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Abstract

Consistency and duplicability in Computed Tomography (CT) output is essential to quan-

titative imaging for lung cancer detection and monitoring. This study of CT-detected lung

nodules investigated the reproducibility of volume-, density-, and texture-based features

(outcome variables) over routine ranges of radiation dose, reconstruction kernel, and

slice thickness. CT raw data of 23 nodules were reconstructed using 320 acquisition/

reconstruction conditions (combinations of 4 doses, 10 kernels, and 8 thicknesses).

Scans at 12.5%, 25%, and 50% of protocol dose were simulated; reduced-dose and full-

dose data were reconstructed using conventional filtered back-projection and iterative-

reconstruction kernels at a range of thicknesses (0.6–5.0 mm). Full-dose/B50f kernel

reconstructions underwent expert segmentation for reference Region-Of-Interest (ROI)

and nodule volume per thickness; each ROI was applied to 40 corresponding images

(combinations of 4 doses and 10 kernels). Typical texture analysis metrics (including 5

histogram features, 13 Gray Level Co-occurrence Matrix, 5 Run Length Matrix, 2 Neigh-

boring Gray-Level Dependence Matrix, and 3 Neighborhood Gray-Tone Difference

Matrix) were computed per ROI. Reconstruction conditions resulting in no significant

change in volume, density, or texture metrics were identified as “compatible pairs” for a

given outcome variable. Our results indicate that as thickness increases, volumetric

reproducibility decreases, while reproducibility of histogram- and texture-based features

across different acquisition and reconstruction parameters improves. To achieve con-

comitant reproducibility of volumetric and radiomic results across studies, balanced stan-

dardization of the imaging acquisition parameters is required.

Introduction

Lung nodules have traditionally been evaluated with two-dimensional (2-D) linear measure-

ments on chest Computed Tomography (CT) (e.g., Response Evaluation Criteria in Solid

Tumors (RECIST) [1]). However, three-dimensional (3-D) volumetric assessments of lung
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nodules are gaining importance due to: 1. improved representation of disease extent and thera-

peutic-response; and 2. less user-dependency and higher reproducibility of the results [2].

Concurrently, new diagnostic and treatment paradigms increasingly emphasize the value of

quantitative radiomic features of lung nodules and surrounding lung tissue as indicators of

tumor type, aggressiveness, and/or responsiveness to treatment [3, 4]. However, the associated

quantitative metrics assume adequacy and uniformity in CT data acquisition and reconstruc-

tion despite well-recognized wide inter-scan variability in: 1. examination protocoling for

image acquisition; 2. image reconstructions and displays; and 3. CT scanning capabilities and

performances. Although the susceptibility of several lung nodule measurements (volumetric

or radiomic) to variations in individual CT acquisition parameters has already been recog-

nized based on preliminary studies of clinical or phantom data [5–8], the concomitant effects

that ranges of radiation-dose, reconstruction kernel, and slice thickness have on nodule vol-

ume and texture features have not yet been fully investigated.

The purpose of this research was to: 1. determine the impact of a variety of imaging acquisi-

tion and reconstruction parameters on lung nodule volumes and radiomic features; 2. identify

potential imaging acquisition parameters that allow consistency and reproducibility of volu-

metric and/or radiomic features of lung nodules.

Materials and methods

This work was approved by The Ohio State University Institutional Review Board

(2015H0185, 2017H0100). This retrospective study used de-identified images, and consent

was not obtained.

Acquisition and reconstruction parameter variations

Raw Digital Imaging and Communications in Medicine (DICOM) data from 23 non-contrast-

enhanced chest CT examinations demonstrating a lung nodule were acquired from either sin-

gle-source (Definition AS, AS Plus, Edge) or dual-source (Definition Flash) multi-detector CT

systems [Somatom series: Siemens Healthineers, Forchheim, Germany (https://www.

healthcare.siemens.com/computed-tomography)] with ranges of settings (Tube voltage = 100–

140 kV, Q.ref.mAs = 50–100 mAs, Eff.mAs = 41–154 mAs, and pitch = 0.6–1.0). Based on this

data, chest CT data sets underwent the following:

1. Simulation at different dose levels (simulated 12.5%, 25%, 50%) using a previously validated

simulation tool [9–11], as well as reconstruction at 100% of total dose of clinical protocols

[ReconCT: Siemens Healthineers, Forchheim, Germany].

2. Reproduction with 10 different kernels based on either Filtered Back Projection (FBP) or

Iterative Reconstruction (IR) (FBP: B31f, B40f, B50f, B60f, B70f; SAFIRE (strength 3): I26f,

I31f, I40f, I50f, I70f) [ReconCT: Siemens Healthineers, Forchheim, Germany].

3. Recreation at 8 different slice thicknesses (0.6, 0.75, 1.0, 1.5, 2.0, 3.0, 4.0, and 5.0 mm) using

an offline reconstruction system [ReconCT: Siemens Healthineers, Forchheim, Germany].

Based on combinations of the aforementioned variations in acquisition or reconstruction

parameters, 320 versions of each examination (i.e., 4 doses x 10 kernels x 8 thicknesses) were

created.

Segmentation and volume measurement

In order to display the nodules to dedicated thoracic radiologists (CCA and GFMI each with

6–8 years of post-fellowship experience), a custom Graphical User Interface (GUI) [12] was
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built [MeVisLab version 2.8, Windows 64 bit, VS2013: Bremen, Germany (https://www.

mevislab.de/)] (Fig 1). This GUI integrated the functionalities of a commercial nodule segmen-

tation algorithm [syngo.via MM Oncology: Siemens Healthineers, Forchheim, Germany

(https://www.siemens-healthineers.com/medical-imaging-it/syngoviaspecialtopics/syngo-via-

for-oncology)] as they would appear within an established commercial post-processing plat-

form [syngo.via: Siemens Healthineers, Forchheim, Germany (https://www.healthcare.

siemens.com/medical-imaging-it/advanced-visualization-solutions/syngovia)].

For each chest CT examination, sets of 100%-dose/FBP B50f-kernel images were recon-

structed at the aforementioned 8 different slice thicknesses, with nodule extent and shape pre-

viously independently confirmed by consensus between the two dedicated thoracic

radiologists. This resulted in 8 reference Region-Of-Interest (ROI) stacks, each corresponding

to a specific slice thickness, which were then applied to the 40 different dose-kernel combina-

tions (i.e., 4 doses x 10 kernels) at constant slice thickness (Fig 2).

Analysis of reproducibility of volumetric measurements

Using automatic 3-D segmentation, 8 volumetric measurements were obtained for each nod-

ule (Fig 3A) corresponding to each slice thickness (Fig 3B) and normalized by their averages

using (1) as follows (Vi: nodule volume for i-th thickness):

VðnormÞ ¼
Viðmm3Þ

1

8

X8

k¼1
Vkðmm3Þ

ð1Þ

Using the distributions of normalized volumes for each slice thickness (Fig 3C), t statistics

were calculated using 2-tailed t-test (2) to evaluate the compatibilities of slice thicknesses based

on volumetric measurements. If t<1.96 (P<0.05), slice thicknesses are accepted as compatible

with 95% confidence interval; m1, m2: means; s1, s2: standard deviations; n1, n2: number of

samples (nodules):

t ¼
absðm1 � m2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðs1Þ
2

n1
þ
ðs2Þ

2

n2

q ð2Þ

Image-feature extraction

A range of extracted radiomic image features was assessed (Table 1). They included 28 image-

texture features (available in MeVisLab) as follows: 1. 5 Histogram-based features; 2. 13 Gray

Level Co-occurrence Matrix (GLCM)-based features; 3. 5 Run Length Matrix (RLM)-based

features; 4. 2 Neighboring Gray-Level Dependence Matrix (NGLDM)-based features, and 5. 3

Neighborhood Gray-Tone Difference Matrix (NGTDM) based features which were computed

for all 320 segmented image volumes of each nodule.

Compatibility of image reconstruction conditions based on radiomic

features

Means and standard deviations of the aforementioned 28 image features were computed for

each of the 320 segmented images of each nodule. Statistically significant changes in image fea-

tures were evaluated using 2-tailed t-test. Reconstruction condition pairs that satisfy t values of

lower than <1.96 (P<0.05) were accepted as compatible with 95% confidence interval. Com-

patibility ratios were calculated using Eq 3; CRðRi;RjÞ: compatibility ratio of reconstruction con-

dition pair (Ri,Rj); Ri: i-th reconstruction condition (i = 1,2,. . .,320); CðRi;RjÞ ðf ; pÞ: compatibility
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of (Ri,Rj) pair for feature f (1,. . .,28) and patient p (1,. . .,23) calculated using t-test (Eq 2):

CRðRi ;RjÞ ¼

P28

f¼1

P23

p¼1
CðRi ;RjÞ ðf ; pÞ

28x23
x100 ð3Þ

We produced a compatibility map of reconstruction conditions (Fig 4) to highlight effects

of changes in slice thickness (T), kernel sharpness (K), and dose (D). Reconstruction condition

parameters are sorted based on total number of compatibilities. Thickness order: 5mm, 4mm,

3mm, 2mm, 1.5mm, 1mm, 0.75mm, 0.6mm. Kernel order: I26f, I31f, B31f, I40f, B40f, I50f,

B50f, I70f, B60f, B70f. Dose level order: 100%, 50%, 25%, 12.5%.

Fig 1. A custom GUI allowed thoracic radiologists to evaluate nodules. For the purposes of this study, only the solid

components were considered. Semi-automated segmentations made by radiologists for a given nodule are shown. Top

left in Yellow: Radiologist 1; top right in Red: Radiologist 2; bottom left: non-segmented original; bottom right in

Orange, both radiologist’s segmentations combined.

https://doi.org/10.1371/journal.pone.0240184.g001

Fig 2. Segmentation procedure for lung nodules. Each nodule was segmented from 100%-dose/FBP B50f-kernel images reconstructed at 8 different slice thicknesses.

The resulting 8 thickness-specific ROI stacks were then applied to the corresponding images reconstructed at 4 different dose levels and 10 different kernels at stable

slice thickness.

https://doi.org/10.1371/journal.pone.0240184.g002
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Results

Reproducibility of volumetric measurements

Volume comparisons of the segmented nodules were performed on 8 slice thicknesses on all

23 cases (Fig 5). The slice thickness resulting in the least amount of volumetric variability was

2mm, with +0.39%±1.59 (mean±SD) variation from average volume. On the other hand,

1.5-mm thickness gave the highest volumes with +2.16%±2.07, and 5-mm the lowest volumes

with -4.22%±4.65. While standard deviations were relatively stable for slice thicknesses below

2mm, increasing thickness beyond 2mm was associated with rapidly increasing standard devi-

ation. The assessment of volumetric reproducibility shows that increasing slice thickness

decreases compatibility (Fig 6).

Reproducibility of radiomic features

320 reconstruction conditions were compared to each other on 28 texture features and 23

cases, totaling 65,945,600 (320x320x28x23) comparisons. As shown in Fig 4, highest average

compatibility of 24.47% was achieved using the combination of highest slice thickness,

smoothest kernel and highest dose level (5mm/I26f/100%). Compatibility decreases while

decreasing slice thickness and/or kernel smoothness and/or dose level. The lowest average

compatibility of 2.65% was at the combination of lowest slice thickness, sharpest kernel and

lowest dose level (0.6mm/B70f/12.5%). Fig 7 shows percentage compatibilities of radiomic fea-

tures based on dose, kernel, and thickness changes. The most robust feature was the density

against dose changes (87.45% compatibility); and skewness was most robust for kernel and

slice-thickness changes (53.73%-82.51% compatibility). Deviation was the weakest feature for

all cases. On average, the GLCM based feature group was the most vulnerable feature group

(19.41% average compatibility). In addition, results showing percentage compatibilities of con-

ditions based on kernel sharpness, slice thickness, and dose levels are presented in Figs 8, 9

and 10 respectively.

As demonstrated in the figures, while stable volumetric measurements can be obtained (e.g.

2mm slice thickness) and volumetric measurement errors can be predicted when slice

Fig 3. Methodologies used during volumetric assessment of lung nodules. The following represent expert segmentation of lung nodules: (a)

Reference radiologist-segmented ROI stacks obtained using 100%-dose level, a FBP B50f kernel, and 1-mm slice thickness. Nodules are sorted by

their average volumes and numbered 1 to 23. (b) Calculated volumes for each nodule using 8 reference ROIs depending on slice thicknesses (colors

indicate the corresponding nodules shown on the left). (c) Normalized volumes of nodules obtained using their average volumes.

https://doi.org/10.1371/journal.pone.0240184.g003
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Table 1. Extracted features.

Group Feature Definition

I. Histogram 1. Mean �X ¼ 1

N

PN
i¼1

XðiÞ

2. Contrast
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

PN
i¼1
ðXðiÞ � �XÞ2

q

3. Standard deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N� 1

PN
i¼1
ðXðiÞ � �XÞ2

q

4. Skewness 1
N

PN

i¼1
ðXðiÞ� �X Þ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N� 1

PN

i¼1
ðXðiÞ� �X Þ2

q� �3

5. Kurtosis 1
N

PN

i¼1
ðXðiÞ� �X Þ4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN

i¼1
ðXðiÞ� �X Þ2

q� �2

II. GLCM 6. Homogeneity (asm) ∑i∑j{p(i,j)}2

7. Contrast
PNg � 1

n¼0 n2f
PNg

i¼1

PNg
j¼1 pði; jÞg

8. Correlation
P

i

P
j
ðijÞpði;jÞ� mxmy

sxsy

9. Variance ∑i∑j(i−μ)2p(i,j)
10. Inverse difference moment

P
i

P
j

1

1þð1� jÞ2
pði; jÞ

11. Sum average
P2Ng

i¼2 ipxþyðiÞ

12. Sum entropy �
P2Ng

i¼2 pxþyðiÞlogfpxþyðiÞg

13. Sum variance
P2Ng

i¼2 ði � mxþyÞ
2pxþyðiÞ

14. Entropy �
P

i

P
jpði; jÞlogðpði; jÞÞ

15. Difference variance
PNg � 1

i¼0 ði � mx� yÞ
2px� yðiÞ

16. Difference entropy �
PNg � 1

i¼0 px� yðiÞlogfpx� yðiÞg

17. Measures of correlation1 Ent� HXY1

maxfHX;HYg

18. Measures of correlation2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e� 2ðHXY2� EntÞ2
p

III. RLM 19. Short run emphasis PNg
i¼1

PNr
j¼1

pði;jjyÞ
j2

h i

PNg
i¼1

PNr
j¼1

pði;jjyÞ

20. Long run emphasis
PNg

i¼1

PNr
j¼1

j2pði;jjyÞ
PNg

i¼1

PNr
j¼1

pði;jjyÞ

21. Grey level

non-uniformity

PNg
i¼1 ½
PNr

j¼1
pði; j j yÞ�2

PNg
i¼1

PNr
j¼1

pði;jjyÞ

22. Run length

non-uniformity

PNr
j¼1
½
PNg

i¼1 pði; j j yÞ�
2

PNg
i¼1

PNr
j¼1

pði;jjyÞ

23. Run percentage XNg

i¼1

XNr

j¼1

pði; j j yÞ
Np

IV. NGLDM 24. Small Number Emphasis XK

k¼1

XS

s¼1

½Qðk; sÞ=s2�=
XK

k¼1

XS

s¼1

Qðk; sÞ

25. Large Number Emphasis XK

k¼1

XS

s¼1

½s2Qðk; sÞ�=
XK

k¼1

XS

s¼1

Qðk; sÞ

V. NGTDM 26. Coarseness
½
XLh

i¼0

pisðiÞ�
� 1

27. Complexity XLh

i¼0

XLh

j¼0

fðji � jjÞ=ðn2ðpi þ pjÞÞgfpisðiÞ þ pjsðjÞg

28. Texture Strength ½

PLh
i¼0

PLh
j¼0
ðpiþpjÞði� jÞ

2 �

½

PLh
i¼0

sðiÞ�

https://doi.org/10.1371/journal.pone.0240184.t001
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Fig 4. Reconstruction-condition compatibility map based on extracted features and patients. Intersections of conditions are highlighted (Red:

incompatible, Green: compatible) based on their compatibility ratios calculated using t-test. Diagonal shows 100% compatibility which satisfies all comparisons

(28x23). Changing reconstruction parameters (thickness/dose/kernel-sharpness) decreases the compatibility. In order to obtain higher compatibility, changes

to the reconstruction parameters should be applied carefully. For example if thickness needs to be switched from 2 mm to 0.75 mm, softer kernels and/or

higher dose levels are needed as seen from the intersection of two thicknesses. Data are available in S1 Data.

https://doi.org/10.1371/journal.pone.0240184.g004
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thicknesses are changed (Fig 5), that is not the case for radiomic features (Figs 6 and 7). Tex-

ture measurements can be very unstable when conditions are altered.

Discussion

Robust image features are vital for designing and standardizing anatomic and radiomic-based

diagnostic and prognostic decision-making [13–17]. In this study, we investigated the effects

of image acquisition and reconstruction conditions on volumetric and radiomic features of

lung nodules derived from chest CT scans. These conditions contained an extensive list of

combinations (320 versions of each examination: 4 doses x 10 kernels x 8 thicknesses).

Lung nodule detection is enhanced when thinner CT slices are produced [18–20]; screening

CT scans are preferentially performed with 1 to 2.5-mm-thick slices [18, 21], as was done in

the National Lung Screening Trial [22]. Solid nodules� 4-mm in diameter are currently con-

sidered important [18] and were the focus of this research.

Accurate and reliable measurement of lung nodule size from CT scans is a key biomarker

in the diagnosis of lung cancer. The estimation of nodule growth rates serves as a predictor of

malignancy, and size change reflects efficacy of a treatment [23, 24]. A related challenge is the

consistency in establishing lung nodule size [18]. Reliable sizing of nodules has traditionally

been limited by subjectivity in selection of the desired dimensions to measure and by non-uni-

formity of manual manipulation of digital calipers; this represents a source of disagreement

between interpreters and reference standards [2, 18]. Manually measuring nodule size involves

laboriously inspecting all images that include the lesion [23]. To provide a standard method

Fig 5. Normalized volumetric measurements and trend lines based on slice thickness.

https://doi.org/10.1371/journal.pone.0240184.g005
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for nodule-size measurement, the RECIST working group proposed the common use of the

1-D maximal diameter as an efficient standard estimator of lesion volume [1, 23, 25]. While

such basic mass size measurements are typically used in clinical practice, 3-D volume measure-

ments are growing in importance due to evidence that 3-D volumetry is more robust for quan-

tifying tumor size [24, 26]. Poor agreement between 3-D and simpler methods is commonly

seen when the nodule does not conform to spherical or ellipsoidal assumptions that underlie

1-D and 2-D measurements, respectively; in the context of spatial extent for a 3-D object with-

out restrictions on shape, size is best expressed by the volume occupied by the object [23].

Fig 6. P values for compatibility analysis of slice thicknesses based on volumetric measurements. Higher P value indicates higher compatibility.

Intersection of compatible thicknesses with P values higher than 0.05 are highlighted with green; P values lower than 0.05 (highlighted with orange

to red) indicate incompatible slice thicknesses.

https://doi.org/10.1371/journal.pone.0240184.g006
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Consequently, there is increasing interest in computer-assisted methods aiding the radiolo-

gist in measuring the size of lung nodules using volumetric methods [27–30], despite the fact

that their calibration and validation becomes a new challenge [23]. Although lung-nodule 3D

volumetry has the potential to improve patient management, there is considerable and largely

unpredictable variability in its execution related to produced slice thickness, reconstruction

algorithm, and scan dose [24, 26, 31, 32]. Our research addressed this issue and demonstrated

that while increasing thickness decreases volumetric reproducibility, it improves the reproduc-

ibility of histogram- and texture-based features across different acquisition and reconstruction

parameters.

Texture analysis is promising for phenotyping and segmenting cancerous tissues [6, 7].

However, Buch et al. [6] highlighted the major looming problem pertaining to radiomics and

big data, that despite collecting increasing numbers of radiological images at an exponentially

growing rate, the medical field is far from a completely data-driven artificially intelligent diag-

nosis. The main reason is a lack of data harmony across multi-site studies, which keeps the

training data substantially low for a truly large-scale study. Based on the data-mining approach

we performed on our results from various parameters, our recommendations are as follows: 1)

During volumetric measurements, changes in slice thickness may produce relatively low

errors, however the effects on texture are most dramatic. Hence, if possible, slice thickness

should not be altered between studies if serial radiomic features are being compared. 2) If scan-

ning/reconstruction changes are inevitable, they should be limited to a single parameter. For

example, only dose level or only sharpness should be changed (Figs 8–10), and those changes

should be kept to a minimum. Multiple parameter changes, in general, produce greater mea-

surement errors (Fig 4).

We performed a large-scale data mining approach for finding a “compatible” set of parame-

ters, however, as it can be seen from the results, compatibilities are very limited. In an earlier

study, Young et al. [24] raised another concern pertaining to radiation dosage and kernel

usage in CT lung-nodule volumetry; they found that the volume of lung nodules was extremely

robust to the dose and reconstruction kernels. On the other hand, Chen et al. [8, 33–35]

showed that the choice of reconstruction algorithm slightly affects the measurement of lesion

volume. Regardless, reduced dosage comes at the cost of decreased image quality, which in

Fig 7. Percentage compatibilities of features based on dose, kernel, and thickness changes.

https://doi.org/10.1371/journal.pone.0240184.g007
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turn make the results less reproducible for textures. Lo et al. [7] discussed these specific issues

pertaining to lung CT and lung nodule quantification. Many authors recognize that it will be

desirable to reduce the dose levels among patients, and many vendors are already working

Fig 8. Percentage of compatible texture features in different kernel pairs while keeping slice thickness and dose levels fixed for all 23 patients and 28 features. For

example, by changing the kernel from I31f to I26f, on average, 54.7% of the 28 texture features will be statistically the same (compatible) in our patient population under

the same slice thickness and dose level configurations (32 different conditions).

https://doi.org/10.1371/journal.pone.0240184.g008
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towards quantitative imaging based on reduced dose levels [36–39]. In addition, other reports

indicated that iterative reconstruction algorithms offer an opportunity to substantially reduce

radiation dose in CT scans while maintaining good image resolution for visualization and nod-

ule detections [8, 40–43]. However, the quantitative measurements from iterative algorithms

can be significantly different from the traditional FBP algorithms due to varying noise and res-

olution properties [44]. Novel artificial intelligence-based reconstruction methods may also

offer comparable imaging at reduced radiation doses, and these methods should similarly

receive careful consideration for quantitative measurements.

Based on earlier studies, high-resolution texture characterization requires image recon-

struction using thin slices. However, thin slices also increase image noise; increasing slice

Fig 9. Percentage of compatible texture features in different slice thickness pairs while keeping kernel and dose levels fixed for all 23

patients.

https://doi.org/10.1371/journal.pone.0240184.g009
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thickness will decrease the noise while inducing blur. Based on our results, increasing slice

thickness decreases the reproducibility of volumetric measurements but increases the repro-

ducibility of histogram- and texture- based features. Our view based on these results is that

there might not be a best universal set of parameters that simultaneously covers both volumet-

ric measures and radiomic features. Increasing slice thickness causes information loss due to

smoothing effects [45]. This may be the reason for increased compatibility for texture features.

Our methodology with full control of the reconstruction parameters had advantages and

disadvantages. While limiting the number of scanners gave us the full advantage of image

reconstruction algorithm compatibility and standardization, our results at this point are lim-

ited to few scanner types (e.g. Siemens Definition Flash, Definition AS, AS Plus, Edge) within

a single healthcare system. Our data therefore lacked the heterogeneity that exists across CT

imaging vendors and providers, and we hope to collaborate with additional institutions in

future work. However, the current approach helped us to point out some potential issues in

terms of CT image reconstruction.

Another limitation was our relatively small sample size (n = 23). This was due to fact that

raw images can only be stored in our scanners for only 2 to 4 weeks (depending on the scanner

and due to space restrictions). The study was initially designed as a retrospective analysis on

nodule measurements, instead of classification of nodules. Under our circumstances, this

would not be possible with retrospective analysis, and we would have needed to conduct a pro-

spective study, which could have taken much longer to complete. Our sample included varia-

tions in acquisition parameters, such as tube voltage and tube current, that were not

considered independently due to the small sample size. However, these differences were

Fig 10. Percentage of compatible texture features in different dose level pairs while keeping kernel and slice

thickness fixed for all 23 patients.

https://doi.org/10.1371/journal.pone.0240184.g010
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indicative of the heterogeneity in the acquisition parameters of clinical studies at our institu-

tion at the time of data collection due to factors such as automatic exposure control and proto-

col variations between scanners.

Due to the small sample size, we only looked at nodules under 2~2.5 cm for their solid com-

ponents. If any nodule had surrounding ground glass tissue, these components were ignored

(two of our cases had minor ground glass features surrounding them), and only the solid com-

ponents were included in the measurements and comparisons.

While some texture features are not stable with changing imaging parameters, this does not

necessarily mean that a particular feature does not have predictive value within a given algo-

rithm. For a given feature, any recognized instability should be accounted for in algorithm

design to limit outcome variance. Future work from our group will consider how feature varia-

tions due to imaging parameters affect the outcome of algorithms.

In conclusion, we found that slice thickness is the main factor impacting the reproducibility

of the image features we investigated. It is difficult to maintain both volumetric and radiomic

measurement reproducibility and reliability simultaneously. However, our findings indicate

that at a thickness of approximately 2mm volumetric measurement reproducibility can be

maintained. However, especially for reproducibility in radiomic features, image scanning and

reconstruction protocols need to remain stable. Standardization of the imaging acquisition

parameters would become even more important in larger scale studies, where images are col-

lected from multiple institutions. As we have shown here, even with scanners with compatible

image reconstruction parameters in a highly controlled environment, it is hard to maintain

measurement reproducibility when parameters are changed. With images coming from multi-

ple sites and multiple vendors, if studies are not designed and scanning protocols are not

aligned properly; it can be very hard to produce reliable results that can be utilized within clini-

cal studies.
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