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A new coronavirus called SARS-CoV-2 is rapidly spreading around the world. Over
16,558,289 infected cases with 656,093 deaths have been reported by July 29th,
2020, and it is urgent to identify effective antiviral treatment. In this study, potential
antiviral drugs against SARS-CoV-2 were identified by drug repositioning through Virus-
Drug Association (VDA) prediction. 96 VDAs between 11 types of viruses similar
to SARS-CoV-2 and 78 small molecular drugs were extracted and a novel VDA
identification model (VDA-RLSBN) was developed to find potential VDAs related to
SARS-CoV-2. The model integrated the complete genome sequences of the viruses,
the chemical structures of drugs, a regularized least squared classifier (RLS), a bipartite
local model, and the neighbor association information. Compared with five state-of-
the-art association prediction methods, VDA-RLSBN obtained the best AUC of 0.9085
and AUPR of 0.6630. Ribavirin was predicted to be the best small molecular drug,
with a higher molecular binding energy of −6.39 kcal/mol with human angiotensin-
converting enzyme 2 (ACE2), followed by remdesivir (−7.4 kcal/mol), mycophenolic
acid (−5.35 kcal/mol), and chloroquine (−6.29 kcal/mol). Ribavirin, remdesivir, and
chloroquine have been under clinical trials or supported by recent works. In addition,
for the first time, our results suggested several antiviral drugs, such as FK506, with
molecular binding energies of −11.06 and −10.1 kcal/mol with ACE2 and the spike
protein, respectively, could be potentially used to prevent SARS-CoV-2 and remains
to further validation. Drug repositioning through virus–drug association prediction can
effectively find potential antiviral drugs against SARS-CoV-2.

Keywords: SARS-CoV-2, antiviral drugs, drug repositioning, virus-drug association, regularized least square,
bipartite local model, neighbor association information

INTRODUCTION

Last December 2019, a novel coronavirus called SARS-CoV-2 by the World Health
Organization (WHO), first found in Wuhan, China, was rapidly spreading around the
world (Kaiser et al., 2020; Sanche et al., 2020). The SARS-CoV-2 outbreak was declared
as a global public health emergency by WHO, and a total of 16,558,289 cases have
been confirmed with another 656,093 deaths throughout the world by July 29th, 2020
(World Health Organization [WHO], 2020). SARS-CoV-2 caused a severe acute respiratory
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syndrome named COVID-19, and no special vaccine or antiviral
drug against SARS-CoV-2 has been found at present (Lu, 2020;
Wang et al., 2020c). Therefore, finding a special antiviral drug as
soon as possible is urgent to stop the spread of SARS-CoV-2 (Lu,
2020; Zhang et al., 2020a).

However, designing a new drug to treat COVID-19 in a
short time is almost impossible (Zhang et al., 2020a). One of
the best strategies is drug repositioning (Chen et al., 2012,
2016; Peng et al., 2017a; Beck et al., 2020). By repositioning
already commercialized drugs, the undesired effects can be
inferred to find new uses for these drugs. This strategy can
thus greatly shorten the time required for an antiviral drug
against SARS-CoV-2.

Although little is known about SARS-CoV-2, its complete
genome sequence is strongly homologous to SARS-CoV (Huang
et al., 2020; Morse et al., 2020). Therefore, in this study, to
prioritize available FDA-approved antiviral drugs against SARS-
COV-2 for further clinical trials, 11 well-studied viruses similar
to SARS-CoV-2 were selected and 96 virus–drug associations
(VDAs) with these 11 viruses were integrated. Regularized
least squared classifier (RLS), bipartite local model (BLM),
and neighbor association information were applied in our new
algorithm named VDA-RLSBN to find novel VDAs for new virus
(especially for SARS-CoV-2) or new drug. The results showed
that ribavirin, remdesivir, and chloroquine may be antiviral drugs
against SARS-CoV-2.

Molecular docking techniques investigate the behavior of
small molecular drugs in the binding site of a target protein.
As more target protein structures are confirmed experimentally,
molecular docking approaches are widely applied to drug design
(Zhang et al., 2020b). AutoDock (Goodsell et al., 1996; Ruyck
et al., 2016) is an available software applied to identify the bound
conformations of a small molecular drug to a macromolecular
target. The AutoDock affinity scoring function is applied to rank
the candidate poses based on the sum of the van der Waals
and electrostatic energies. We conducted molecular docking
between the predicted top 10 antiviral drugs against SARS-CoV-2
and two target proteins including the spike protein of SARS-
CoV-2 and human angiotensin-converting enzyme 2 (ACE2)
molecule (Wang et al., 2020a). The molecular binding energies
between the above three drugs and ACE2 are ribavirin with
−6.39 kcal/mol, remdesivir with−7.4 kcal/mol, and chloroquine
with −6.29 kcal/mol. These three small molecules have been
under clinical trial or supported by recent publications. In
addition, we found that FK506 shows higher molecular binding
energies of −10.1 kcal/mol and −11.06 kcal/mol with these
two targets, which suggest that FK506 may be applied to stop
COVID-19 although there is no report about its association
with SARS-CoV-2.

MATERIALS AND METHODS

Dataset
Aiming at identifying potential VDAs related to SARS-CoV-2,
96 known VDAs between 11 viruses similar to SARS-CoV-2
and 78 small molecular drugs were selected from the DrugBank

(Wishart et al., 2018), NCBI (Sayers et al., 2020), and PubMed
(Canese and Sarah, 2013) databases. The element yoriij in the VDA
matrix Yori

∈ <
n×m was represented as

yoriij =

{
1 if the ith virus associates with the jth drug
0 otherwise

(1)

These similar viruses included SARS-CoV (Ding et al., 2004),
MERS-CoV (Groot et al., 2013), human immunodeficiency virus
type 1 (Wei et al., 1995) and type 2 (Guyader et al., 1987)
(HIV-1 and HIV-2), chronic hepatitis C virus (HCV) (Jacobson
et al., 2011), influenza A viruses [A-H1N1 (Kumar et al., 2009),
A-H5N1 (Subbarao et al., 1998), A-H7N9 (Gao et al., 2013)],
Hendra virus (Bonaparte et al., 2005), human cytomegalovirus
(Cobbs et al., 2002), and respiratory syncytial virus (Hall, 2001).
Complete genome sequences of these 11 viruses and SARS-CoV-
2 were downloaded from the NCBI database, and virus similarity
matrix Sv ∈ <n×n was computed based on MAFFT, a multiple-
sequence alignment software. Chemical structures of drugs were
downloaded from the DrugBank database, and drug similarity
matrix Sd ∈ <m×m was obtained by RDKit, an open-source
cheminformatics tool. The details are shown in Table 1.

Methods
Problem Formalization
Bleakley and Yamanishi (2009) represented a drug–target
interaction network as a bipartite graph and developed a BLM-
based method to predict possible drug–target interactions. The
proposed method first inferred targets of a given FDA-approved
drug and drugs targeting a known protein and then combined
these two independent predictions. The results demonstrated
the excellent performance of BLM. Similar to the drug–target
interaction network, the VDA network can also be taken as
a bipartite graph. Results in this study are thus presented to
evaluate the prediction performance in each of the following four
cases for a given putative virus–drug pair:

• The virus with at least one known drug and the drug with
at least one known virus.
• The virus with at least one known drug and the drug

without any known virus (new drug).
• The virus without any known drug (new virus) and the drug

with at least one known virus.
• New virus and new drug.

Based on these four cases, we represent a VDA network as a
bipartite graph and thus the predicted VDA matrix Ypre

n×m can be

TABLE 1 | Statistics of viruses and drugs.

Virus No. of drugs Virus No. of drugs

SARS-CoV 15 Hendra virus 1

MERS-CoV 9 HIV-1 35

A-H1N1 4 HIV-2 3

A-H5N9 2 HCV 15

A-H7N9 4 Respiratory syncytial virus 2

Human cytomegalovirus 6 SARS-CoV-2 0
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denoted as Eq. (2):

Ypre
n×m =

[
(Y1)ncv×mcv

(Y3)n̄×mcv

(Y2)ncv×m̄
(Y4)n̄×m̄

]
(2)

where n̄ = n− ncv is the number of new viruses (for example,
SARS-CoV-2), and m̄ = m−mcv is the number of new drugs. Y1
represents VDAs from ncv existing viruses and mcv existing drugs,
Y2 represents VDAs from ncv existing viruses and m̄ new drugs,
Y3 denotes VDAs from n̄ new viruses and mcv existing drugs, and
Y4 denotes VDAs from n̄ new viruses and m̄ new drugs. Our aims
are to identify potential VDAs in the subnetwork Y1 as well as in
Y2, Y3, and Y4. Figure 1 shows the flowchart of VDA-RLSBN.

Regularized Least Square
To infer possible VDA candidates, we develop an RLS-
based VDA identification model (VDA-RLS) to compute the
association profile ŷ for each virus–drug pair:

ŷ = K(K + σI)−1y (3)

where K represents the kernel matrix, y denotes the original
association profile, and σ is a regularization parameter.

To compute VDA matrix Y1 from ncv existing viruses and
mcv existing drugs, we consider the ensemble of independent
virus-based prediction and drug-based prediction with RLS. The
solution of Y1 can be thus divided down into the following four
steps:

Step 1 For a given virus vi with at least one known association,
its new association profile ŷvi can be computed from its original
association profile yvi and the kernel matrix Kv based on RLS
classifier:

ŷvi = Kv(Kv + σIv)−1yvi (4)

where Kv = (Sv + STv )/2, and yvi represents the ith row of Yori.
We can compute virus-based VDA matrix Yv by Eq. (4).

Step 2 For a given drug dj with at least one known association,
its new association profile ŷdj can be computed from its original
association profile ydj and the kernel matrix Kd based on RLS
classifier:

ŷdj = Kd(Kd + σId)−1ydj (5)

where Kd = (Sd + STd )/2, and ydj represents the jth column of
Yori. We can compute drug-based VDA matrix Yd by Eq. (5).

Step 3 Integrate Yv with the element yvij and Yd with the
element ydij to compute the predicted VDA matrix YRLS based on
RLS:

yRLS
ij = max

(
yvij, ydij

)
(6)

Step 4 Obtain Y1 by Eq. (7):

Y1 = Yori
+ YRLS (7)

Regularized Least Square With Neighbor Association
Information
We can identify novel VDAs between existing viruses and
existing drugs, or known/new viruses and new/existing drugs
based on RLS and BLM. However, VDA-RLS was not able to

predict associations between new viruses and new drugs. To
solve this problem, we developed a VDA prediction model
(VDA-RLSBN) by integrating neighbor association information
into the RLS model.

Based on the “guilt-by-association” method, similar
viruses/drugs tend to associate with similar drugs/viruses,
so the association profile of an unknown virus could be possibly
found by its neighbors’ association information. Viruses highly
similar to a new virus can be considered as its neighbors. Since
the new virus has no associated drugs (i.e., its current association
profile is a vector with all the elements of 0), complete genome
sequence similarity of viruses is applied to define its neighbors.

For a new virus vi, its association weight with a drug dj can be
computed by its neighbors’ associations with dj and its association
profile avi

(
j
)

is defined as Eq. (8):

avi
(
j
)
=

ncv∑
k=1

Sviky
ori
kj (8)

where Svik is the complete genome sequence similarity between
two viruses vi and vj. avi

(
j
)

> 0 when the jth associated drug
dj exists, i.e., yori

kj > 0 for at least one k and avi
(
j
)
= 0 when

the jth associated drug dj is new, i.e., yori
kj = 0 for all k. avi

(
j
)

is
normalized to make its value in the range of [0, 1] by Eq. (9):

avi
(
j
)
=

(
avi
(
j
)
−minkavi

(
k
))(

maxkavi
(
k
)
−minkavi

(
k
)) (9)

Also, an independent virus-based association profile yvi for a
virus–drug pair can be represented as Eq. (10):

ŷvi = Kv(Kv + σIv)−1avi (10)

Similarly, for a new drug dj, its association profile ydj for the same
virus–drug pair can be represented as Eq. (10):

ŷdj = Kd(Kd + σId)−1adj (11)

where adj denotes the neighbor association profile of dj .
The final VDA network can be represented as

YVDA−RLSBN =

[
YVDA−RLSBN

1
YVDA−RLSBN

3

YVDA−RLSBN
2

YVDA−RLSBN
4

]
(12)

where YVDA−RLSBN
1 can be computed by Eqs (4–7); YVDA−RLSBN

2
can be computed by Eqs (4), (11), and (6); YVDA−RLSBN

3 can
be obtained by Eqs (10), (5), and (6); and YVDA−RLSBN

4 can be
obtained by Eqs (10), (11), and (6). Specially, the VDA matrix
related to SARS-CoV-2 can be obtained from YVDA− RLSBN

3 .
Finally, we used AutoDock to analyze the druggability of the

predicted top 10 chemical agents and their binding activities
with two target proteins including the SARS-CoV-2 spike
protein and ACE2.
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FIGURE 1 | Flowchart of VDA-RLSBN.
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RESULTS

Evaluation Metrics and Experimental
Settings
In this section, we performed extensive experiments to evaluate
our proposed VDA-RLSBN method. We compared VDA-
RLSBN with five state-of-the-art machine learning-based models,
including LRLSHMDA (Wang et al., 2017), SMiR-NBI (Li
et al., 2016), CMF (Zheng et al., 2013), NetLapRLS (Xia et al.,
2010), and WNN-GIP (Laarhoven and Marchiori, 2013). The
experiments were performed on a MAC with 2.4 GHz Inter Core
i5, 8 GB 2133 MHz LPDDR3 of the RAM and OS Catalina 10.15.4
operating system.

Sensitivity, specificity, accuracy, AUC, and AUPR are widely
applied to evaluate various machine learning-based models.
In this study, we used these five metrics to measure the
performance of five state-of-the-art models and VDA-RLSBN.
Accuracy denotes the ratio of correctly predicted VDAs to all
VDAs. Sensitivity denotes the ratio of correctly predicted positive
VDAs to all positive VDAs. Specificity is the ratio of correctly
predicted negative VDAs to all negative VDAs. AUC is the area
under the ROC curve. The ROC curve can be plotted by a true
positive rate [TPR, i.e., Eq. (13)] and a false-positive rate [FPR,
i.e., Eq. (14)].

TPR = TP/ (TP + FN) (13)

FPR = FP/(FP + TN) (14)

where TPR represents the ratio of correctly predicted positive
VDAs to all positive VDAs and FPR represents the ratio of
mistakenly predicted positive VDAs to all negative VDAs.

AUPR is the area under the PR curve. The PR curve can be
plotted by precision and recall. Precision represents the ratio of
correctly predicted positive VDAs to all predicted positive VDAs,
and recall represents the ratio of correctly predicted positive
VDAs to all positive VDAs.

Precision =
TP

TP + FP
(15)

Recall =
TP

TP + FN
(16)

whereTP, FP, TN, and FN represent true positive, false positive,
true negative, and false negative, respectively. Generally, larger
AUC/AUPR value denotes better performances.

We used five-fold cross validation to train our proposed VDA-
RLSBN method. In each round, 80% of VDAs in the known
VDA network was used as a training set and the remaining
20% of VDAs was the test set. The experiments were performed
100 times, and the final performance was on average over 100
times. In each round, a virus/drug is new if all of its associated
drugs/viruses are selected as a test set.

For the parameters in five comparative methods and VDA-
RLSBN, we conducted grid search to determine their optimal
values. In VDA-RLSBN, we set the parameter σ in the range
of [0, 0.1, 0.2, . . . , 1] and found that VDA-RLSBN obtained

the best performance when σ is set as 0.4. In LRLSHMDA, we
set the parameter lw in the range of [0, 0.1, 0.2, . . . , 1] and
found that LRLSHMDA obtained better accuracy when lw is
set as 0.1. In CMF, we set the parameters λl, λd, and λt in the
range of [2−2, . . . , 21

], [2−3, . . . , 25
], and [2−3, . . . , 25

],
respectively. We found that CMF obtained better performance
when λl = 1, λd = 0.25, and λt = 0.125. In NetLapRLS, we
set four parameters γd, γt , βd, and βt in the range of
[1e−6, . . . , 1e2

] and found that NetLapRLS performed better
when these four parameters were set as 1e− 6. In WNN-
GIP, we set five parameters T, αd, αt , σ, and γ in the range
of [0, 0.1, . . . , 1.0] and found that WNN-GIP obtained the
optimal performance when T = 0.7, αd = 0.6, αt = 0.6, σ = 1,
and γ = 0.5. All parameters in these six models were set as the
corresponding values where the corresponding method obtained
the optimal performance.

Comparison With Five State-of-the-Art
Methods
The performance of our proposed VDA-RLSBN and these
five machine learning-based models is shown in Table 2. The
best performance in each row is shown in bold in Table 2.
LRLSHMDA (Wang et al., 2017), NetLapRLS (Xia et al.,
2010), WNN-GIP (Laarhoven and Marchiori, 2013), and VDA-
RLSBN are RLS-based methods. LRLSHMDA (Wang et al.,
2017) used Laplacian RLS to tackle microbe–disease association
prediction, NetLapRLS (Xia et al., 2010) extended the standard
Laplacian RLS incorporating drug–target network, and WNN-
GIP (Laarhoven and Marchiori, 2013) integrated a simple
weighted nearest neighbor method and Gaussian kernels into
RLS. SMiR-NBI (Li et al., 2016) constructed a heterogeneous
network connecting genes, drugs, and miRNAs and then
combined a network-based inference algorithm to characterize
the responses of anticancer drugs. CMF (Zheng et al., 2013) was a
collaborative matrix factorization-based drug–target interaction
prediction method.

The results showed that VDA-RLSBN outperformed
LRLSHMDA, SMiR-NBI, CMF, and WNN-GIP in terms of
five evaluation metrics. Although the specificity value of VDA-
RLSBN is slightly lower compared to NetLapRLS, its AUC and
AUPR are significantly higher than NetLapRLS. Since AUC and
AUPR are more important evaluation metrics compared to other
three measurements, VDA-RLSBN, with the highest AUC and
AUPR, is considered to be better in finding potential VDAs
of novel viruses.

TABLE 2 | The performance of VDA-RLSBN with other five methods.

Methods Accuracy Sensitivity Specificity AUC AUPR

LRLSHMDA 0.5841 0.6702 0.5823 0.8303 0.1778

SMiR-NBI 0.2080 0.8437 0.1935 0.5721 0.4912

CMF 0.8980 0.8971 0.9916 0.7500 0.4210

NetLapRLS 0.8974 0.8974 0.9992 0.6758 0.1777

WNN-GIP 0.8786 0.8961 0.9072 0.8491 0.5356

VDA-RLSBN 0.9298 0.9279 0.9841 0.9085 0.6630
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Among six VDA prediction methods, LRLSHMDA,
NetLapRLS, WNN-GIP, and VDA-RLSBN are RLS-based
methods. VDA-RLSBN obtained better performance than the
other three methods. Although other RLS-based prediction
methods have good performance, they cannot predict the
relationship between new drug candidates and new candidate
targets. If a virus/drug has no known drug/virus, it is a new
virus/drug. Since there are many new viruses/drugs, our
proposed VDA-RLSBN approach learned labeled information
from neighbors and used the information to train the model and
make predictions. So VDA-RLSBN obtained better performance
compared to other RLS-based methods. The results suggest that
RLS combining neighbor association information can better
identify new VDAs.

Case Study
The prediction performance of the proposed VDA-RLSBN
method was confirmed in the last section. As a means to finding
potential antiviral drugs against SARS-CoV-2, small molecular
drugs were ranked based on the association scores with SARS-
CoV-2 and the top 10 drugs with the highest scores were listed
in Table 3. Among the predicted top 10 VDAs, 4 VDAs are
reported by related literature, that is, 40% small molecular drugs
are confirmed to be possible antiviral drugs against SARS-CoV-2.

Ribavirin is inferred to be the best small molecular drug
against SARS-CoV-2. It is a broad-spectrum antiviral drug
that can inhibit the replication of respiratory syncytial virus
(Laarhoven and Marchiori, 2013). For example, it has been
applied to prevent respiratory syncytial virus infection in lung
transplant recipients (Hayden and Whitley, 2020) and specially
used to treat SARS-CoV and MERS-CoV (Permpalung et al.,
2019). Similar to SARS-CoV and MERS-CoV, SARS-CoV-2 is
a respiratory syndrome betacoronavirus and may cause serious
respiratory diseases. A few studies (Li and De, 2020; Wang et al.,
2020b) have reported that ribavirin may take an inhibitory effect
on SARS-CoV-2. More importantly, remdesivir and chloroquine
are inferred to be other effective antiviral drugs. Wang et al.
(2020b) presented that remdesivir and chloroquine can effectively
inhibit SARS-CoV-2 and they have been used in the clinical stage.

TABLE 3 | The predicted top 10 drugs associated with SARS-CoV-2.

Rank Drug Confirmed

1 Ribavirin doi: 10.1038/d41573-020-00016-0
PMID:32034637

2 Remdesivir PMID:32036774, 32035533, 32035018,
31971553, 32022370, 31996494, 32020029

doi: 10.1101/2020.01.28.922922
doi: 10.26434/chemrxiv.11831101.v1

3 Mycophenolic acid Unconfirmed

4 Chloroquine PMID:32020029

5 Phenothiazine Unconfirmed

6 Mizoribine doi: 10.20944/preprints202002.0061.v1

7 FK506 Unconfirmed

8 Pentoxifylline Unconfirmed

9 6-Azauridine Unconfirmed

10 Protein phosphatase 1 Unconfirmed

These results suggest that ribavirin, remdesivir, and chloroquine
may be applied to the treatment of COVID-19.

Molecular Docking
We conducted molecular docking between the predicted top
10 small molecules and the SARS-CoV-2 spike protein/ACE2.
The chemical structures of these small molecular drugs were
downloaded from the DrugBank database. The structure of
the virus spike protein was obtained based on homologous
modeling from Zhang Lab (2020). The structure of ACE2 can
be downloaded from the RCSB Protein Data Bank (Helen et al.,
2000) (ID:6MJ0). AutoDock used the genetic algorithm as a
search algorithm and selected the entire protein as a grid box.

The molecular binding energies between the predicted top
10 small molecules and these two target proteins are described
in Table 4. The results show that the predicted top 10 drugs
have higher molecular binding activities with the spike protein
and/or ACE2. For example, ribavirin, which is predicted to be the
most possible drug against SARS-CoV-2, has a higher molecular
binding energy of −6.39 kcal/mol with ACE2. In addition,
remdesivir, mycophenolic acid, and chloroquine are predicted
to have higher association scores with SARS-CoV-2. These
three small molecular drugs showed higher binding energies of
−7.4, −5.35, and −6.29 kcal/mol with ACE2, respectively. More
importantly, ribavirin, remdesivir, and chloroquine have been
used for the treatment of SARS, which has about 79% sequence
identity with SARS-CoV-2. So the potential use of these three
small molecules as a treatment for COVID-19 may be under
investigation. Interestingly, FK506 is an immunesuppressive drug
and mainly used to decrease the activity of the immune system
after organ transplant. The molecular docking results show that

TABLE 4 | The molecular binding energies between the predicted top 10 antiviral
drugs and two target proteins.

Target protein Drug Binding energy

The spike protein Ribavirin −5.29

Remdesivir −5.22

Mycophenolic acid −3.6

Chloroquine −5.03

Phenothiazine −5.44

Mizoribine −6.07

FK506 −10.1

Pentoxifylline −8.59

6-Azauridine −7.72

Protein phosphatase 1 −8.46

ACE2 Ribavirin −6.39

Remdesivir −7.4

Mycophenolic acid −5.35

Chloroquine −6.29

Phenothiazine −8.12

Mizoribine −7.62

FK506 −11.06

Pentoxifylline −5.98

6-Azauridine −10.74

Protein phosphatase 1 −9.13
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FIGURE 2 | Molecular docking between (A) ribavirin, (B) remdesivir, (C) chloroquine, and (D) FK506 and the spike protein.

FK506 has a strong molecular binding energy of −11.06 and
−10.1 kcal/mol with ACE2 and the spike protein, respectively,
although it has a slightly lower rank in the predicted drugs against
SARS-CoV-2 by VDA-RLSBN.

Figures 2, 3 represent the docking results about four small
molecules including ribavirin, remdesivir, chloroquine, and
FK506 and two target proteins. The subfigure in each circle
denotes the residues at the binding site of the SARS-CoV-2
spike protein/ACE2 and their corresponding orientations. For
example, the amino acids L387, L368, P565, and V209 were
inferred to be the key residues for ribavirin binding to the SARS-
CoV-2 spike protein/ACE2 while L828, L849, W1212, N163, and
N194 were inferred as the key residues for FK506 binding to the
SARS-CoV-2 spike protein/ACE2.

DISCUSSION

With the spreading of SARS-CoV-2 around the world, the
incidence rate is rapidly increasing, and lack of effective treatment
options made it a public health threat. Therefore, various
strategies are being exploited. Drug repositioning, aiming to offer
a potentially valuable opportunity to find new clues of treatment

for existing FDA-approved drugs, provides a far more rapid
option to the clinic than novel drug design.

In the proposed VDA-RLSBN method, we predicted VDA
candidates based on RLS and BLM. However, SARS-CoV-2 is
a new coronavirus and has no associated drugs verified by
biomedical experiments. We cannot find potential VDAs related
to the virus by RLS and BLM. Therefore, we used association
information of other RNA viruses similar to SARS-CoV-2
and similarities between SARS-CoV-2 and these viruses. The
originality of our proposed method remains, predicting possible
antiviral drugs against SARS-CoV-2 by drug repositioning
through virus–drug association identification. More importantly,
we integrated neighbor association information to RLS to find
associated chemical agents for the new virus. The experimental
results showed the merits of the VDA-RLSBN model. Higher
AUC and AUPR indicated that the predicted antiviral drugs
against SARS-CoV-2 are likely to be effective for preventing the
rapid transmission of COVID-19.

VDA-RLSBN can obtain superior performance regardless of
AUC, AUPR, accuracy, or sensitivity. This observation may
be attributed to the following two features. First, VDA-RLSBN
divides new VDA prediction into four cases based on BLM, a
state-of-the-art method applied in various association prediction
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FIGURE 3 | Molecular docking between (A) ribavirin, (B) remdesivir, (C) chloroquine, and (D) FK506 and ACE2.

areas. More importantly, neighbor association information can
help to identify possible antiviral drugs against new viruses (for
example, SARS-CoV-2).

The proposed VDA-RLSBN approach is also helpful in
designing and interpreting pharmacological experiments. The
method can be further applied to select potential antiviral
drugs against other new viruses, for example, infectious
bronchitis virus.

CONCLUSION

In this study, we considered the clues of treatment from
SARS-CoV, MERS-CoV, and other diseases caused by single-
strand RNA viruses and developed a VDA prediction method
based on RLS, BLM, and neighbor association information.
VDA-RLSBN inferred commercially available small molecular
drugs that could be applied to experimental therapy options
against SARS-CoV-2. We conducted molecular docking between
the predicted four chemical compounds including ribavirin,
remdesivir, chloroquine, and FK506 and two target proteins
including the spike protein and ACE2. The results show that
ribavirin, remdesivir, and chloroquine have better molecular

binding activities with ACE2 and may be the best small molecular
drugs against SARS-CoV-2. In addition, we found that several
antiviral drugs, such as FK506, could be used to combat COVID-
19. Nevertheless, the 4 predicted drugs ranked 1, 2, 4, and
6 have been supported by recent works. We hope that our
predicted small molecules may be helpful in the prevention of the
transmission of SARS-CoV-2.

In the future, we will develop ensemble frameworks
(Hu et al., 2018; Peng et al., 2020) and positive-unlabeled
learning methods (Lan et al., 2016a; Peng et al., 2017b)
to further improve the prediction performance. More
importantly, we will enlarge the existing dataset. We
will also integrate various biological data including long
noncoding RNA (Lan et al., 2017; Zhao et al., 2018;
Liu et al., 2020) and disease symptom information
(Lan et al., 2016b).

CODE AVAILABILITY

Source code is freely downloadable at: https://
github.com/plhhnu/VDA-RLSBN/.
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