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Oscillations are ubiquitous in the brain. Alpha oscillations in particular have been

proposed to play an important role in sensory perception. Past studies have shown

that the power of ongoing EEG oscillations in the alpha band is negatively correlated

with visual outcome. Moreover, it also co-varies with other endogenous factors such

as attention, vigilance, or alertness. In turn, these endogenous factors influence visual

perception. Therefore, it remains unclear how much of the relation between alpha and

perception is indirectly mediated by such endogenous factors, and how much reflects

a direct causal influence of alpha rhythms on sensory neural processing. We propose

to disentangle the direct from the indirect causal routes by introducing modulations

of alpha power, independently of any fluctuations in endogenous factors. To this end,

we use white-noise sequences to constrain the brain activity of 20 participants. The

cross-correlation between the white-noise sequences and the concurrently recorded

EEG reveals the impulse response function (IRF), a model of the systematic relationship

between stimulation and brain response. These IRFs are then used to reconstruct

rather than record the brain activity linked with new random sequences (by convolution).

Interestingly, this reconstructed EEG only contains information about oscillations directly

linked to the white-noise stimulation; fluctuations in attention and other endogenous

factors may still modulate brain alpha rhythms during the task, but our reconstructed

EEG is immune to these factors. We found that the detection of near-perceptual threshold

targets embedded within these new white-noise sequences depended on the power

of the ∼10Hz reconstructed EEG over parieto-occipital channels. Around the time of

presentation, higher power led to poorer performance. Thus, fluctuations in alpha power,

induced here by random luminance sequences, can directly influence perception: the

relation between alpha power and perception is not a mere consequence of fluctuations

in endogenous factors.

Keywords: alpha oscillations, power, EEG, visual perception, IRF

INTRODUCTION

When recording the electro-encephalography (EEG) in humans, one of the most prominent
rhythm is the ∼ 10Hz oscillations over the occipito-parietal cortex. Most current theories agree
that alpha oscillations play an active inhibitory role in shaping our visual experience (Klimesch
et al., 2007; Jensen and Mazaheri, 2010; Foxe and Snyder, 2011; Mathewson et al., 2011; VanRullen,
2016).
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Evidence in line with these theories has come from studies
linking the instantaneous power of alpha oscillations over
the occipito-parietal channels to visual outcome. For example,
Ergenoglu et al. (2004) showed that stronger power in the∼10Hz
ongoing EEG oscillation before target presentation led to poorer
detection performance (Ergenoglu et al., 2004). This correlation
between trial-by-trial variability in alpha amplitude and visual
performance has since then received support from various other
experimental paradigms (van Dijk et al., 2008; Busch et al., 2009;
Wyart and Tallon-Baudry, 2009; Mathewson et al., 2011).

At the neuronal level, these changes in alpha power reflect
modulations of excitability. In fact, the instantaneous level of
alpha oscillatory power is a good index of the excitability
of the cortex measured by single pulse transcranial magnetic
stimulation (TMS) between (Romei et al., 2008a) as well as within
subjects: participants were more likely to report a “phosphene”
(illusory percept) when the ongoing EEG alpha power was
(relatively) lower (Romei et al., 2008a, replicated by Dugué
et al., 2011 and Samaha et al., 2017). The functional role of
these spontaneous fluctuations in excitability of the cortex is still
unresolved: they could be used for the detection of unpredictable
events in the visual field through a spatial scanning mechanism
(Romei et al., 2008a).

In fact, the power of alpha oscillations also co-varies with
endogenous factors (such as attention), as uncovered using the
classical Posner paradigm: a central cue (usually an arrow) is
used to induce the deployment of covert attention (i.e., without
eye movement) toward a visual hemi-field in preparation for the
upcoming peripheral target (Posner, 1980). Using this paradigm,
studies have shown that the instantaneous strength of the EEG
alpha power follows the deployment of spatial attention resulting
in two complementary effects with regards to the location of the
target: a decreased alpha power over the contra-lateral sensors
(Sauseng et al., 2005; Yamagishi et al., 2005; Thut et al., 2006;
van Diepen et al., 2015) and/or an increased power over the
ipsilateral sensors (Worden et al., 2000; Kelly et al., 2006; Rihs
et al., 2007; Cosmelli et al., 2011). Since this power lateralization is
retinotopic (Kelly et al., 2006) the locus of spatial attention can be
successfully decoded from the topography of the power of alpha
oscillations (Samaha et al., 2016).

Importantly, the Posner paradigm has also been used to
uncover the effects of endogenous factors on behavior. The
attended targets (i.e., presented in the cued hemi-field) are
detected faster (Posner, 1980), and more accurately (Posner et al.,
1980) than uncued targets. These effects have been extensively
reviewed (e.g., Carrasco, 2011; Petersen and Posner, 2012) and
replicated: attention acts as a selective tool to narrow the
amount of information and optimize the use of our limited brain
resources (Carrasco, 2014).

To summarize, both visual detection and the power of alpha
oscillations are directly influenced by attention: this creates
an indirect link between ongoing oscillations and perception
(see Figure 1). In this “indirect” route, oscillations have
no causal influence on perception. Rather, any measured
correlation between oscillations and perception can be
attributed to a common driving influence of endogenous
factors. How can we disentangle the relative contribution of

FIGURE 1 | Dual route between the ongoing oscillation power and visual

perception. The relationship between alpha oscillations and visual perception

could be a direct causal one, or could be mediated by an indirect influence of

endogenous factors on both ongoing oscillations and target detection. To

disentangle the relative contribution of both routes, the state of the ongoing

oscillations can be directly manipulated, e.g., by rhythmic brain or visual

stimulation (flicker), to test their causal influence on perception. Here, we

propose to use the “White Noise Paradigm”.

these two (direct/indirect) causal routes on sensory neural
processing?

It is possible to do so by directly modulating the state of
the ongoing oscillations, independently of any fluctuations in
endogenous factors. By synchronizing the ongoing oscillations
with an external driving rhythm, the functional relevance of
oscillations can be tested by probing perception as a function
of this entrainment (Thut et al., 2011a). Two methods have
previously been used to entrain the oscillations: either through
transcranial stimulation techniques or through the stimulation
of sensory pathways (Thut et al., 2011a), and both methods have
been shown to successfully entrain the oscillations for several
cycles after the stimulation stopped (Thut et al., 2011b; Halbleib
et al., 2012; Helfrich et al., 2014; Spaak et al., 2014).

Crucially, these entrained oscillations have been found to
causally influence visual target detection and discrimination.
Using rhythmic TMS, Romei et al. (2010) applied a train of
pulses over the occipital and parietal cortex in the theta, alpha
or the beta band. They found a frequency specific modulation
of performance by the entrained alpha rhythm (compared to
two frequency bands): the detection of contralateral (near-
perceptual threshold) visual targets was decreased concurrently
with increased alpha power by the rTMS (Romei et al., 2010).
Similarly for tACS, Kanai and colleagues found that stimulation
at alpha frequency using tACS was the most effective in inducing
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an illusory perception (i.e., phosphenes) in the dark (Kanai
et al., 2008). In addition, Helfrich et al. (2014) showed that
tACS successfully entrained the alpha oscillations over the
parieto-occipital cortex. These entrained oscillations successfully
modulated behavior (Helfrich et al., 2014).

Using four flashes of light to entrain the oscillations, de
Graaf et al. (2013) showed that entrainment of the alpha
oscillations (compared with other frequencies) resulted in a
specific impairment of the usual cueing benefit (de Graaf et al.,
2013). In a separate task, they also found that the discrimination
of a target presented after the entraining rhythm was modulated
during 3 cycles of the alpha rhythm (de Graaf et al., 2013). This
effect was also replicated by Spaak et al. (2014) who showed,
in addition, that this rhythmic modulation of performance was
supported by a neural entrainment of alpha oscillations.

Thus, these rhythmic transcranial or flickering stimulations
have been successfully used to study the direct causal influence of
ongoing oscillations on sensory processing. Nevertheless, these
methods require an a priori hypothesis about the stimulation
frequency (Dugué and VanRullen, 2017): the above mentioned
studies used 10Hz (Kanai et al., 2008; Romei et al., 2010; Spaak
et al., 2014) and 10.6HZ (de Graaf et al., 2013) respectively.
There is, however, a difficulty in choosing the exact stimulation
frequency: each subject has their own individual alpha peak
frequency, which varies as a function of the task demands
(Haegens et al., 2014; Mierau et al., 2017). Ideally, the stimulation
would be tailored to the individual subject’s alpha peak frequency
to create a 1:1 frequency locking, a condition “ideal” for
entrainment (Thut et al., 2011a).

In this study, we use an alternative method which overcomes
this limitation of choosing a specific frequency of stimulation.
By means of the White Noise (WN) Paradigm (Brüers and
VanRullen, 2017), the same stimuli can be used to constrain the
state of background oscillations in a subject specific manner.
White-noise (random luminance) sequences are used as the
driving visual stimulus. These have been shown to create
perceptual echoes in the brain (VanRullen andMacdonald, 2012),
whose individual peak frequency is highly correlated with the
individual alpha peak frequency (VanRullen and Macdonald,
2012). Therefore these WN sequences allow us to modulate the
alpha power independently of any fluctuations in endogenous
factors. Crucially, they can be used tomodel this modulated alpha
activity, without having to record the EEG.We used them here to
investigate whether changes in the state of alpha oscillations can
influence target visibility directly, regardless of the attentional
state.

METHOD

In this study, we re-analyzed data from a previously published
dataset (Brüers and VanRullen, 2017). For the convenience of the
reader, the necessary information is described again here.

Participants
Twenty-one volunteers were included in the experiment.
However, technical issues during EEG acquisition prevented us
from analyzing the data from one participant. Consequently, the

data from 20 participants (aged 23–39 years old with a mean
age of 28, 10 men, 5 left handed) was analyzed. All subjects
reported normal or corrected to normal vision and no history
of epileptic seizures or photosensitivity. In accordance with
the Declaration of Helsinki, all subjects gave written informed
consent before starting the experiment. This study was carried
out in accordance with the guidelines for research at the “Centre
de Recherche Cerveau et Cognition” and the protocol was
approved by the committee “Comité de protection des Personnes
Sud Méditerranée 1” (ethics approval number N◦ 2016-A01937-
44).

Stimuli and Protocol
The experiment was composed of two sessions of 8 experimental
blocks (of 48 trials), lasting about 1 h each (depending on the
duration of the self-administered rests). The stimuli were 6.25 s
long random luminance (white-noise) sequences presented on
a cathode ray monitor positioned 57 cm from the subject and
a resolution of 640 × 480 pixels and refresh rate of 160Hz.
The white-noise sequences had a flat power spectrum up to
80Hz (on average). The stimuli were created using custom script
in MATLAB and presented using the Psychophysics Toolbox
(Brainard, 1997). The sequences were presented on a black
background in an overhead peripheral disk with a diameter
of 7◦, whose center was at 7◦ of eccentricity from fixation.
Participants initiated the beginning of each trial and block by a
button press. The task was to maintain covert attention to the
WN sequences and report the presence of targets (from 2 to 4
targets per trial) embedded within them by pressing a button.
The targets (a lighter circle surrounded by a darker ring) were
presented for 1 frame only on a medium gray background disk
(see Figure 2). Using a staircase procedure, we manipulated the
visibility of these targets by changing the contrast between the
outer (darker ring) and inner (lighter circle) parts to reach the
contrast at which participants perceived about 50% of the first
100 targets presented (i.e., about 30 trials), keeping the resulting
contrast constant for the remainder of the session. The perceptual
threshold was computed for each session independently using
the quest function (Watson and Pelli, 1983). Both parts of the
target were updated symmetrically so as to keep a “medium
gray” mean luminance level for the target frames, identical to the
mean “medium gray” level of the white-noise sequence. During
the second session, we removed the luminance fluctuations
around the presentation of the target, as piloting showed a strong
influence of these raw luminance values on perception: higher
luminance systematically led to poorer target detection (Brüers
and VanRullen, 2017). Thus, 156.25ms long fluctuations-free
periods were created around each target by setting 14 frames
before and 11 frames around the target to the same target
background “medium gray” value. A control experiment (on 6
independent subjects) revealed that these fluctuation-free periods
could not be detected by the subjects (Brüers and VanRullen,
2017).

Recording and Pre-processing EEG Data
We recorded the brain activity to WN sequences using a 64
channels active BioSemi electro-encephalography (EEG) system
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FIGURE 2 | Illustration of the White-Noise Paradigm. The impulse response function (IRF) to white-noise sequences can be extracted by cross-correlating the stimuli

sequence with the recorded EEG (done in session 1). Here, an example IRF from one subject on the parieto-central channel. This IRF can, in turn, be used to

reconstruct the brain activity (reconstructed EEG) to any new white-noise sequence by convolution (done for session 2). Figure originally published in eNeuro in Brüers

and VanRullen (2017).

(1,024Hz digitizing rate, 3 ocular electrodes) in session 1. The
following pre-processing steps were applied to all subjects using
the EEGlab toolbox (Delorme and Makeig, 2004) in Matlab.
Once the noisy channels had been rejected and interpolated
(if necessary), the data was down-sampled to 160Hz (offline)
to match presentation rate of stimuli and thus facilitate the
cross-correlation of the two signals. A notch filter was then
applied (between 47 and 53Hz) to remove power line artifacts.
An average-referencing scheme was applied and slow drifts
were removed from the data by applying a high-pass filter
(>1Hz). Data epochs (384) were created around each white-
noise sequence (from−0.25 to 6.5 s) and the baseline activity was
removed (i.e., mean activity from−0.25 s to 0 before trial onset).
Finally, the data was screened manually for eye movements,
blinks and muscular artifacts and whole epochs were rejected as
needed: on average 20/384 trials were rejected per subject.

Extracting IRF and Reconstructing the EEG
The pre-processed and z-scored EEG data was cross-correlated
with the z-scored white-noise sequences (see Figure 2) to extract
the impulse response functions (IRF, also called VESPA by Lalor
et al., 2006; or “perceptual echoes” by VanRullen and Macdonald,
2012). For each subject, this created one IRF for each of 64 EEG
channels.

In session 2, we created a new set of white-noise sequences
which we presented to all subjects in a randomized order.
This allowed us to directly compare how the same targets
(across subjects) would be perceived. Here, we only collected the
behavioral responses to these new white-noise sequences. Instead
of recording the brain activity (“recorded EEG”), we estimated it
(“reconstructed EEG”) by doing a convolution between the IRFs
(as a model of brain response) and the white-noise sequences
presented in session 2. The mean target luminance (“medium

gray”) was included in the reconstruction. As such, it was no
different from the surrounding values in the sequence, and thus,
no ERP was evoked by the target in the reconstructed EEG (see
Figure 5 in Brüers and VanRullen, 2017). We created 1.6 s long
epochs of reconstructed EEG around each target ([−800ms –
+794ms]). Any epoch where the stimulation was faulty (i.e.,
target was presented for more than one frame) or when the
staircase had not converged (i.e., first 100 targets) was removed
from analysis for all subjects, yielding 821 acceptable trials. The
oscillatory characteristics (power and phase) of the reconstructed
EEG were extracted using a time frequency transform (using 46
wavelets varying from 3 to 75Hz in log-spaced frequency steps
with 2–8 cycles).

Computing the Power Difference Between
Conditions
To test whether the power of the reconstructed EEG had an
impact on behavior, we evaluated the difference between the
power of hits and missed target epochs. We restricted our
analysis to a region of interest (ROI) based on the localization
of previous effects of power reported in previous studies. This
ROI was composed of 22 channels in the occipital-parietal
region including all parietal, parieto-occipital and occipital
channels (purple dots on Figure 3). A decibel difference (dB)
was computed for each subject at each channel, frequency
and time point as the log transformed ratio between the
mean power of undetected target trials (misses) and the mean
power of detected target trials (hits). We compared this “real”
power difference to a “surrogate” distribution. We created
1,000 surrogates per subject by systematically switching labels
between conditions (hits and misses), and recomputing the
power difference between these arbitrary trial groups for each
channel, time and frequency point. First, to provide a general
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FIGURE 3 | Mean power difference (in dB [unseen-seen]) averaged across subjects (N = 20) and channels in the ROI (purple dots on the topography). The green

outline represents the significant cluster after cluster correction (see Methods section). The black dot represents the peak power difference (11.68Hz and −62.5ms).

overview, and evaluate the location of the effect in terms
of latency and frequency, we created a grand average power
difference by computing the mean “real” power difference across
all subjects and channels in the ROI. The same procedure was
applied to the “surrogates”: we randomly picked one surrogate
for each subject and averaged the information across ROI
channels and subjects, and repeated this procedure 100,000
times to create a distribution of “surrogate grand-averages”.
The strength of the “real” power difference was statistically
assessed by applying a nonparametric randomization method
allowing the identification of clusters on time-frequency points
to control for multiple comparisons (Maris and Oostenveld,
2007). For both the “real” and “surrogate” averages, the
time-frequency clusters were extracted by applying a two-
sided 2.5% (arbitrary) threshold based on the distribution of
“surrogate” dB values. Finally, we extracted the p-values for
each “real” cluster as the proportion of “surrogates” cluster
sums in the distribution above the cluster sum value of the real
condition.

Power Dependent Performance
In order to quantify the effect of alpha power on perception,
we also tested how much variability in performance could
be explained at the peak power difference. To this end, for
each subject and channel, we sorted the trials based on the
instantaneous reconstructed EEG power and split them into 5
(equally spaced) bins. We then extracted the normalized hit rate
for each bin (correcting by the overall mean performance of the
subject). A linear fit was applied to the mean across subjects for
each channel, and the corrected slope was used as the percentage
of performance modulation. We also report the R-square value
for the goodness of fit.

RESULTS

To disentangle the relationship between alpha power and visual
perception, we used white-noise sequences to constrain the
state of background oscillatory activity. Instead of recording the
EEG, we reconstructed the background oscillations by doing a
convolution between the white-noise sequences and the impulse
response functions recorded in a separate session (see section
Method). This allowed us to evaluate how alpha power might
be related to visual perception, independently of any impact of
endogenous factors (not present in the IRF). Once the EEG had
been reconstructed, we evaluated how the power of this signal
might be related to the detection of near-perceptual threshold
targets embedded in the WN sequences.

The target visibility was adjusted using a staircase procedure
over the first 100 targets (∼30 trials) to reach a 50% average
detection rate, the achieved luminance contrast was then kept for
the remainder of the experiment. During the remainder of the
session, the hit rate stayed relatively stable, with subjects reaching
an overall mean performance of 45.76% (standard deviation:
10.88%).

We then evaluated whether missed and seen target trials
had different mean power across trials. Note that we limited
our analysis to occipital and parietal channels, an a priori

region of interest (see section Method). For each of the 22
channels in this ROI, we computed the power difference (in

decibel) between the seen and unseen targets for each subject,
channel and time-frequency point. First, we averaged the power

difference across subjects and channels to get an overall idea
of power influences on target detection. Using a permutation

test and cluster correction, we found a significant difference
between the mean power of trials where the target was missed vs.
when the target was detected (significant after cluster correction,
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p < 0.000125) in the alpha band (from 3.46 to 19.28Hz), just
around the target presentation (from about −168.8 to 200ms).
The largest effect was at 11.68Hz and −62.5ms just before
stimulus onset (see black dot on Figure 3).

Next we sought to quantify the variability in the behavioral
responses that could be explained by power differences. Thus,
we computed the normalized power dependent performance (i.e.,
percent hit rate corrected by the average hit rate across all bins)
for each subject and channel in the ROI at the time of maximal
power difference (11.68Hz and−62.5ms).

There was a clear negative relationship between reconstructed
EEG alpha power and target detection. A paired t-test revealed
a significant difference in percent change [p < 0.00005, t(19) =
5.1368, mean difference= 0.0860, 95% confidence interval of the
difference = 0.0509–0.1210] between the bins with the highest
and lowest power across all channels in the ROI (see Figure 4A),
explaining ∼7% of the variability in the behavior (slope of the
linear fit = 0.071485). Note that the data was well approximated
by a linear trend, as the fit had an r-squared of 0.82. At the single
channel level, this effect was maximal over bilateral occipital
channels, e.g., on channel PO7 where up to 10% of the variability
in performance could be explained by alpha power differences
(see Figure 4B). This normalized effect size of 10% implies that,
for a subject whose average hit rate is about 50%, a 5% drop of
hit rate will be seen from the lowest alpha bin to the highest (i.e.,
from 52.5 to 47.5% hit rate).

DISCUSSION

In this study, we examined the relationship between the power of
ongoing oscillations and visual perception to better understand
the correlates of sensory neural processing. We wished to
disentangle the contribution of the two (direct/indirect) causal
routes linking alpha oscillations and visual detection (Figure 1).
Using the white-noise paradigm, we introduced modulations of
alpha power independently of any fluctuations in endogenous
factors. By using a linear model of brain activity, we were able
to reconstruct (rather than record) the EEG around targets
embedded within the WN sequences (Figure 2). Thus we had
access to changes in the instantaneous state of the background
oscillatory activity independently from confounding influence
from endogenous factors (such as attention).

We found that some of the trial-by-trial variability in
perception could be explained by fluctuations in the power of
the reconstructed alpha oscillations at approximately −62ms
before target onset (Figures 3, 4). These effects are causal
in nature: any modulation of alpha power present in the
reconstructed EEG is, by design, constrained by the WN
sequences. Consequently, any relationship with performance
is necessarily a result of the WN sequences entraining the
background oscillations in a predictable way. This is not to say
that endogenous factors did not play a role in this experiment:
it is still likely that fluctuations in endogenous factors had
an impact on the behavioral response of subjects, through
changes in attentiveness or arousal level, as the experiment
unfolded. This idea is supported by the observation that alpha

FIGURE 4 | Power dependent performance. (A) Mean percent change

averaged across all 22 channels in the ROI (black) and 20 subjects for each of

5 power bins. The bars represent the standard error of the mean. The red line

represents the linear fit. (B) The mean power dependent performance was

computed for each channel (averaged across subjects) and the coefficient of

the linear fit was taken to represent the modulation of performance. The

largest effects are found over the occipital channels. Shaded areas represent

channels outside of the ROI.

power-related performance modulations caused by attentional
manipulations tend to be somewhat larger than the 5–10%
change reported here. However, these fluctuations would be
visible only in the recorded EEG (which we did not record
in the second, critical session). The reconstructed EEG, on the
other hand, only captures oscillations that are directly phase-
locked to the background fluctuations in luminance values. It is
thus virtually blind to these endogenous modulations. As such,
our results contribute to a growing literature of studies that
used rhythmic stimulation (either visual flicker, or transcranial
rhythmic stimulation) to demonstrate that pre-stimulus alpha
oscillations have a causal influence on visual perception, outside
of any influence of endogenous factors (Ergenoglu et al., 2004;
Hanslmayr et al., 2005, 2007; Romei et al., 2008a,b; van Dijk et al.,
2008).

While endogenous factors could not explain the modulations
of “reconstructed” alpha activity in our experiment (as explained
above), there might still be room for attentional mechanisms
to play a role in this task. Indeed, it is possible that the
fluctuations in alpha power could themselves causally modulate
attention. When the WN sequences induce higher alpha power,
attention would become less efficient (and vice-versa for lower
alpha power leading to improved attentional efficiency). These
attentional fluctuations could in turn causally influence the
perception of the targets. In other words, we cannot decide
whether WN-induced fluctuations in alpha power directly
influence perception, or whether they do so indirectly by
modulating attention. In any case, this still allows us to rule
out the “causal primacy” of attention and other endogenous
factors.
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More generally, our results are in line with the hypothesis
that alpha oscillations play an active inhibitory role in
shaping sensory processing (Klimesch et al., 2007; Jensen and
Mazaheri, 2010; Foxe and Snyder, 2011), realized through a
modulation of neuronal excitability (Haegens et al., 2015).
In line with this idea, it has been suggested that the
spontaneous fluctuations in alpha power presented in the
Introduction could in fact reflect a spatial scanning mechanism,
which would allow the detection of unpredictable events
by randomly biasing neuronal activity at various locations
in the visual field (Romei et al., 2008a). In fact, this is
compatible with the spatio-temporal unfolding of the impulse
response functions: IRFs recorded in response to lateralized
stimuli show a systematic phase difference and “wave-like”
propagation between contra- and ipsi-lateral cortex (Lozano-
Soldevilla and VanRullen, 2017). This suggests that the impulse
response function could highlight a scanning mechanism that
is always present in the visual cortex (even in the absence
of white-noise sequences), and implemented via a traveling

alpha wave, as proposed 70 years ago by Pitts and McCulloch
(1947).

In conclusion, using the WN paradigm to specifically extract
background oscillatory activity, we show that alpha oscillations
have a causal influence on visual target detection, independently
from the effects of endogenous factors (such as attention), thus
confirming the inhibitory role of alpha oscillations in visual
perception.
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