TLRs. On the basis of having a MyD88 homolog,
S. domuncula has at least the rudiments of an NF-κB signaling
pathway. Sponges also have molecules for attacking bacterial mem-
branes, presumptive antiviral responses (Schroder et al., 2008), and

diversified scavenger receptor cysteine-rich molecules of unknown
function (Wiens et al., 2007).

Among basal animals, it is members of the phylum Cnidaria
(jellyfish, Hydra, anemones, and corals) that have proven most sur-
prising with respect to the large size and content of their genomes,
including their immune systems. Cnidarians have distinct tissues
but lack organs and are generally considered to be diploblastic,
meaning they have recognizable ecto- and endoderm, but lack
well-developed mesoderm tissue. Like sponges, they lack recogniz-
able specialized immune cells. However, the starlet sea anemone
Nematostella vectensis has at least one TLR, an NF-κB signaling
pathway, a homolog of a complement 3-like molecule, the likely
presence of functioning intracellular NOD-like receptors (NLRs),
perforin-like molecules, diverse C-type lectins (Wood-Charlson
and Weis, 2009), and even a recognizable homolog of the recom-
bination activating gene, RAG1 (Miller et al., 2007; Augustin et
al., 2010). Cnidarians often live in colonies and have to con-
tend with encroaching competitors, including conspecifics. For
this they have well-developed mechanisms to recognize self and
non-self. One of the responsible molecules has been identified,
and is surface expressed, polymorphic and possesses three exter-
nal immunoglobulin superfamily (IgSF) domains (Nicotra et al.,
2009).

The remaining animals, the Bilateria, are bilaterally symmetri-
cal and triploblastic, with well-developed tissues and organs. They
often have specialized immune cells. Most fall into two major
lineages, the protostomes and deuterostomes. Among the pro-
tostomes, representatives of the molting clade (Ecdysozoa) have
been most extensively studied in an immune context, as this clade
includes nematodes and arthropods, both containing well-studied
model organisms. Caenorhabditis elegans and other nematodes
have reduced genomes and from an immunological perspective
are surprising for what they do not have. Although C. elegans
has one bonafide TLR that plays a role in defense against some
bacteria (Tenor and Aballay, 2008), it lacks Myd88, NF-κB and
several other components of the canonical Toll pathway. NLRs are
also lacking. Nonetheless, C. elegans can mount inducible, par-
asite specific responses. It has several novel signaling pathways
for defense (Irazoqui et al., 2010) and produces many distinc-
tive antimicrobial peptides (AMPs) for protection from bacteria
(Roeder et al., 2010). C-type lectins may serve as recognition mol-
ecules in C. elegans. The preoccupation with production of AMPs
by gut cells reflects their diet of bacteria, which could include
potential parasites (Roeder et al., 2010).

Another prominent model of ecdysozoan immunity is
Drosophila (Lemaitre and Hoffmann, 2007), but increasingly other
insect are studied as well, such as mosquitoes because of their
role in transmitting human parasites (Bartholomay et al., 2010).
Insects have dedicated immune cells such as plasmatocytes and
lamellocytes that circulate through their open circulatory system
and phagocytose or encapsulate foreign objects. The Drosophila
immune system also shows evidence of gene loss: it lacks the
C3-like complement component and NLR homologs found in
cnidarians. Their TLRs are different from those of vertebrates in
that they do not engage microbial ligands directly. Of their nine
TLR genes, only one or two function in immunity, activating NF-
κB signaling pathways in the fat body to produce AMPs (Lemaitre
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FIGURE 1 | An overview of some of the novel features associated

with immune responses of representatives of major animal lineages

(see text for details). TLR, Toll-like receptor; AMP, antimicrobial peptide;
Dscam, Down syndrome cell adhesion protein; VCBPs, variable

region-containing chitin-binding proteins; NLRs, intracellular NOD-like
receptors; LRR, leucine-rich repeat; IgSF, immunoglobulin superfamily;
Ab, antibodies; TCR, T cell receptor; MHC, major histocompatibility
complex.

and Hoffmann, 2007). Insects are by no means immunologically
bereft though. They have a number of other effective defense com-
ponents not seen in many other organisms. They have elaborate
cascades of CLIP-serine proteases that mediate and coordinate
phagocytosis, nodule formation, encapsulation, and AMP forma-
tion, and they can deposit layers of melanin around foreign objects
(Kanost et al., 2004). They engage multimeric fibrinogen-related
proteins (FREPs) in parasite recognition (Dong and Dimopou-
los, 2009) and employ Down syndrome cell adhesion molecule
(Dscam), a member of the IgSF, in antigen recognition. Tens of
thousands of Dscam isoforms can potentially be generated by
alternative splicing (Schmucker and Chen, 2009) and parasite
challenge-specific Dscam splice form repertoires can be produced
(Dong et al., 2006).

Insect studies provide additional examples of immunological
novelty, at the ordinal, family, or even genus level. One exam-
ple is provided by Drosophila and Anopheles, both in the same
order (Diptera), but representing very different life styles and hav-
ing been separate lineages for 250 million years. Gene families
involved in immunity have evolved rapidly and divergently in the
two dipterans. For example, with respect to thioester containing
proteins (TEPs), Anopheles has 10 genes and Drosophila only four,
with only one orthologous pair between the two. Anopheles has
58 fibrinogen-like immunogenes whereas Drosophila has only 14,
with only two shared orthologous pairs (Dong and Dimopoulos,
2009).

At the family level, a comparison of three different mosquito
genera (Aedes, Anopheles, and Culex, all in the Culicidae) has
revealed prominent genus specific expansion of some immune

gene families (Bartholomay et al., 2010). Comparative studies of
Drosophila species are particularly revealing, showing that novel
immune genes and immune gene families have originated rela-
tively recently, suggestive of a role of parasites in driving adaptive
evolution in flies (Sackton et al., 2007). Furthermore, for par-
ticular immune proteins, the amino acids under positive selec-
tion vary between Drosophila species groups, suggesting different
fly species experience different parasite pressures (Morales-Hojas
et al., 2009). Insects with very different life styles, such as the
social honey bees (Evans et al., 2006) and ants (Smith et al.,
2011), and symbiont-dependent aphids (Pennisi, 2009) likewise
have immune systems that are surprisingly divergent from the
Drosophila immune system.

The other major lineage of protostomes, the Lophotrochozoa,
includes prominent groups such as the flatworms, annelids, and
mollusks. In the polychete annelid Capitella capitata, TLRs have
undergone an expansion to over 100 genes, most of which are sim-
ilar, suggestive of recent duplication. Another annelid, the leech
Helobdella robusta, has only 16 TLR homologs which are not only
highly divergent from one another but also are not orthologous
to any of the polychete sequences (Davidson et al., 2008). In the
freshwater snail Biomphalaria glabrata, FREPs are encoded by an
expanded gene family, and are implicated in defense against gas-
tropod parasites such as digenetic trematodes (Hanington et al.,
2010a,b). In B. glabrata, FREPs are particularly noteworthy for
being comprised of juxtaposed IgSF and fibrinogen domains, and
for the fact they are somatically diversified during the production
of hemocytes by the snails (Zhang et al., 2004). Expanded families
of C-type lectins are present in other mollusks and the bivalve
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Mytilus edulis is capable of generating diversified forms of the
AMP myticin C both within and among individuals (Costa et al.,
2009).

Among invertebrate deuterostomes, the sea urchin has proven
surprising in featuring dramatic echinoderm-specific expansion
of several recognition molecules (Hibino et al., 2006). Sea urchins
possess >220 TLR genes (vertebrates usually have 21–25), >200
NLRs (mammals have 20–35),>200 SRCR genes (humans have 16;
Messier-Solek et al., 2010), and a novel Sp 185/333 gene family. The
latter gene family produces a repertoire of defense proteins more
diverse than the sequence diversity encoded in the genes, indica-
tive of the presence of another mechanism to generate diversity
(Ghosh et al., 2010). Sea urchins also possess an NF-κB path-
way, lectin and alternative complement pathways and homologs
of RAG1 and RAG2, but do not produce immunoglobulins (Ig), T
cell receptors (TCRs), or have a major histocompatibility complex
(MHC; Hibino et al., 2006).

With respect to our own phylum, the Chordata, the cephalo-
chordate Branchiostoma (better known as Amphioxus or the
lancelet), is novel in having expanded families of TLRs, NLRs,
and SRCRs (Huang et al., 2008), over 1,200 C-type lectins, and
an extraordinary diversity in adaptors/facilitators and signal-
ing/effector domains functioning downstream from their NLRs
(Huang et al., 2008; Messier-Solek et al., 2010). Amphioxus also
possesses distinctive variable region-containing chitin-binding
proteins (VCBPs; Dishaw et al., 2008; Cannon and Litman, 2009)
which are further distinguished by high levels of polymorphism,
resulting in yet another distinct “hyper-diversified,” multigene
immune receptors family (Dishaw et al., 2010). Cephalochordates
have a functioning complement system operating via the alter-
native and lectin pathways, including with a distinctive expanded
number of C1q-like genes (Huang et al., 2008; Messier-Solek et al.,
2010). A RAG1 gene is present, and possibly a RAG2 gene as well
(Dong et al., 2005).

The urochordates, or tunicates, the sister group to the verte-
brates, in the same immunological vein as nematodes and flies,
are surprising for what they do not have. None of the genes play-
ing a pivotal role in adaptive immunity in the jawed vertebrates
are present. MHC, TCRs, Ig, RAG, and activation-induced cyti-
dine deaminase (AID) genes are all lacking. V-like and C1-like
domains are present and VCBPs have been identified (Cannon
et al., 2004), and they do have complement components, three
TLRs, an expanded family of C-type lectins and FREPs. How-
ever, urochordates lack obvious expansions of any gene family
highly relevant to vertebrate immunity (Azumi et al., 2003). Based
on what we know thus far, genome reduction is the hallmark of
urochordate immunobiology.

Even closer to home are the agnathans or jawless vertebrates,
lampreys and hagfish, the sister group to the jawed vertebrates
or gnathostomes. We now know they lack RAG1 and RAG2
and do not produce TCRs or Ig, however, they have a remark-
able ability to make highly diverse variable lymphocyte receptors
(VLRs) that consist of somatically re-arranged modules con-
taining leucine-rich repeats (Pancer et al., 2004). It is striking
that agnathans and gnathostomes have adopted divergent solu-
tions to the same problem of generation of recognition capabil-
ity, both of which involve rearrangements of germ-line encoded

genes, but in entirely different ways with different starting sets of
molecules.

The basic gnathostome immune system, the one most familiar
to immunologists, features a close collaboration between innate
and adaptive arms. As noted above, relative to some of the inver-
tebrate deuterostomes such as echinoderms or cephalochordates,
gnathostome innate immune components are modest in num-
bers, typically possessing 10–25 TLRs and 20–35 NLRs (Messier-
Solek et al., 2010). The gnathostome adaptive immune system
features somatic diversification of both TCRs and Ig, requiring
for this process RAG1 and RAG2, the former likely derived and
modified from a transib-like transposon (Fugmann, 2010). The
gnathostome immune system works in conjunction with a unique
antigen processing and presentation system, the MHC, to limit
self-reactivity. It is notable for its specificity, its emphasis on expan-
sion of relevant clones of lymphocytes, and for its memory and
capacity to produce heightened secondary responses long after
primary stimulation (Litman et al., 2010). The ongoing discovery
of new types of immune cells (Neill et al., 2010; Saenz et al., 2010)
and novel receptors (Parra et al., 2007) strongly suggests there
are more fundamental insights to come with respect to gnathos-
tome immunology. Furthermore, and a point relevant for the
general discussion here, there is considerable variability among
gnathostomes in how their immune systems function (Flajnik and
Kasahara, 2010).

To conclude this overview, it is indeed remarkable that organ-
isms as diverse as cnidarians and humans have some immune
architecture such as TLRs (and associated pathways) and NLRs in
common. However, it is argued from the examples provided above
that at least as compelling are the differences among and within
phyla, even among species in a genus. Surprises abound, such
as in the unexpectedly complete set of immune genes found in
basal cnidarians and the immune genome reductions exhibited by
nematodes, arthropods, and urochordates. Even the more familiar
examples of conservatism such as TLRs and NLRs in arthropods
and vertebrates may have been derived independently (Hughes,
1998; Hughes and Piontkivska, 2008; Zhang et al., 2010). Large
lineage-specific gene expansions such as noted for echinoderms,
and domain reshuffling such as for invertebrate NLRs (Zhang
et al., 2010) have occurred, creating remarkable heterogeneities
among and within phyla. Layered on top of this are other forms
of innovation such as elaboration of novel signaling pathways
and production of associated AMPs in nematodes, distinct anti-
gen recognition and melanin-deposition systems in arthropods,
and the emergence of several distinct mechanisms for generating
diverse antigen receptors in mollusks, arthropods, echinoderms,
cephalochordates, agnathans, and gnathostomes. From this it is
concluded that immune systems across and within phyla have a
remarkable propensity to generate novelty and distinctiveness. As
we learn about the immune systems of more animals, this diversity
is bound to increase.

DRIVERS OF IMMUNOLOGICAL NOVELTY
It is hardly surprising that immune systems are so variable. Ani-
mals have been extant and diversifying for up to 800 million years
(Erwin et al., 2011). They have adopted a diversity of life styles:
sessile, colonial predators; inhabitants of extreme environments

Frontiers in Immunology | Molecular Innate Immunity March 2012 | Volume 3 | Article 25 | 6

http://www.frontiersin.org/Immunology
http://www.frontiersin.org/Molecular_Innate_Immunity
http://www.frontiersin.org/Molecular_Innate_Immunity/archive


Loker Macroevolutionary immunology

dependent on chemosynthetic symbionts; animals that are at times
net producers of energy due to their photosynthetic symbionts;
pelagic species that live in enormous schools; inhabitants of arid
terrestrial environments; social species living in large colonies; and
endoparasites that are so modified morphologically as to belie their
origins, to name just a few. These different life styles will impose
very different exposures to potential parasites.

Similarly, life histories vary radically from wind-dispersed
organisms like tardigrades or rotifers that live in ephemeral habi-
tats or that have life spans measured in hours, to sessile filter
feeders like marine bivalves that routinely live for over 100 years
in the same location. The role of life history traits such as survival
rates and reproductive output are predicted to strongly influence
the extent and kinds of particular immune responses that might
be expected both among and within particular host species (Lee,
2006).

Another factor likely to have influenced immune capability is
the nature and extent of commitment to mutualistic symbionts.
Some animals have established mutualistic associations with what
are essentially monocultures of specialized bacteria (Nyholm and
Nishiguchi, 2008; Pais et al., 2008). Others, like ourselves, are
dependent on a diversity of both archaeal and bacterial mutualists
to which our immune system has made extensive accommodation.
Third party symbionts have long played a role in educating, aug-
menting, and modulating animal immune systems (Turnbaugh
et al., 2007). The outcome of host–parasite interactions is often
influenced by third party symbionts which probably play a far
great role in host defense in many animal groups than customarily
realized (Loker, 1994; Welchman et al., 2009; Gross et al., 2009;
Eberl, 2010).

The adoption of body plans differing in complexity and mass
has also influenced immune system structure and function. It has
been argued that evolution of the vertebrate jaw and an accom-
panying predatory life style introduced parasites into the gut and
required a more elaborate adaptive immune system that now typi-
fies gnathostomes (Matsunaga and Rahman, 1998). It has also been
argued that the complexities of adaptive immunity could not have
evolved in animals with limited numbers of cells or with small size
or simplified body architecture (Hauton and Smith, 2007). With
respect to body mass, for vertebrates, it has been suggested that
the number of B and likely T cells in a clone scale with body mass
as does the B cell repertoire (Wiegel and Perelson, 2004). The gen-
eral point is that the adoption of different habitats, life histories,
symbionts, and bodies of differing body mass and complexity are
all factors that will influence immune system design and mode of
action.

A GENERAL ADVANTAGE OF IMMUNOLOGICAL NOVELTY – BEING
DIFFERENT FROM YOUR NEIGHBORS
In addition to the above considerations, all organisms have to
contend with another category of symbionts, namely parasites.
Because viruses, bacteria, and protists were present before animals
arose, all animals from their inception would have had to con-
tend with these parasites. Several modes of transmission of such
parasites among early animals of disparate lineages were available,
including: intimate proximity of many different kinds of animals
(such as on a coral reef), predation, presence of vectors imbibing

blood or plant juices containing parasites, and even one para-
site serving as a vector for another, as for example a trematode
vectoring a bacterium into new animal hosts.

In such a situation, where frequent transfer of parasites was
possible among hosts from even disparate phyla, if all emerging
animal lineages had the same defenses, it would be possible for an
effective parasite that had overcome the defenses of one host group
to simply spread into another host phylum. Consequently, having
an immune system with distinctive means of antigen recognition
and/or novel effector mechanisms would have been a distinct
advantage when inevitably confronted with parasites that had
evolved in other host groups (Figure 2). Being immunologically
different increases the odds that parasites from other inhabitants
of the same coral reef are not as easily acquired. The notion that
a parasite can track and exploit a common host genotype creat-
ing an advantage of rareness has been predicted and observed in
specific host–parasite systems (Trachtenberg et al., 2003; Wolinska
and Spaak, 2009), further suggestive of a similar dynamic favoring
distinctiveness or“avoidance of commonness” among members of
different host lineages.

LINEAGE-SPECIFIC ANIMAL PARASITES AS ADDITIONAL DRIVERS OF
NOVELTY
Once animals began to diversify, a major trend was for some ani-
mals to parasitize others. Some animal parasites became wholly
or largely committed to particular lineages of animal hosts, in
which they subsequently diversified. Such lineage-specific par-
asites (some examples in Table 2) are another general factor
expected to drive immunological novelty. These parasites often
establish prolonged, intimate, and extensive infections in their
chosen hosts that have profound fitness consequences such as cas-
tration or death (Lafferty and Kuris, 2009a). Furthermore, given
the phylogenetic diversity represented among these parasites, it is
not surprising they would evolve novel methods of infectivity.
For example, ichneumonid and braconid hymenopteran para-
sitoids have acquired mutualistic polydnaviruses that function to
suppress the immune responsiveness of their hosts and facilitate
parasitoid infection (Webb et al., 2009). In contrast, without the
aid of viral symbionts, larvae of digenetic trematodes secrete both
anti-oxidants and immunosuppressive factors that down-regulate
snail host immune components for a period sufficient to enable
them to complete their lengthy period of larval development (Han-
ington et al., 2010a). Therefore, the immune response devised by a
particular host lineage afflicted with its own phylogenetically dis-
tinct, host specific, and harmful parasites would likely be divergent
from the responses mounted by a different host group experienc-
ing its own lineage-specific parasites (Figure 2). This is not to
imply that only animal parasites have developed lineage-specific
associations with hosts, but merely serves to show that specialized
parasites can help us understand the origins of immunological
novelties.

A ROLE FOR IMMUNITY IN GENERATING PARASITE
BIODIVERSITY
The macroevolutionary patterns noted above with respect to nov-
elty in defense strategies among animal lineages could not occur if
there were not microevolutionary processes ultimately involved in
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FIGURE 2 | One scenario for early in the divergence of animals is that

different lineages (A–D) have fundamentally similar immune systems

such that they all are colonized by the same parasites. In the case shown
at the top, an immunological innovation occurred in lineage A, that allowed it
to resist these parasites. This may have permitted a subsequent radiation in

“parasite-free space” in this host lineage. At the bottom, lineage D has
acquired a lineage-specific parasite different from those previously
experienced. This requires an immunological accommodation that causes the
immune system of lineage D1 to diverge. Both the host lineage and the
lineage-specific parasites along with them may subsequently diverge.

Table 2 | Examples of parasites that are “lineage-specific” in particular host groups during at least part of their life cycles.

Parasites Species (n) Hosts

Digenetic trematodes (as larvae) 18,000 Mollusks (usually gastropods)

Unionid bivalves 1,000 Fish

Rhizocephalans 260 Decapod crustaceans

Poecilostome copepods 400 Cnidarians

Sisyridid sponge flies 50 FW sponges and some bryozoans

Hydracarina water mites 5,000 Aquatic insects

Tantulocaridans 30 Crustaceans

Acroceridae >500 Spiders

Pipunculids 1,388 Leafhoppers and planthoppers

Tetracneminae chalcidoid wasps 815 Pseudococcid insects

Banchinid ichneumonid wasps 1,500 Lepidopteran insects

Ichneumoninae ichneumonid wasps 350 genera Lepidopteran insects

Aphidiinae braconid wasps 400 Aphids

Conopidae 800 Mostly wasps and bees

This list is not exhaustive and merely serves to illustrate the concept that particular host lineages acquire unique parasites that are likely to have distinctive methods of

infectivity that could influence how their host’s immune systems are shaped by selection. Although cases where members of the parasite groups identified colonize

hosts outside the indicated host lineage certainly occur, they do not negate the idea that the host groups indicated above have been far more affected in aggregate

than a host lineage containing an isolated member harboring a peculiar outlying parasite. Also, for some huge groups, such as the ichneumonid wasps, although

when viewed more inclusively they infect much broader groups of hosts (such as insects or terrestrial arthropods), the point remains they have had relatively little

impact on other major host lineages beyond the insects.

generating them. These microevolutionary processes occur below
the species level, within and among populations of either host
or parasite species, and might culminate in speciation of either

participant. Speciation may be accompanied by colonization of
new habitats, and further divergence to create major new lineages.
Starting with the process of parasite diversification, the sections
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below discuss how the involvement of immunology in microevo-
lutionary processes could lead to events that can help explain the
macroevolutionary patterns discussed above.

The following quotes outline some of the key ideas for how
immunity can play a role in generation of parasite diversity.

“For a pathogen, the selective pressures arising from the
host immune system are a major influence on the evolu-
tion of mechanisms of infectivity and of immune-recognition
avoidance” (Acevedo-Whitehouse and Cunningham, 2006).

“In parasitism an essential factor in survival is immune
escape, which allows a parasite to resist host attack. Immune
escape is a mechanism for reducing gene flow at the level of
the compatibility filter because its result is assortative sur-
vival (Combes and Théron, 2000) as opposed to assortative
mating.” (Combes, 2001, p. 154).

“The stepwise coevolutionary process results in extreme
specialization and complex defense mechanisms. . .specialization
is likely to increase the rate of speciation that may occur in
both host and parasite” (Price, 1980)

“Host specificity thus is an ideal prerequisite for rapid
speciation” (Mayr, 1963).

IMMUNITY IS OFTEN RESPONSIBLE FOR THE SPECIALIZATION TO
PARTICULAR HOST SPECIES SHOWN BY PARASITES
Parasites are often cited as examples of specialists because they have
limited ranges of host species, often with restricted ranges of habi-
tats within their chosen hosts. For example, the lineage-specific
parasites mentioned above, often show considerable specificity to
particular species or genera within their adopted host lineages.
Most animal parasites are host specific (Poulin and Keeney, 2008;
Agosta et al., 2010), but this by no means is to suggest that general-
ists do not occur: parasites like Schistosoma japonicum, Toxoplasma
gondii, Borrelia burgdorferi, or the rabies virus routinely infect a
remarkably broad range of host species. Using molecular tech-
niques to identify parasites, species formerly considered to be
generalists have in some cases been shown to be complexes of
cryptic, host specific species (Poulin and Keeney, 2008).

As eloquently documented by Combes (2001), both encounter
and compatibility filters operate to restrict the spectrum of host
usage. Encounter filters pertain in situations where host and par-
asite live in different geographic localities, have different ecolog-
ical circumstances, or where host or parasite behavioral tenden-
cies preclude contact. The compatibility filter refers to barriers
imposed by the host that prevent infection once contact has
occurred. The compatibility filter includes both physiological and
biochemical suitability of the host to support the parasite, and the
active defense provided by the immune system.

Encounter filters are undeniably important in restricting par-
asite host range. Many examples of emerging infections (Goss
et al., 2009; Gray et al., 2009; Pfeffer and Dobler, 2010) owe their
emergence to a change in the encounter filter such that a new
combination of parasite (often including its vector) and host are
juxtaposed (Daszak et al., 2000; Parrish et al., 2008; Weissenbock
et al., 2010). Emerging diseases are an indication that parasite
infectivity is not always dependent on a long accommodation to a
particular host species: lack of contact may have prevented prior
infections. Similarly, experimental infections of new hosts with

parasites essentially bypass the encounter filter, and are sometimes
successful (Poulin and Keeney, 2008), affirming the reality and
importance of the encounter filter.

With respect to the compatibility filter, a role for unsuitability
should not be discounted and could be manifested in several ways,
such as a lack of receptors needed for efficient viral entry into cells
(Parrish et al., 2008), lack of appropriate structures for parasite
attachment (Tompkins and Clayton, 1999), or by a general failure
to provide the biochemical environment needed for the parasite
to survive (Sullivan and Richards, 1981).

Although unsuitability is probably underappreciated with
respect to preventing infections, relying on the possibility of being
unsuitable is not a cogent defense strategy. The importance of
active immunity to the compatibility filter is illustrated by several
lines of evidence.

(1) As illustrated by HIV, when the immune system is compro-
mised, the door is opened to opportunists that themselves can
become life-threatening (Holmes et al., 2003).

(2) Genetic defects in the immune system, such as with TLRs,
are associated with increased susceptibility to several different
pathogens (Qureshi and Medzhitov, 2003).

(3) Experimental exposures of hosts to parasites they have not
previously encountered often fail (Bowen, 1976; Bozeman
et al., 1981; Vidal-Martinez et al., 1994; Philips and Clark-
son, 1998; Sapp and Loker, 2000; Duke, 2004; de Vienne et al.,
2009; Giraud et al., 2010) or the parasite replicates poorly or
is inefficiently transmitted in a new host (Komar et al., 2003;
Parrish et al., 2008). Table 3 provides examples of parasites in
novel hosts that are engaged and killed by immune responses.

(4) Host defense genes are under strong selection and are con-
spicuous for evolving quickly (Sackton et al., 2007;Viljakainen
et al., 2009; Barreiro and Quintana-Murci, 2010; Schulte et al.,
2010).

(5) The extraordinary diversity of strategies undertaken by para-
sites to evade, manipulate, or suppress the immune system
is testament to the impact of immunity on their success
(Schmid-Hempel, 2008). These evasive strategies have been
shown in some cases to be specific with respect to the particu-
lar hosts involved (Table 4), providing a mechanistic basis for
the connection between immunity and parasite specialization.

Given that the consequences to a parasite for engaging the com-
patibility filter of an atypical host could be disastrous and result
in its death, strong selection to avoid colonization of such hosts
would be expected in some cases. Similar considerations may also
apply to the host as well, as mounting an immune response can be
costly and detrimental (Graham et al., 2011). This means that some
avoidance behaviors attributed to the encounter filter may actu-
ally be a consequence of the operation of a strong host immune
response (Kuris et al., 2007; Keesing et al., 2009).

To conclude this section, specialization and attendant host
specificity is a central, emergent property of parasitism and has
multiple underlying determinants, involving both encounter and
compatibility filters. The ubiquity of host defenses and the evi-
dence that they often eliminate novel parasites argue that host
immune systems play a critical role in limiting parasite host
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Table 3 | Examples of colonizing parasites, or parasites placed in novel hosts, that are killed or limited by immune responses.

Infection of the crab Pachygrapsus marmoratus with the rhizocephalan barnacle Sacculina carcini results in melanization of larvae in thoracic ganglia (Kuris

et al., 2007)
Antibody/factor that activates complement in serum of the non-host Raja radiata kills the tapeworm Acanthobothrium quadripartitum whereas larvae survive

in serum of the normal host, Raja naevus (McVicar and Fletcher, 1970)

Destruction of cercariae of avian schistosomes in the skin of mammals associated with a mixed Th1/Th2 lymphocyte cytokine response followed by more

polarized Th2 response upon repeated exposures (Horak and Kolarova, 2005)

Encapsulation of hymenopteran parasitoids by hemocytes of non-permissive insect hosts (Schmidt et al., 2001)

Lysis of the trypanosome Trypanosoma brucei brucei by apolipoprotein L-1 in serum of humans who are refractory to this subspecies (Wheeler, 2010).

Disruption of the Erk-STAT1 signaling pathway allows cross species transmission of the normally rabbit-specific myxoma virus to mice (Wang et al., 2004)

Animal handlers who were exposed to a new coronavirus developed antibodies to the new virus and did not develop clinical infections (Guan et al., 2003)

Species specific forms of APOBEC3G and other innate, intracellular defense components, can prevent cross species transfer of lentiviruses (Mangeat

et al., 2004; VandeWoude et al., 2010)

Table 4 | Examples of parasite immune evasive factors that are host specific in their action.

A staphylococcal complement inhibitor that specifically blocks human C4b2a and C3bBb, interfering with additional C3b deposition through classical, lectin

or alternative pathways (Rooijakkers et al., 2005). Sung et al. (2008) found several genes conserved in all Staphylococcus aureus isolates from humans

were variable or missing in one or more animal isolates, including fnbA, fnbB, and coa.
Human and murine chlamydial infections depend on different virulence factor genes that coevolved to counter host species specific IFN-γ-mediated effector

responses mounted by the particular host species (Nelson et al., 2005).

Orf virus encodes a secreted protein GIF that binds to and inhibits GM-CSF and IL-2 of ovines but not humans or murines, consistent with the idea that

Orf virus is evolutionarily adapted to sheep as its primary host (Seet et al., 2003).

Different strains of influenza A virus likely have NS1 genes adapted to antagonize the IFNα/β antiviral system of their specific host species (Garcia-Sastre,

2006).

In a review of the interactions between monogenean parasites and their fish hosts, Buchmann and Lindenstrøm (2002) concluded that “immune evasion

mechanisms are probably a main factor in host specificity.”

Rosengard et al. (2002) noted that the smallpox inhibitor of complement enzymes (SPICE) is nearly 100-fold more potent than the vaccinia homolog in

inactivating human C3b and sixfold more potent at inactivating C4b, providing evidence for how variola proteins are particularly adept at overcoming human

immunity relative to vaccinia.

The host specificity of three species of Bacillus (B. cereus, B. thuringiensis, and B. anthracis) is determined by the presence of virulence plasmids that

determine the type of particular virulence factors produced (Gohar et al., 2005).

ranges and thereby at least in part dictate the specialization so
characteristic of parasitic organisms. Also in support of this claim
is that some patterns of parasite host specificity can be attributed
to the operation of specific immune evasion strategies, and that
such strategies are pervasive among parasites.

DOES SPECIALIZATION DICTATED BY IMMUNITY ACTUALLY LEAD TO
PARASITE SPECIATION?
As exemplified by the parasites indicated in Table 2, in addition
to being specialized to exploit particular host groups, they are
remarkably diverse in species, as are the lineages of many parasites.
One of the potential consequences of specialization, including in
an immunological context, is diversification in species, of both
parasite and host lineages. The mechanisms involved in promot-
ing speciation remain a matter of active investigation and for the
discussion below, the purpose is to indicate that immunological
phenomena may play a role in this process that deserves further
attention. One prominent mechanism of parasite speciation is
switching to a new host species, and the role of accommodation
to the immune system of new hosts to permit such switches is
discussed in a separate section below.

A second mechanism is co-speciation. For some parasite groups
closely tied to their hosts and with limited options for coloniza-
tion of new hosts, such as sucking lice on burrowing mammals
(Light and Hafner, 2008), speciation may occur if the hosts upon
which they are found themselves speciate, often following a phys-
ical separation of populations of the host species. In such cases,
persistence of new daughter parasite species should be favored by
the fact that the parental species had already achieved successful
accommodation to the parental host species. Although the actual
role of specific immune phenomena in influencing the persis-
tence of incipient parasite species in co-speciating systems is not
known, an important underlying role for a preexisting immuno-
logical accommodation between parental host and parasite species
that also favors persistence of the new parasite species should not
be discounted.

Another important way in which specialization dictated by
immunological phenomena can increase the probability of forma-
tion of new parasite species is by promoting intraspecific diversi-
fication. The interactions between a particular host and parasite
species can be expected to be variable across space (Wood et al.,
2007). Parasite abundance will vary across local scales, possibly
because of the variable presence of other hosts needed to complete
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its life cycle (Byers et al., 2008). Other parasite species impact-
ing the same host may be present or absent, such that the host
experiences different overall parasite pressure in different loca-
tions within its range. Furthermore, the host itself will be variable
across its range owing to its responses to other local circum-
stances. All of these factors conspire to create heterogeneities with
respect to how the host potentially mounts immune responses to
the parasite (Kraaijeveld and Godfray, 1999; Thomas et al., 2000;
Lindstrom et al., 2004; Kalbe and Kurtz, 2006; Blais et al., 2007;
Bryan-Walker et al., 2007; Scharsack et al., 2007; Matthews et al.,
2010). Variability within parasite species with respect to infec-
tivity to their hosts is a pervasive phenomenon (Carius et al.,
2001; Schulenburg and Ewbank, 2004; Seppala et al., 2007; Vor-
burger et al., 2009) and this is likely driven in part by variations in
immune evasive measures taken by parasites (Hammerschmidt
and Kurtz, 2005; Cornet et al., 2009; Vorburger et al., 2009).
These dynamics are compatible with general theoretical predic-
tions that parasite variation is driven by immunity, and hosts
themselves are variable with respect to immunity due to pres-
sure posed by parasitism (Frank, 2002). Immune responses are
drivers for parasite diversification (Summers et al., 2003; Laz-
zaro and Little, 2009; McKeever, 2009). An overall increase in
intraspecific genetic variability, with that variation partitioned
into regionally differentiated parasite populations accommodated
to local host populations provide rich opportunities for further
divergence.

One possibility for further divergence is that local adaptation
to host immunity could potentially lead to “assortative survival”
(Combes and Théron, 2000; Combes, 2001, p. 154), meaning that
the only options for mating (parasites frequently seek mates and
undergo sexual reproduction within their hosts) occur between
individuals able to survive in hosts with similar immune capa-
bility that are vulnerable to the same parasite immune evasive
capacity (Giraud et al., 2010). This would further accentuate
local differentiation of parasites, potentially leading to ecolog-
ical speciation of the parasite, particularly if subsequent gene
flow is prevented by failure of immune adapted parasites to
thrive in hosts (from other localities) with different immune
capacities.

It must be noted that fluctuations in local patterns of abun-
dance of hosts and parasites may diminish the strength of local
adaptation and promote gene flow such that speciation is pre-
cluded (Lazzaro and Little, 2009), and that in general, evidence that
parasite speciation is effected by underlying immune mechanisms
is sparse. However, given the need for parasites to accommodate to
a host’s internal environment and that a host species is likely to be
confronted with varying parasite pressure, it seems host immune
responses will favor diversification in parasite lineages. To add an
additional dimension to the concept that spatially variable rela-
tionships favor parasite diversification, it has recently been argued
a general underlying mechanism favoring biological diversifica-
tion is the existence of localized parasite-coevolutionary races
that select hosts to prefer immunologically similar conspecifics
and to avoid out-group individuals, thereby minimizing the risk
of exotic disease acquisition (Fincher and Thornhill, 2008). By
promoting strong intraspecific diversification within host species
based on avoidance of contagion, this mechanism has also been

predicted to lead to parasite diversification (Fincher and Thornhill,
2008).

To conclude this section, all of these observations fit into the
more generalized geographic mosaic theory of coevolved relation-
ships (Thompson, 2005): in this particular case, local adaptations
based on immunological accommodation of host and parasite can
lead to diversification of parasites and potentially speciation.

A ROLE FOR IMMUNITY IN HOST SWITCHING AND PARASITE
DIVERSIFICATION
An important way diversity in parasite lineages is generated, one
that has increasingly come to light from molecular phylogenetic
studies and the study of emerging diseases, is via switching to
new hosts (Table 5). Although successful host switching cannot
be a ubiquitous process, otherwise we might expect to find only
a few species of generalist parasites instead of a predominance
of host specific parasites, clearly it has been an important factor
historically and examples continue to be regularly documented.
A priori, it seems logical that most successful switches would be to
hosts not phylogenetically distant from the original host species.
Such close range switches are likely favored by a degree of phe-
notypic plasticity and preadaptation (exaptation) of the parasite
and its use of phylogenetically conserved resources in the new
host species such that new attributes are not needed to overcome
a new host’s immune system (de Vienne et al., 2009; Agosta et al.,
2010). For example, in a study of host switches in bats involving
the fast-evolving RNA virus causing rabies, the success of cross
species transfers diminished as the phylogenetic distances among
the hosts involved increased (Streicker et al., 2010).

It is also possible for parasite switches to occur when the origi-
nal and new host species are not closely related (Brant and Loker,
2005). This has been observed for emerging human parasites for
which ungulates and carnivores were more likely originating host
species than primates, and it was concluded that an already broad
host range as opposed to the phylogenetic relatedness of the new
and old host species was the more important factor dictating
success in interspecific parasite jumps (Woolhouse et al., 2005).

In any case, a host switch can lead to a speciation event if the
parasite in the new host becomes isolated from the founding stock,
or can have even more profound effects if the switch is into a new
host lineage and leads to the founding of a diverse new parasite
lineage (Agosta, 2006; Janz et al., 2006; Hoberg and Brooks, 2008;
Martinsen et al., 2008; Refrégier et al., 2008; Winkler et al., 2009;
Giraud et al., 2010; Nyman, 2010). The isolation of the switch-
ing parasite from the founding stock is reinforced because even a
single individual may be able to establish a new population and
because differing ecological circumstances of the new host may
preclude mixing of parasite progeny with the source population:
the new parasites may never get back into the original host and
thus mate only with other parasites in the new host. Assortative
survival and mating would again be factors favoring isolation of
the founding parasites. Host switching is also relevant to the idea
stated above that if a host lineage acquires a new parasite, it may
then have its immune system substantially altered. Particularly if
the parasite is successful and radiates, then the immune system of
the new host lineage may be forced to diverge to adjust to the new
challenge.
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Table 5 | Examples of parasite groups exhibiting hosts switches likely to have played a major role in diversification of that group.

With respect to Plasmodium and related genera of blood parasites, major clades are associated with shifts into different families of dipteran

vectors, and the Plasmodium species of birds and squamate reptiles show evidence of repeated switching back and forth (Martinsen et al., 2008).
Major lineages within the blood fluke genus Schistosoma are defined by acquisition of different genera of even families of snail intermediate hosts, by

host switching (Morgan et al., 2003). Long-range host shifts involving acquisition of both new snail and vertebrate hosts appear to have occurred during

the history of schistosomes (Brant and Loker, 2005).

Zietara and Lumme (2002) note that as many as 20,000 species of the monogenean genus Gyrodactylus may exist, and note that in a study of one subgenus

(Limnonephrotus) that several host switch events were statistically confirmed, including into new host families, supporting the idea that host switching is

a means to drive innovation and adaptive radiation in these ectoparasites.

It appears that host switching has been common in trypanorhynch tapeworms, one of the most diverse and abundant groups of metazoan parasites of

elasmobranchs (Olson et al., 2010)

Coronaviruses have likely undergone several host switches, between mouse and rat, chicken and turkey, birds and mammals, and between humans and

other mammals (Rest and Mindell, 2003).

Braconid wasps of the subfamily Euphorinae have undergone extensive host switching among phylogenetically distantly related insect host groups, often

followed by adaptive radiations of the parasitoids within a particular host lineage (Shaw, 1988).

“Infection of a novel host is the most frequent cause of fungal emerging disease” (Stukenbrock and McDonald, 2008; Giraud et al., 2010)

Several examples from the literature of emerging infectious
disease indicate that switches are often favored by changes in
the encounter and not the compatibility filter (Woolhouse et al.,
2005). Ecological circumstances have exposed humans to a par-
asite they previously did not encounter. Such examples of host
switches, particularly if the new host is distantly related to the
original host, would seem to argue against the points made in the
preceding sections regarding the importance of parasite accom-
modation to the idiosyncrasies of their host’s immune system. If
immunity is important in restricting parasite host ranges, how can
such switches occur?

First, these conspicuous successes need to be weighed against
all the encounters between novel parasite and host combinations
that fail and therefore go unnoticed, which is likely a far more fre-
quent outcome (de Vienne et al., 2009; Tunaz and Stanley, 2009;
Giraud et al., 2010; see also Table 3). In cross species transfers
of rabies into bats, the vast majority are dead ends: they did not
establish sustained infections (Streicker et al., 2010). Although
some of the failures could be explicable because of less frequent
contact among more distantly related bats (the encounter filter),
increasingly divergent defense systems leading to higher levels of
innate resistance were also invoked as an explanation (Daszak,
2010; Streicker et al., 2010). The role of immune systems in pre-
venting such infections would be easy to underestimate because
the result is a failed experiment that in all probability we never
even knew had happened. In a similar vein, a survey of field-
trapped insects in turkey revealed that 98% exhibited some kind
of melanotic hemocyte nodule (Tunaz and Stanley, 2009). Such
host reactions provide a convenient historical record of previ-
ous parasite encounters (Kuris et al., 2007). It was concluded that
insects are regularly challenged by infections from which they
recover. The action of innate immunity in routinely preventing
acquisition of new parasites is probably considerable and easy to
underestimate.

Secondly, host switches would be favored if the new parasite,
as exemplified by HIV, directly attacks the host’s immune system
and compromises it, or if the new host is immunocompromised

by some other means. Diminished levels of immune compe-
tence can occur for several reasons, including ones likely to
have been in operation throughout animal evolution. One pos-
sible means is that the host’s indigenous parasites might use
immunosuppression to favor initiation and persistence of their
own long-term infections (Table 6) and thereby facilitate colo-
nization of that host by other parasites (Krasnov et al., 2005).
An intriguing possibility is that the successful colonization of
a host species by one or more immunosuppressive parasites
might then favor colonization by opportunist parasites, result-
ing in an unusually diverse parasite fauna supported by that
host. The large number of species of larval digenetic trema-
todes known to be supported by some snail species (Loker
et al., 1981; Lafferty and Kuris, 2009b) might exemplify this
possibility.

High host density, stressful thermal (Bruno et al., 2007) or oxy-
gen regimes (Aeby and Santavy, 2006), and even mating (Rolff
and Siva-Jothy, 2002) are some natural situations that can also
lower immune competence. To this list can be added a number of
human-imposed immune stressors including crowded aquacul-
ture conditions (Flemming et al., 2007), use of harmful chemicals
on fields or roads (Rohr et al., 2008; Karraker and Ruthig, 2009),
altered diets (Sahu et al., 2008), elevated or altered environmental
nutrient conditions (McKenzie and Townsend, 2007; Wedekind
et al., 2010), and deliberate implementation of immunosuppres-
sive therapies. Not only can these situations lower host immune
competence, they may also increase parasite virulence and thereby
alter probabilities of successful colonization in a new host species
(Wedekind et al., 2010).

A switch into an immunocompromised individual of a new
host species is likely to be temporary and not lead to speciation
unless the new parasite can better adapt to its new host, at the same
time with minimal gene flow occurring with conspecifics from its
ancestral host. Availability of populations of similarly immuno-
compromised new hosts that allow continued transmission and
adaptation of the new parasite host could favor divergence from
the founding parasite and speciation.
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Table 6 | Examples of immunosuppression by one parasite that could favor acquisition of new parasites, and potentially an eventual speciation

event.

Varroa mites (Varroa destructor ) in honey bees (Apis mellifera) suppress the activity of several immune-related genes (encoding both antimicrobial peptides

and enzymes) and favor higher infection titers with the deformed wing virus (Yang and Cox-Foster, 2005).
Drosophila simulans infected with Wolbachia have reduced ability to encapsulate eggs of the parasitoid Leptopilina heterotoma (Fytrou et al., 2006).

The malaria parasite Plasmodium gallinaceum suppresses the encapsulation response of the mosquito Aedes aegypti (Boëte et al., 2004).

Two acanthocephalan parasites Pomphorhynchus laevis and Polymorphus minutus both have the effect of decreasing the standing level of immune defense

(as measured by reduced phenoloxidase enzyme activity) in their local gammarid hosts, Gammarus pulex, but not in their more recently introduced host

Gammarus roeseli (Rigaud and Moret, 2003).

Hymenopteran parasitoids induce immunosuppression in their host insects in part by the injection of polydnaviruses which target and inhibit both cellular

and humoral components of the host response (e.g., Labropoulou et al., 2008) and the parasitized hosts become increasingly susceptible to opportunistic

infections by viruses (Rivkin et al., 2006), bacteria (Shelby et al., 1998), and other parasitoids (Guzo and Stoltz, 1985).

As noted by Lie (1982), interference by trematode larvae with gastropod defense responses appears to be a common consequence of infection (Hanington

et al., 2010a), and the presence of one trematode infection can facilitate the colonization of an infected snail by trematodes that would not ordinarily be

able to infect that species of host (Walker, 1979; Southgate et al., 1989).

HIV in people was associated with parasites that rarely if ever had been implicated in causing human disease including microsporidia, cryptosporidia, JC

virus, and Mycobacterium avium (Kovacs and Masur, 2008).

Studies of parasite communities suggest that taxonomic distinctiveness of ectoparasites and endoparasite richness are positively correlated across species

of rodent hosts, indicative of immune responses to some parasites depleting energy reserves and facilitating colonization by others (Krasnov et al., 2005).

A ROLE FOR IMMUNITY IN DRIVING HOST DIVERSITY?
How might immunological phenomena influence the degree of
diversity shown among the hosts contending with parasites? As
highlighted below, parasite pressure clearly favors immunological
diversification at microevolutionary scales. Whether this diver-
sification contributes in a meaningful way to host speciation
remains controversial, but has attracted considerable attention and
is gaining some support, as discussed below.

As early as Haldane (1949), and as more recently underscored
(Frank, 2002; Lazzaro and Little, 2009), it has been recognized
that parasites drive polymorphisms in host immune competence,
particularly in variable environments. This can occur by balanc-
ing (Wegner, 2008) or disruptive selection (Duffy et al., 2008;
Matthews et al., 2010). High levels of polymorphism are found
in several genes of both the innate and adaptive immune systems
(Hill, 2001; Trowsdale and Parham, 2004; Acevedo-Whitehouse
and Cunningham, 2006). MHC genes show a predominance of
non-synonymous over synonymous mutations in their peptide-
binding regions, and have extensive allelic diversity, indicative
of strong role of selection, generally considered to be mediated
by parasites. For example, parasite pressure is believed to have
promoted maintenance of high MHC diversity in sticklebacks
(Wegner et al., 2003) and Atlantic salmon (Dionne et al., 2007). In
humans, regional differences in HLA class I diversity has been asso-
ciated with intracellular parasite richness (Prugnolle et al., 2005).
Across species comparisons of rodents have associated helminth
species richness with increased MHC class II polymorphisms (de
Bellocq et al., 2008). MHC genes are also known for their role
in mediating mate choice through olfactory systems in humans
(McClintock et al., 2002), rodents (Sommer, 2005), and fishes
(Landry et al., 2001; Milinski et al., 2005).

The evidence supporting the idea that variability in immune
response driven by parasites can be a factor favoring speciation
of host lineages is mostly correlational, but is supported by a
growing body of literature. One general factor favoring this is

the development of strong local immunological accommodations
of particular host populations to the distinctive parasites they
encounter, such that across a broader host range different host
populations differ significantly with respect to the nature of their
responses (Wheatley, 1980; Blais et al., 2007; Scharsack et al., 2007;
Matthews et al., 2010). For example, malaria might be encoun-
tered in some but not all parts of the host range where appropriate
mosquitoes were present, or different suites of parasites might
be encountered in different foraging habitats such as rivers or
lakes (Eizaguirre et al., 2011). Differences among populations
of the same host species with respect to their immune defenses
have been noted in Drosophila against parasitoids (Kraaijeveld
and Godfray, 1999), Darwin’s finches (Lindstrom et al., 2004),
sticklebacks coping with eye flukes (Kalbe and Kurtz, 2006), and
marine amphipods infected with trematodes (Thomas et al., 2000;
Bryan-Walker et al., 2007). Differentiation resulting from spatially
variable antagonistic interactions with parasites would in this case
provide the substrate for further diversification of host lineages
(Thompson, 2005, 2009).

The impact of this local adaptation could be augmented by
assortative mating mediated by sexual selection to favor further
divergence (van Doorn et al., 2009). According to this line of
thought, those locally adapted hosts that best resist parasites are
able to elaborate ornaments that signal superior resistance to par-
asites, such that local mates preferentially breed with them. If these
hosts were transplanted to other host populations with their own
distinct parasite challenges, they would not be as resistant, their
sexual ornamentation would suffer, and they would not be selected
for mating. Thus a combination of natural and sexual selection
could favor divergence of new host species.

Parasites can exert strong selection on traits known to affect
mate choice (Hamilton and Zuk, 1982; Poulin and Thomas, 1999;
MacColl, 2009) and in some cases the genes involved also have
immune functions, such as genes of the MHC (Milinski et al.,
2005; Milinski, 2006; Eizaguirre et al., 2009, 2011). MHC genes
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have been considered as possible “magic traits” in sticklebacks,
influencing both defense and mate choice (Matthews et al., 2010).
MHC divergence in a closely related and sympatric pair of cich-
lid species from Lake Malawi has been proposed to be a result of
local host–parasite-coevolutionary associations, and to have influ-
enced odor-mediated mate choice, and ultimately to have favored
speciation (Blais et al., 2007).

Diverging cichlids of the genus Pundamilia in Lake Victoria
provide another example of how local adaptation and assorta-
tive mating (both potentially influenced by immune traits) may
work together to promote host speciation. In this system, females
have a preference for conspicuously colored males. These bright
colors seem to be reliable indicators of male fitness, including resis-
tance to parasites. Conditions of light penetration favor blue males
in shallow depths and red males in deeper waters. The parasites
encountered at different depths also vary in density and composi-
tion such that habitat-specific defenses could occur. Females from
the depths prefer brighter red males whereas those from shallow
water prefer brighter blue males, potentially leading to divergence,
with visual cues playing a key role. This example points out the
immunology may work in concert with a number of other forces
such as predator avoidance or dietary preferences which all con-
spire to reinforce divergence of the two incipient species by visual
means (Maan and Seehausen, 2010). Mating among hosts between
different locations would break down these differences, but might
be disfavored if the progeny had reduced resistance to any local set
of parasites.

“Infectious speciation” as exemplified by interactions between
Drosophila species and inherited, endosymbiotic Wolbachia bac-
teria provides another possible mechanism for the involvement of
immune processes in host speciation. For a group of six related
species in the D. paulistorum complex, each species has its own
distinct host specific obligatory and mutualistic Wolbachia with
which it has achieved accommodation. This accommodation likely
involves suppression of immune pathways involving apoptosis of
infected cells. In hybrids, the Wolbachia over-replicate and cause
embryonic inviability and male sterility, suggesting the unique
host accommodation has been lost. In addition to such post-
mating isolation, it has also been shown that females can detect
and will reject males harboring the wrong symbiont, thus further
reinforcing isolation (Miller et al., 2010).

Among animal hosts, hybrids are often more susceptible to par-
asites than parental species (see overviews provided by Fritz, 1999;
Wolinska et al., 2008), potentially favoring isolation of the parental
host species, but other outcomes have also been noted and the
responsiveness of hybrids to infection recorded 1 year might dif-
fer from those reported the next. This implies that the interactions
between hybrids and the parasites they experience exhibit complex
temporal dynamics and that the parasites themselves have under-
gone complicated changes as a result of their hosts’ hybridization
history that have not been sufficiently investigated (Detwiler and
Criscione, 2010). Certainly some studies suggest that isolation of
incipient parental species might be reinforced by a breakdown of
co-adapted immune gene complexes among their hybrids. Also,
in some cases, the act of hybridization contributes to the forma-
tion of new species by allopolyploidy, as has been postulated for
anurans of the genus Xenopus. Hybrids in this case often have

increased resistance for parasites, potentially providing a selective
advantage to favor the persistence of new species of recent hybrid
origin (Jackson and Tinsley, 2003).

Another hypothesized mechanism favoring diversification of
host lineages is that localized interactions with particular para-
sites allows immunological accommodation to them, resulting in
strong preference for interactions with individuals with similar
immune accommodation and philopatry (limited host dispersal).
This is coupled with avoidance of out-group individuals that might
lead to introduction of exotic parasites (Fincher and Thornhill,
2008). Diverse parasite populations are thus hypothesized to drive
diverse host populations, and ultimately speciation, leading to a
general correlation between host and parasite biodiversity (Fincher
and Thornhill, 2008).

THE ROLE OF IMMUNOLOGY IN EXTINCTION EVENTS
Extinction too is a macroevolutionary process, including the major
pulse of extinction events currently underway. Habitat destruc-
tion, human overpopulation, industrialization, threats from intro-
duced species, emerging diseases, and global climate change, have
lead to predictions that up to 50% of all species will be lost in the
next 50 years (Pimm and Raven, 2000; Koh et al., 2004; Thomas
et al., 2004). The study of immunology is relevant to extinction in
at least three broad contexts outlined below.

First, as noted above, the interactions between parasite and host
often lead the parasite to specialization and host specificity which
may in part be dictated by interactions with the host immune
system. It has long been argued that specialization leads to a
greater probability of extinction because if the host on which
the specialized parasite is dependent undergoes severe population
fluctuations or itself goes extinct, the parasite will soon follow: a
co-extinction event has occurred. Co-extinctions involving pairs
of mutualists or host–parasite units may be the most common
forms of loss of biodiversity (Koh et al., 2004; Dunn et al., 2009). By
comparison, a generalist parasite able to exploit alternative hosts
would have a greater likelihood of surviving under similar cir-
cumstances. The evolutionary trajectories taken by parasites have
been much debated, and specialized parasites have been shown to
give rise to large lineages of specialized, or even to more general-
ized descendents (Johnson et al., 2009). However, host specificity
remains a salient feature affecting the odds of extinction (Koh
et al., 2004; Poulin and Keeney, 2008).

Second, an inescapable feature of the modern world is the fre-
quency with which invasions of exotic species occur (Torchin et al.,
2002). Invasive species might be either hosts or parasites (possibly
including their vectors), and all can present dire and often unpre-
dictable consequences, including extinction, for indigenous organ-
isms (Wyatt et al., 2008). A role for immunology in influencing
invasions can occur in at least three ways:

(a) Introduced host species often leave their native parasites
behind and although they are likely to be colonized by para-
sites in their new environment, in some cases this colonization
is slow to occur, such that they experience relatively low par-
asite burdens for a long time. Insofar as immune responses
are costly to mount and the harmful effects of parasites are
avoided, the invading species may enjoy a distinct advantage
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over its competitors in its relative freedom from parasites, par-
ticularly if they can adopt relatively low cost defense measures
against their maladapted parasites (Lee and Klasing, 2004).
The relative inability of parasites to colonize the new intruder
is a testament to the specialization often required to achieve
infectivity, as noted above.

(b) If an introduced host is accompanied by some of its indige-
nous parasite fauna, then related hosts in the newly colonized
area may then have to contend with a parasite to which they
are not accustomed, a process that may take decades to achieve
(Hedrick et al., 2003; Taraschewski, 2006). This is particularly
likely to cause problems if the colonized area is an isolated
habitat like an island where hosts have simply not encoun-
tered comparable parasites previously. The devastating impact
of the introduction of mosquitoes followed by avian malaria
and avian pox on the endemic honeycreepers of the Hawaiian
islands, likely causing both extinctions and slowing recovery
of still extant species, is an iconic example (Atkinson and
Samuel, 2010). Islands often favor speciation yet the sub-
sequent colonization of mainland habitats by island species
is likely to be limited and unsuccessful due to active trans-
mission of parasites there that a migrant is unable to handle
immunologically.

(c) In some cases, invasion of a parasite can occur even without
the benefit of a simultaneous introduction of its indigenous
host. An example is the eel swimbladder nematode Anguilli-
cola crassus which has been introduced from the Orient into
Europe where it provokes intense tissue reactions from Euro-
pean eel species (Taraschewski, 2006). By contrast, Oriental
eels mount immune responses that prevent a high and robust
population of worms from building up.

All of these examples centered on introductions have macroevolu-
tionary implications as they might lead to expansion and radiation
of hosts and their parasites into new habitats, or may directly cause
extirpations of indigenous hosts (and possibly their co-adapted
parasites as well). Immunological phenomena provide proximal
causal explanations. Once again, as with the discussion above
regarding host switching, there may be significance to what we
do not see as well: many parasite introductions fail because the
colonist is unable to breach indigenous host defenses and host
introductions fail because they are ill-prepared for indigenous
parasites. For example, the introduction of the American rain-
bow trout Oncorhynchus mykiss into Europe failed because they
encountered the parasite Myxobolus cerebralis which is normally
transmitted by the indigenous brown trout, Salmo trutta: rainbows
succumbed to whirling disease in Europe (Hedrick et al., 2003).
When this parasite was introduced into North America, brown
trout (themselves also introduced) were already well-adapted to it
but indigenous rainbows and other salmonids were not and have
suffered outbreaks of whirling disease as a consequence.

A third broad context in which immunology becomes rele-
vant to extinction, and one that is much in evidence today, is
the role played by diminution of diversity in key immune loci
such as the MHC. This can result in vulnerability of endangered
host species to general parasite attack and thus extinction (Rad-
wan et al., 2010). Loci other than the MHC may also play major

roles in dictating susceptibility to particular groups of parasites
(Behnke et al., 2003), and polymorphism in non-MHC genes are
relevant in resistance to both tuberculosis (Ottenhoff et al., 2005)
and malaria (Hill, 2001). MHC genes are estimated to account
for only about half of the genetic variability for resistance traits
(Acevedo-Whitehouse and Cunningham, 2006).

Regardless of the immune locus involved, the role of ran-
dom drift in diminishing allelic diversity in bottlenecked or frag-
mented host populations would seem to increase the risk of
successful parasite attack and greatly increase extinction prob-
abilities. There is a need to determine if other factors like
genome-wide inbreeding depression are more important in caus-
ing extinction, to understand why some species depauperate in
MHC diversity seemingly continue to thrive (Hedrick, 2003;
Radwan et al., 2010), for increased transfer of information
from the study of the main immunological models to endan-
gered species, and to study other polymorphic genes involved
in effective defense (Acevedo-Whitehouse and Cunningham,
2006).

CONCLUSION AND FUTURE STUDIES
A picture of the structure and function of immune systems across
animal phyla is slowly emerging, but so many organisms remain
unstudied we lack perspective on how representative our current
picture is. Do all tunicates, for example, reveal evidence of pro-
nounced genome reduction with respect to immune function,
or is this a characteristic of just the few species studied to any
extent? What kind of pressure from parasites or otherwise has
driven the expansion of all the innate immunity genes evident
in organisms like sea urchins, and how do these animals regu-
late and orchestrate effective responses given the multiplicity of
defense molecules they possess? In their 100+ years life span, how
frequently must marine bivalves mount immune responses and
how do they avoid the problem of fast-evolving parasites from
“locking on” and overrunning them? In the meantime, it is clear
that the approaches taken to achieve immune defense are diverse,
frequently innovative and often capable of generating diverse
repertoires of defense molecules that blur the distinctions com-
monly made to distinguish adaptive from innate immunity. The
diversity in immune systems among and within phyla is in and
of itself a major macroevolutionary pattern that should become a
more central part of how we characterize animal diversity, includ-
ing in textbooks. We need to know what the full pattern actually
is, and the pattern begs an explanation for the processes involved
in generating it.

Study of model parasite–host systems shows that the strength
of selection imposed on particular immune genes is strong, and
can result in some of the fastest evolutionary rates known for
metazoans. In other words, parasite–host immune interactions
strongly influence anagenesis, the evolutionary changes occurring
within parasite or host lineages. If we adopt a broader perspective
with a longer time frame, it seems likely such intense interac-
tions will be seen to have an impact on cladogenesis, the origin
of lineages, as well. It seems the overall impact of infection and
immunity should attract as much attention as predation, compe-
tition, or other biotic interactions in shaping the overall diversity
of animal life. Needed are more empirical studies over longer time
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frames to provide more specific mechanistic insights as to how host
immune responses drive diversification of parasites and how this
can lead to speciation events, potentially in both parasite and host
lineages. Further revelation of specific genes, often not considered
part of the immune system per se, and how they facilitate defense
against particular parasites and might favor evolutionary diver-
gence among parasites are needed. Finally, placing immunology
in a macroevolutionary perspective can hopefully provide insights

for understanding today’s world in which a host of rapid changes
greatly increase the odds for extinction of many animals.
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