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Introduction
Posttranscriptional RNA modifications are important mech-
anisms that act on all kinds of RNAs, leading to their 
increased structural and functional diversity.1 There are at 
least 100 kinds of RNA modifications,2 among which N6-
methyladenosine (m6A) is currently the most prevalent and 
intensively studied due to its wide impacts.3 It regulates 
many essential biological processes including neuronal dif-
ferentiation, obesity, and messenger RNA (mRNA) stabil-
ity.4-6 The m6A RNA methylation is a reversible mark, which 
is deposited by methyltransferases (or the writers), including 
METTL3 (methyltransferase-like 3), METTL14 (methyl-
transferase-like 14), METTL16 (methyltransferase-like 16), 
and so on, and is removed by demethylases (or the erasers), 
including FTO (fat mass and obesity–associated protein) 
and ALKBH5 (ALKB homolog 5).

The writers of RNA m6A modification are protein com-
plexes containing catalytic components METTL3, METTL14, 
and METTL16, which all have the class I methyltransferase 
domain. METTL3 is the first identified m6A relevant methyl-
transferase that has S-adenosylmethionine (SAM)-binding 
activity.7 Afterward, METTL14 was discovered as the second 

methyltransferase that has a methyltransferase domain shar-
ing 22% sequence identity with METTL3.8 While individual 
METTL3 or METTL14 exhibits comparably weak catalytic 
activity in vitro, the METTL3-METTL14 complex has 
higher catalytic capacity.9,10 In addition, the crystal structure 
of METTL3-METTL4 complex suggested that only 
METTL3 binds with SAM and METTL14 plays a structural 
role for substrate recognition.8,11 Thus, the heterodimeric 
METTL3-METTL14 complex was considered a catalytic 
domain of m6A methyltransferase. Recently, METTL16 has 
been identified as another catalytically active m6A mRNA 
methyltransferase.12 The METTL16 is similar to METTL3 
in structure, but has some unique elements, such as unique αB 
helix in the Rossmann fold.13 In addition, these 2 catalytically 
active m6A mRNA methyltransferases have different roles to 
play in biological processes. For example, the METTL14 and 
METTL3 modulate cell cycle progression of cortical neural 
progenitor cells14 and depletion of METTL3 or METTL14 
promotes tumor progression by enhancing the growth of glio-
blastoma stem cells.15 METTL16 can recognize hairpin and 
methylated adenosine in the U6 snRNA, which regulates the 
expression of MAT2A.16

FTO and ALKBH5 are 2 currently identified m6A-spe-
cific RNA demethylases (erasers).4,17 Although FTO is able to 
act as a demethylase on another substrate, N3-methylthymidine 
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(m3T), its efficiency is much lower than working on m6A sub-
strates.18,19 Although both FTO and ALKBH5 can target 
specifically RNA m6A,19,20 the 2 differ significantly on many 
levels. For example, at the molecular level, FTO has an amino-
terminal AlkB-like domain, a carboxy-terminal domain with a 
novel fold, and an extra loop that covers on one side of con-
served jelly-roll motif.21 ALKBH5 is a member of the 2-oxo-
glutarate (2OG) and ferrous iron-dependent nucleic acid 
oxygenase (NAOX) families, it has a double-stranded β-helix 
core fold and the active metal site is coordinated by an 
HXD. .  .H motif along with 3 water molecules.22 In addition, 
their reaction pathways seem to be different: m6A is directly 
converted by ALKBH5 to adenosine; 2 intermediates, N6-
hydroxymethyladenosine (hm6A) and N6-formyladenosine 
(fm6A), are observed during demethylation of m6A sites by 
FTO.23,24 FTO and ALKBH5 also play different roles in 
terms of physiological functions, one is associated with obe-
sity4 and the other is thought to participate in the formation 
of sperm.25 Moreover, FTO is mainly expressed in the brain,26 
in contrast to ALKBH5, which is found in most tissues, par-
ticularly in the testes.17

Therefore, according to these studies, 2 kinds of catalyti-
cally active m6A mRNA methyltransferases and 2 demethyl-
ases exist that have distinct structures and participate in 
different biological functions. It would be very interesting to 
know what the preferential target sites of METTL3-
METTL14 complex, METTL16, FTO, and ALKBH5 are 
and their downstream biological processes. Experimental 
approaches are effective for testing their functional relevance 
under a specific experimental condition, such as using differ-
ent cell lines or testing different treatments. Due to limited 
detectability, it is not possible to detect target sites on very 
lowly expressed genes, which is the intrinsic limitation of wet 
lab–based approach, such as ParCLIP. To unveil comprehen-
sively the epitranscriptome-wide targets of RNA m6A, we 
considered using computational approaches.

Currently, the field of bioinformatics has seen the rapid 
development of new methods and their wide applications in 
RNA epigenetics. The mammalian m6A short consensus motif 
RRACH (where R = A or G; H = A, C, or U) has not been 
characterized until 2012, when the next-generation sequencing 
techniques called m6A-seq or MeRIP-seq (methylated RNA 
immunoprecipitation sequencing)27-29 emerged. Thereupon, 
RMBase and MeTDB have been developed into v2.0, which 
now can provide millions of m6A sites in many different spe-
cies, such as, human, mouse, yeast, and fly.30,31

Meanwhile, many successful computational studies have 
been devised on m6A site prediction, such as SRAMP, 
MethyRNA, and RNAMethPre.32-34 Although there are many 
good precedents in m6A site prediction and deposition (data-
base development), there has been no effort made in the sub-
strate prediction of m6A enzymes. We, therefore, devised a 
computational tool to study the target specificity of m6A 

enzymes. In this study, the predictors were built using the ran-
dom forest (RF) approach to distinguish the target specificity 
of the m6A writers (METTL3-METTL14 complex and 
METTL16) and the erasers (FTO and ALKBH5), respec-
tively. Although the sequence-derived features were widely 
used in m6A site prediction33,35 and generated reasonably good 
results, we included additional genome-derived features and 
achieved substantial improvement in performance.

Matrerials and Methods
The m6A sites

The transcriptome-wide m6A sites were extracted from the 
WHISTLE web server,36 which used multiple genomic and 
sequence features to predict the entire epitranscriptome and 
achieved substantial improvement compared with existing 
approaches. Please note that all these m6A sites were originally 
collected from wet lab experiments30 and simultaneously sup-
ported by the WHISTLE prediction with high confidence. 
We considered the m6A sites with probability greater than .6, 
.7, .8, and .9, which are corresponding to 4 data sets of 98 095, 
75 720, 52 687, and 27 646 RNA methylation sites, respec-
tively. In this study, 4 different sets of data were extracted for 
further analysis. This is because they correspond to different 
coverage and reliability. A larger set has better coverage of the 
m6A epitranscriptome, but may also contain more false m6A 
sites that can affect prediction performance. The training data 
is provided in Supplementary Table 1.

Target sites of the enzymes

The ground truth targets were identified using perturbation 
experiment, eg, the hypomethylated sites after the knock 
down of a methyltransferase identified from MeRIP-seq 
data. Specifically, the raw data were retrieved from GEO 
(Gene Expression Omnibus; see Table 1), and the FASTQ 
files were aligned to the reference genome hg19 using hisat242 
with default settings. The resulting SAM files were then con-
verted to BAM files using samtools with the quality filter –q 
30 and the FLAG filter –F 2820. Following that, the number 
of reads aligned to each individual RNA methylation sites 
were counted as fragments in R using GenomicAlignment 
package.43 For each experiment with regulator perturbation, 
differential methylation analysis was conducted by DESeq244 
using the interactive generalized linear model (GLM) design 
of ~ IP*Treatment, while IP is the indicator vector for the 
samples being IP, and Treatment is the indicator vector for 
the samples treated with regulator perturbation. The m6A 
sites with the Wald test fdr < 0.05 and the interactive coeffi-
cient <0 (>0 for the sample gsc11-ALKBH5-) are treated as 
the target sites of the regulator. The shared target sites of 
multiple enzymes, ie, (FTO and ALKBH5) or (M3/M14 vs 
M16) are considered with ambiguous association and thus 
excluded from our analysis.

https://journals.sagepub.com/doi/suppl/10.1177/1176934319871290
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Feature encoding scheme and selection

Sequence-derived features.  The nucleotide encoding method 
according to chemical properties was suggested by Bari et al.45 
In the MethyRNA32 and M6Apred,46 this encoding method 
was applied in the generation of sequence-derived features and 
achieved good accuracy in the m6A site prediction. In this pro-
ject, we followed this idea of chemical encoding method to 
generate sequence-derived features. Specifically, 3 chemical 
properties of the nucleotides were used to classify adenine (A), 
cytosine (C), guanine (G), and uracil (U). The first property is 
ring structures: A and G have 2 ring structures, whereas C and 
U have only 1 ring. The second property is functional groups. 
A and C contain amino group, whereas G and U contain the 
keto group. The third property is the number of hydrogen 
bonds formed. A and U can form 2 hydrogen bonds during 
hybridization, whereas G and C can form 3 hydrogen bonds. 
Based on the 3 structural chemical properties defined above, 
the ith nucleotide from sequence can be encoded by a vector:
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Thus, A can be marked as (1, 1, 1), C can be marked as (0, 1, 
0), G can be marked as (1, 0, 0), and U can be marked as (0, 0, 
1). In addition, a feature of the accumulative nucleotide fre-
quency is calculated for each nucleotide position in the 
sequence. The density of ith nucleotide is defined as the sum of 
all the instances of the ith nucleotide before the i +1 position. 

The nucleotide frequency (keep 2 decimal places) is defined by the 
following formula: f d ii i= / . Using sequence “AUGGACACU” 
as an example, the accumulative frequencies for adenine are 1.00 
(1/1), 0.40 (2/5), and 0.43 (3/7) at the first, fifth, and seventh 
sequence positions, respectively, whereas the frequencies for 
uracil are 0.50 (1/2) and 0.11 (1/9) at the second and ninth 
sequence positions, respectively. According to the sequence 
extended 20 bp (base pair) to each side around the m6A sites, 
they were encoded by the above method, and we obtained a 
sequence-derived feature with 164 dimensional features for 
each m6A site.

Genome-derived features

Although the sequence-based features were widely used in 
the prediction of RNA modification sites, there are poten-
tially other features that can be used.47 The genomic features 
have been shown in the WHISTLE project to be effective in 
the m6A site prediction. A total of 47 genome-derived fea-
tures were considered for this project (see Table 2). Specifically, 
genomic features 1 to 17 specify the locations of adenosine 
sites within the transcript region and their topological prop-
erties as dummy variables. To generate features in this cate-
gory, we used the transcript annotations of hg19 human 
genome assembly and the GenomicFeatures R/Bioconductor 
package.43 Genomic features 18 to 21 define the relative posi-
tions of adenosine sites within transcript region, which is cal-
culated based on the distance from the methylated adenine to 
the 5′ end divided by the total width of the region; the posi-
tion features are set to 0 if the adenosine sites do not belong 
to the region. The values of features 22 to 26 are lengths of 
the transcript region containing the methylated site; if the 

Table 1.  GEO data sets used to identify ground truth target sites.

ID Regulator Cell type GEO SRA study Publication

1 METTL14 A549 SRP039397 Schwartz et al37

2 METTL14 Hela SRP022152 Liu et al10

3 METTL14 MonoMac6 SRP103072 Weng et al38

4 METTL14 NB4 SRP103072 Weng et al38

5 METTL3 A549 SRP039397 Schwartz et al37

6 METTL3 AML SRP099081 Barbieri et al39

7 METTL3 Hek293T SRP039397 Schwartz et al37

8 METTL3 Hela SRP022152 Liu et al10

9 METTL16 HEK293A SRP094637 Pendleton et al12

10 ALKBH5 gsc11 SRP067910 Zhang et al40

11 FTO AML SRP067910 Li et al41

Abbreviations: ALKBH5, ALKB homolog 5; FTO, fat mass and obesity–associated protein; GEO, Gene Expression Omnibus; METTL3, methyltransferase-like 3; 
METTL14, methyltransferase-like 14; METTL16, methyltransferase-like 16; SRA, Sequence Read Archive.
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Table 2.  Genomic features used in the analysis.

ID Name Description Note

1 UTR5 5′ UTR Dummy variables 
indicating whether the 
site overlaps the 
topological region on 
the major RNA 
transcript

2 UTR3 3′ UTR

3 cds CDS

4 Stop_codons Stop codons flanked by 100 bp

5 Start_codons Start codons flanked by 100 bp

6 TSS Downstream 100 bp of TSS

7 TSS_A Downstream 100 bp of TSS on A

8 Stop_codons Stop codons

9 exon_stop Exons containing stop codons

10 alternative_exon Alternative exons

11 constitutive_exon Constitutive exons

12 internal_exon Internal exons

13 long_exon Long exons (exon length ⩾ 400 bp)

14 last_exon Last exons48

15 last_exon_400bp 5′ 400 bp of the last exons48

16 last_exon_sc400 5′ 400 bp of the last exons containing stop codons48

17 intron Introns

18 pos_UTR5 Relative position on 5′ UTR Relative position on 
the region

19 pos_UTR3 Relative position on 3′ UTR

20 pos_CDS Relative position on CDS

21 pos_exons Relative position on exon

22 length_UTR5 5′ UTR length The region length in 
base pairs

23 length_UTR3 3′ UTR length

24 length_cds CDS length

25 length_gene_ex Mature transcript length

26 length_gene_full Full transcript length

27 PC_1bp PhastCons scores of the nucleotide49 Scores related to 
evolutionary 
conservation28 PC_101bp Average phastCons scores within the flanking 50 bp region49

29 FC_1bp fitCons scores of the nucleotide50

30 FC_101bp Average fitCons scores within the flanking 50 bp region50

31 struc_hybridize Predicted RNA hybridized region51 RNA secondary 
structure

32 struc_loop Predicted RNA loop region51

33 isoform_num Isoform number Attributes of the genes 
or transcripts

34 exon_num Exon number

35 HK_genes Housekeeping genes52

 (Continued)
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sites do not belong to the region, the features are set as 0 also. 
The evolutionary conservation score of the methylated aden-
osine sites and its flanking regions was measured in features 
27 to 30 with 2 metrics of nucleotide conservation: PhastCons 
score and the fitness consequence scores. Features 31 and 32 
represent the RNA secondary structures of transcripts region 
containing methylated adenine predicted using RNAfold in 
Vienna RNA package. Features 33 to 35 represent the attrib-
utes of the genes or transcripts containing methylated sites. 
Features 36 to 40 indicate whether the adenosine sites inter-
act with small noncoding RNA, long noncoding RNA, and 
microRNA, respectively. Finally, features 41 to 49 indicate 
whether the methylated sites are located within RNA pro-
tein-binding regions. For the above features, to avoid ambi-
guity caused by transcript isoforms, only the primary (longest) 
transcript of each gene was kept for the extraction of the tran-
script subregions. The details for genomic features are sum-
marized in Table 2.

Machine learning approach

Machine learning algorithms have been widely used in the 
field of computational biology. In RNA epigenetics studies, 
support vector machine (SVM) and RF have been used previ-
ously in RNA m6A site prediction,32,33,46 and both achieved 
good performances. In this project, the RF algorithm from the 
R randomForest was used to build predictor models.

Performance evaluation

A 5-fold cross-validation was used for assessing the reliability 
of the method. In the performance evaluation, the sensitivity 
( )Sn  and specificity ( )Sp  are defined as follows:

Sn TP
TP FN

=
+

	 (2)

Sp TN
TN FP

=
+

	 (3)

where TP, TN, FP, and FN represent true positive, true nega-
tive, false positive, and false negative, respectively. In addition, 
prediction performance under different decision thresholds 
were measured as the receiver operating characteristic (ROC) 
curve whose y-axis is sensitivity and x-axis is 1-specificity, the 
area under ROC curve (AUC) was calculated as the main per-
formance evaluation metrics. In addition, the ACC (overall 
accuracy) and MCC (Matthews correlation coefficient) were 
calculated as other indicators to evaluate the reliable of model.

Results and Discussion
Feature selection

Although extensive research in m6A site prediction has dem-
onstrated the effectiveness and reliability of sequence-derived 
features32,33,54 and genome-derived features,36 we seek to, for 

ID Name Description Note

36 sncRNA sncRNA RNA annotations 
related to m6A biology

37 lncRNA lncRNA

38 miR_targeted_genes miRNA-targeted genes53

39 Verified_miRtargets miRNA-targeted sites verified by experiment8

40 TargetScan Predicted miRNA targeted sites by TargetScan9

41 HNRNPC_eCLIP eCLIP data of HNRNPC RNA binding sites7 RNA-binding protein 
annotation from 
MeTDB database3142 METTL3_TREW METTL3-binding region31

43 METTL14_TREW METTL14-binding region31

44 WTAP_TREW WTAP-binding region31

45 YTHDC1_TREW YTHDC1-binding region31

46 YTHDF1_TREW YTHDF1-binding region31

47 YTHDF2_TREW YTHDF2-binding region31

48 ALKBH5_TREW ALKBH5-binding region31

49 FTO_TREW FTO-binding region31  

Abbreviations: ALKBH5, ALKB homolog 5; FTO, fat mass and obesity–associated protein; GEO, Gene Expression Omnibus; METTL3, methyltransferase-like 3; 
METTL14, methyltransferase-like 14; METTL16, methyltransferase-like 16; SRA, Sequence Read Archive.
Features that are directly related to the prediction are not used to avoid overfitting. For example, the features 42 and 43 were not used for writer target prediction, whereas 
feature 48 and 49 were not used for eraser target prediction.

Table 2. (Continued)
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the first time, use these features to predict the target specificity 
of m6A enzymes. Due to the abundance of the genomic fea-
tures, we first performed feature selection to identify the 
genomic features most relevant to our purpose, which is to 
improve the reliability of the features and the prediction per-
formance, as well as to save computation time and memory. 
The feature selection was performed on the set of RNA meth-
ylation sites with probability greater than .6.

At the beginning, the Perturb method55 was used to esti-
mate the relative importance of each genomic feature in the 
target specificity prediction of eraser targets using the R caret 
package. To illustrate the relative importance of different fea-
tures clearly, the measurement results are rescaled and ranked 
(Figure 1A). According to this rank, relevant AUROC (area 
under the receiver operating characteristics) figures are gener-
ated based on the top N features. We can observe that the best 
performance was achieved with the top 20 features. Thus, only 
the top 20 features were used in our prediction model for eras-
ers. Similarly, the same treatment was done on the writer target 
prediction (Figure 1B), where the best performance was 
achieved with the top 15 features.

Predictors based on different set of features

Existing computation models overwhelmingly relied on the 
sequence features. In our prediction model, while it also 
incorporates features derived from other genomic annota-
tions (see Table 2), It is important to test whether these fea-
tures contribute to the prediction performance. For this 
purpose, a 5-fold cross-validation was conducted on the 

data set of RNA methylation sites with probability greater 
than .6, and different types of features were used. As shown 
in Table 3, sequence features were more effective than 
sequence features in the target prediction for erasers; but not 
in the case for writers. However, it is consistent for the best 
performance to be achieved when both sequence and genomic 
features were incorporated.

Performance on different data sets

In next step, we consider expanding the model to test on all 
the 4 data sets. As shown in Table 4, the 4 different data sets 
have different coverage of the m6A epitranscriptome; for 
erasers, the best target prediction performance was achieved 
on data set 4, which are RNA methylation sites with proba-
bility greater than .9, whereas for writers, the best perfor-
mance was achieved on data set 3, which are corresponding 
to the RNA methylation sites with probability greater than 
.8. To compare with other machine learning approaches, the 
SVM, Naïve Bayes, decision tree, and GLM were applied to 
build model. The performances for each method are sum-
marized in Table S2 and were evaluated by the sensitivity, 
specificity, AUROC, ACC, and MCC.

Biological functions regulated by different enzymes

There are 3585, 4623, 4742, and 4734 sites identified in data 
set 1 (see Table 4) under the regulation of METTL3-
METTL14 complex, METTL16, FTO, and ALKBH5, 
respectively, which are located on 2149, 2178, 2375, and 2635 

Figure 1.  Feature Selection for Predictors. (A) The top 20 genomic features were used for prediction of the targets of erasers, including conservation 

score, METTL3 targets, etc. (B) The top 15 genomic features were used for prediction of the targets of writers, with the distance to known m6A site as the 

most important predictive feature, followed by gene length and conservation score.

https://journals.sagepub.com/doi/suppl/10.1177/1176934319871290
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genes. The biological functions of these targets sites were then 
annotated with gene ontology enrichment analysis using 
DAVID website.56 Figure 2 shows the top 10 mostly enriched 
biological processes. We can see that different biological pro-
cesses were enriched in different enzymes. For example,  
FTO is associated with cell-cell adhesion (5.473E−13), 
mRNA splicing (2.212E−12), viral process (4.31E−09), 
whereas the target sites of ALKBH5 are more related to Golgi 
organization (4.13E−09) and DNA-templated transcription 
(4.14E−14). METTL16 targets are enriched with genes 
related to endoplasmic reticulum–associated misfolded pro-
tein catabolic process (9.07E−06), regulation of cell cycle 
(1.15E−04), apoptotic process (6.70E−04) and protein ubiqui-
tination (9.99E−05), whereas METTL3-METTL14 com-
plex preferentially target to genes associated to cell-cell 
adhesion (2.86E−07), cell division (4.08E−07), and G2/M 
transition of mitotic cell cycle (3.03E−06). Please see Table S3 
for the complete gene ontology enrichment analysis result.

Discussion and Conclusions
Recent progress in RNA modification bioinformatics enabled 
the precise detection, accurate quantification, differential anal-
ysis, and function annotation of m6A RNA methylation sites 
in base resolution. RMBase and MetDB collected experimen-
tally validated m6A sites in multiple species and revealed their 
potential regulatory functions.30,31 The exomePeak57,58 was 
developed based on Przyborowski and Wilenski’s59,60 method 
for m6A site detection and differential methylation analysis 
from MeRIP-seq data. The computational prediction of m6A 

modification sites in different species performed in the works 
iRNA(m6A)-PseDNC,61 iRNA-Methyl,62 m6Apred,46 
RFAthM6A,63 and BERMP64 based on machine learning or 
deep learning approaches. The potential disease relevance and 
single-nucleotide polymorphism association of m6A modifi-
cation were revealed by the m6Avar65 and m6ASNP66 by 
examining whether a disease mutation can alter the potential 
of RNA methylation status. Meanwhile, complex network 
method was used in m6Acomet,67 m6A-Driver,68 Deepm6A,69 
DRUM,70 and FunDMDeep-m6A71 to study the regulatory 
functions and predict the disease association of m6A RNA 
modification.

Here, we have proposed a computational approach for the 
prediction of the target sites of m6A enzymes. The computa-
tional model proposed relies on 49 genomic features as well 
as the conventional sequence features. With a model selec-
tion step, we showed with a 5-fold cross-validation that the 
proposed approach achieved relatively good performance in 
the target prediction for the writers (AUC: 0.918) and eras-
ers (AUC: 0.888). The following gene ontology analysis 
unveiled the epitranscriptome functional relevance of these 
enzymes.

The proposed approach suffers from the following limita-
tions. (1) The ground truth target sites were identified from 
perturbation experiment, in which a target site of a methyl-
transferase is defined as those whose methylation level 
decreases when the methyltransferase was knocked down. 
Obviously, the decrease in methylation level may not be due 
to direct target but because of a secondary effect. For this 

Table 3.  Performance of predictors based on different features.

Feature type Erasers (FTO vs ALKBH5) Writers (M3/M14 vs M16)

Sensitivity Specificity AUROC Sensitivity Specificity AUROC

Sequence 0.789 0.781 0.849 0.656 0.746 0.772

Genome 0.762 0.736 0.827 0.802 0.795 0.886

Both 0.814 0.813 0.887 0.802 0.795 0.889

Abbreviations: ALKBH5, ALKB homolog 5; AUROC, area under the receiver operating characteristics; FTO, fat mass and obesity–associated protein.
This result was achieved on RNA methylation sites with probability greater than .6 with a 5-fold cross-validation.

Table 4.  Prediction performance on different data sets (AUROC).

Enzyme type Data set

Data set 1
(P* > .6)
98 095 sites

Data set 2
(P > .7)
75 720 sites

Data set 3
(P > .8)
52 687 sites

Data set 4
(P > .9)
27 646 sites

Erasers (FTO vs ALKBH5) 0.873 0.873 0.872 0.888

Writers (M3/M14 vs M16) 0.889 0.888 0.911 0.877

Abbreviations: ALKBH5, ALKB homolog 5; AUROC, area under the receiver operating characteristics; FTO, fat mass and obesity–associated protein.

Four data sets were considered, corresponding to the experiment-validated RNA methylation sites from RMBase and also supported by WHISTLE prediction with 
probability greater than .6, .7, .8, and .9, respectively. The detailed performance of 5 different classification predictors (RF, SVM, GLM, Naïve Bayes, and decision tree) is 
presented in Supplementary Table S2.

https://journals.sagepub.com/doi/suppl/10.1177/1176934319871290
https://journals.sagepub.com/doi/suppl/10.1177/1176934319871290
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reason, the ground truth data can be further improved. (2) 
The features incorporated in the prediction model can be fur-
ther increased. Although a total of 49 genomic features have 
been incorporated in our prediction model, the set can be 
expanded by including, eg, features related to lncRNA, repeat 
region. Increased feature set can often lead to improved per-
formance. (3) We considered here only a binary classification, 
which emphasizes the target specificity of different enzymes. 
However, in practice, it is possible that there are a large num-
ber of RNA methylation sites that are simultaneously tar-
geted by both m6A writers (or both m6A erasers) considered 
in this work. In addition, there are likely to be unknown 
methyltransferases or demethylases to be discovered and thus 
are not considered in the prediction models. This would be a 
difficult question to solve. (4) A better computation method 
may be used. We used here RF, which is a classic method. 
Recent development in artificial intelligence, especially deep 
learning–related approach may achieve better performance.
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