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Simple Summary: Anaplastic lymphoma kinase positive anaplastic large cell lymphomas are a
pediatric disease, which still needs treatment improvement. Crizotinib was the first ALK-targeted
inhibitor used in clinics, but relapses are now known to occur. Current research efforts indicate that
combined therapies could represent a superior strategy to eradicate malignant cells and prevent
tumor recurrence. Autophagy is a self-digestion cellular process, known to be induced upon diverse
cancer therapies. Our present work demonstrates that the potentiation of the crizotinib-induced
autophagy flux, through the serine/threonine kinase RAF1 downregulation, drives ALK+ ALCL cells
to death. These results should encourage further investigations on the therapeutic modulation of
autophagy in this particular cancer settings and other ALK-related malignancies.

Abstract: Anaplastic lymphoma kinase positive anaplastic large cell lymphomas (ALK+ ALCL) are
an aggressive pediatric disease. The therapeutic options comprise chemotherapy, which is efficient in
approximately 70% of patients, and targeted therapies, such as crizotinib (an ALK tyrosine kinase
inhibitor (TKI)), used in refractory/relapsed cases. Research efforts have also converged toward
the development of combined therapies to improve treatment. In this context, we studied whether
autophagy could be modulated to improve crizotinib therapy. Autophagy is a vesicular recycling
pathway, known to be associated with either cell survival or cell death depending on the cancer and
therapy. We previously demonstrated that crizotinib induced cytoprotective autophagy in ALK+
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lymphoma cells and that its further intensification was associated with cell death. In line with these
results, we show here that combined ALK and Rapidly Accelerated Fibrosarcoma 1 (RAF1) inhibition,
using pharmacological (vemurafenib) or molecular (small interfering RNA targeting RAF1 (siRAF1) or
microRNA-7-5p (miR-7-5p) mimics) strategies, also triggered autophagy and potentiated the toxicity
of TKI. Mechanistically, we found that this combined therapy resulted in the decrease of the inhibitory
phosphorylation on Unc-51-like kinase-1 (ULK1) (a key protein in autophagy initiation), which may
account for the enforced autophagy and cytokilling effect. Altogether, our results support the
development of ALK and RAF1 combined inhibition as a new therapeutic approach in ALK+ ALCL.

Keywords: anaplastic large cell lymphoma; NPM-ALK; autophagy; cell death; crizotinib;
combined therapy; microRNA; RAF1

1. Introduction

Anaplastic lymphoma kinase positive anaplastic large cell lymphomas (ALK+ ALCL) are a
distinct clinicopathologic non-Hodgkin’s lymphoma, primarily occurring in children and young
adults [1]. They are characterized by chromosomal translocations involving the ALK gene with
various translocation partner genes. Nucleophosmin-Anaplastic Lymphoma Kinase (NPM-ALK) is the
most prominent fusion protein observed. NPM-ALK results from the t(2;5) (p23;q35) chromosomal
translocation and leads to the constitutive activation of the tyrosine kinase domain, which is driving
lymphomagenesis through the activation of multiple survival/proliferation pathways [2–4].

The current treatment of this lymphoma is essentially based on aggressive chemotherapy, which is
not optimal as 30% of the patients relapse 5 years post-treatment, regardless of the drug cocktail used or
the treatment duration [5,6]. This observation led to the development of therapies directly targeting the
NPM-ALK oncoprotein. Crizotinib was the first-in-class ALK tyrosine kinase inhibitor (TKI) [7] used in
clinics for ALK+ ALCL cases that were refractory to or were relapsing after chemotherapy [8]. However,
the success of this TKI was hampered by the occurrence of resistance to the drug [9,10]. This motivated
both the generation of a new generation of TKI inhibitors [11,12] as well as the development of diverse
combined therapies [13,14] in an attempt to prevent relapses and to eradicate the malignant cells. In this
context, our work focused for the last few years on studying the possible therapeutic modulations of
macro-autophagy to improve crizotinib therapy [15–17].

Macro-autophagy (hereafter referred to as autophagy) is a highly conserved vesicular process
allowing the degradation and recycling of damaged, toxic, or unnecessary cytoplasmic material within
a cell [18,19]. This process comprises five successive stages, i.e., the initiation, nucleation, elongation,
fusion, and degradative steps, which are all finely orchestrated by several autophagy-related (ATG)
proteins [20]. The Unc-51-like kinase-1 (ULK1) protein, in particular, plays a critical role in the initiation
stage, characterized by the formation of a phagophore (or pre-autophagosomal membrane), as it
integrates the cell homeostasis status, mainly through AMP-activated protein kinase (AMPK)- or
mammalian target of rapamycin (mTOR)-mediated serine/threonine regulatory phosphorylations on
key residues [21,22]. After membrane elongation and sealing around the unwanted cytoplasmic cargo,
the mature autophagosomes fuse with lysosomes to form autophagolysomes, in which the catabolic
enzymes ensure the cargo degradation.

Dysfunctions in this important cell process have been associated with the development of diverse
diseases, including cancers [23]. In this particular setting, autophagy was found to exert dual roles both
in tumor progression and in response to anti-cancer therapies [24–26]. The role of autophagy during
cancer treatment is not as simple and is often described as a “double edged sword”. Autophagy can
either protect tumor cells from dying, typically by blocking apoptosis induced upon treatment [26,27],
or, on the contrary, excessive or persistent activation can promote tumor cell demise either by autophagic
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cell death [28,29] or by ensuring connections with other cell death modalities, such as apoptosis,
necroptosis, or immunogenic cell death [30,31].

In NPM-ALK+ ALCL cell lines, we demonstrated that autophagy was induced upon NPM-ALK
inactivation, and was endowed with cytoprotective functions. Indeed, its pharmacological or molecular
inhibition, combined with crizotinib treatment, increased the cytokilling effect of the TKI [15]. Recently,
we further demonstrated that the potentiation of crizotinib-induced autophagy flux by downregulating
the Bcl2 protein (using small interfering RNA targeting Bcl2 (siBCL2) or microRNA-34a (miR-34a)
mimics) resulted in increased cell death [17]. In line with this last study, we pursued our work regarding
the identification of possible microRNAs and their targets that could be therapeutically modulated,
in addition to crizotinib treatment to drive autophagy toward cytotoxic functions and the outcome of
tumor cell death.

MicroRNAs (miRNAs) are a family of short, single-stranded non-coding RNAs that control
post-transcriptional gene silencing [32]. The deregulation of miRNA expression levels has been
extensively described in cancers, including in NPM-ALK+ ALCL [33], and has also been shown to
modulate the responses to therapies [34,35]. Accumulating data in the literature indicate that these
miRNAs could serve as cancer biomarkers as well as cancers therapeutics [36,37]. As autophagy
manipulation is known to impact the responses to cancer therapy, a strong interest in the identification
of miRNAs involved in autophagy regulation occurred during recent years [38]. Researchers described
that each step of the autophagy process could be regulated by specific miRNAs [39], which offers
numerous opportunities to discover potent autophagy modulators.

Our present study demonstrates that miRNA-7, known primarily to harbor tumor suppressive
functions in diverse cancer types [40], and Rapidly Accelerated Fibrosarcoma 1 (RAF1), one of its
targets [41–44], play essential roles in NPM-ALK+ ALCL, by controlling the autophagy flux and
tumor cell fate. RAF1 is a serine/threonine kinase, best known to connect RAS to the MAPK/ERK
kinase/extracellular signal-regulated kinase (MEK/ERK) pathway. The inhibition of the RAF/MEK/ERK
pathway has recently been shown to promote autophagy in pancreatic cancer [45]. However, to the
best of our knowledge, the mechanism by which RAF1 inhibition, specifically, could induce autophagy
has not been described so far. Our work indicates, for the first time, the possible phosphorylation
of ULK1 on its serine757 inhibitory residue by RAF1, which opens up a new therapeutic avenue to
modulate the autophagy flux in ALK+ ALCL.

Altogether, our results indicate that the development of miR-7-5p-based therapeutics, or the
addition of RAF1 inhibition to crizotinib treatment, could improve, through the potentiation of
autophagy, the TKI drug killing effect and could be beneficial for ALK+ ALCL patients.

2. Results

2.1. Downregulation of miR-7-5p Expression Upon NPM-ALK Inactivation

Several groups, including ours, have demonstrated that ALK-positive ALCLs are addicted to their
leading oncogene [46,47]. Thus, we reasoned that upon ALK-targeted therapy, ALCL cell lines would
be submitted to an important stress likely to be responsible for changes in gene expression. As miRNAs
act as well-known regulators of gene expression [48], we studied their expression profiles in Karpas-299
cells treated or not for 24 h with 500 nM crizotinib, which corresponds to the plasmatic concentration
measured in patients [49] using an array containing 384 miRNAs (Human miFinder 384HC miRNA
PCR Array, SABiosciences (Hilden, Germany)), selected for their documented involvement in different
human cancers. We observed that crizotinib treatment led to profound changes in miRNA expression
profiles, with a strong trend in miRNA downregulation: we found 89 under-expressed miRNAs versus
15 over-expressed miRNAs.

We focused our interest on the miRNA hsa-miR-7-5p (miR-7-5p), which appeared to be the
most significantly downregulated miRNA upon NPM-ALK inactivation (fold decrease: −2.6411;
p-value = 0.0006) (Figure 1A and Table 1). We first confirmed endogenous miR-7-5p downregulation
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upon NPM-ALK inactivation, using pharmacological (crizotinib, Crizo) (Figure 1E) or molecular
(siRNA targeting ALK, siALK) (Figure 1F) approaches, by performing miRNA RT-qPCR in two
NPM-ALK-positive ALCL cell lines, Karpas-299 and SU-DHL-1 (Figure 1B,C). Of note, a 70% reduction
in the NPM-ALK protein level was observed using siALK, a result consistent with our usual range of
siRNA-mediated NPM-ALK knockdown (70% to 90%), as previously reported [15–17]. We observed
that NPM-ALK inactivation reproducibly and significantly reduced miR-7-5p expression levels in the
two NPM-ALK-positive ALCL cell lines. Downregulation of 47% (p = 0.003) and 51% (p < 0.0001) was
observed, respectively, in the Karpas-299 and SU-DHL-1 cell lines. Of note, no significant variation of
the miR-7-5p levels were observed in the ALK-negative FEPD cell line, when comparing the untreated
(Ctrl) and crizotinib-treated (Crizo) conditions (Figure 1D).
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Figure 1. microRNA-7-5p (miR-7-5p) downregulated expression upon nucleophosmin-anaplastic
lymphoma kinase (NPM-ALK) inactivation. (A) Karpas-299 cells were treated or not for 24 h with
crizotinib (500 nM). The extracted miRNAs from control cells (n = 3) and from crizotinib-treated cells
(n = 3) were submitted to a miScript miRNA PCR array (SABiosciences). The changes in miRNA
expression are represented in a volcano plot. The spot corresponding to miR-7-5p is indicated.
(B) Endogenous miR-7-5p levels were analyzed by miRNA RT-qPCR in both NPM-ALK-positive
Karpas-299 and SU-DHL-1 cells and (D) in ALK-negative FEPD cells, untreated (Ctrl) or treated with
crizotinib (500 nM, 24 h) (Crizo). (C) The same analysis was performed on Karpas-299 and SU-DHL-1
cells transfected with either scramble (siSCR) or ALK-targeted (siALK) siRNAs. The results are the mean
of triplicates ± standard deviations (SD) from three independent experiments. They are represented
in the fold regulation of the miR-7-5p levels, in comparison to the control (Ctrl) or siSCR conditions,
assigned to 1. ns: not significant; * p ≤ 0.05; ** p ≤ 0.01; unpaired Student’s t test. (E) Western blot
showing the total NPM-ALK, phospho-NPM-ALK in Karpas-299 cells following 24 h treatment with
crizotinib (500 nM). (F) Western blot showing the NPM-ALK protein levels in Karpas-299 cells that
were transfected for 24, 48, or 72 h either with a scramble siRNA (siSCR) or with an ALK-targeted
siRNA (siALK). Actin served as the internal control to ensure equal loading.
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Table 1. miR-7-5p was down-regulated upon crizotinib treatment in NPM-ALK+ Karpas-299 cells. A set
of 10 selected miRNAs under-expressed or over-expressed with the highest p-values in crizotinib-treated
(500 nM, 24 h) versus untreated NPM-ALK+ Karpas-299 cells is presented.

Genes Under-Expressed in Crizotinib Treated Versus Untreated Cells

Name Fold Regulation p-Value
hsa-miR-7-5p −2.6411 0.000594

hsa-miR-222-5p −6.7695 0.001684
hsa-miR-221-5p −2.6084 0.001993
hsa-miR-19a-5p −4.402 0.01234

hsa-miR-92a-1-5p −2.7998 0.017765
hsa-miR-885-5p −2.2267 0.021152

hsa-miR-146a-5p −2.0383 0.035913
hsa-miR-363-5p −2.8992 0.043604
hsa-miR-143-3p −2.0704 0.047823
hsa-miR-10b-3p −5.0548 0.049052

Genes Over-Expressed in Crizotinib Treated Versus Untreated Cells

Name Fold Regulation p-Value
hsa-miR-15a-5p 2.0232 0.000008
hsa-miR-425-5p 2.4347 0.000077

hsa-miR-9-5p 2.1883 0.000089
hsa-miR-219a-5p 3.0043 0.000116

hsa-miR-31-5p 3.2204 0.000226
hsa-miR-26a-5p 2.2241 0.000308
hsa-miR-425-3p 2.1882 0.000335
hsa-miR-191-5p 2.0509 0.001091
hsa-miR-497-5p 6.1522 0.002711

hsa-miR-190a-5p 2.1526 0.01914

2.2. Enhanced Levels of miR-7-5p Potentiates Crizotinib-Induced Cytotoxic Effects and Autophagic Flux

As miR-7-5p was significantly downregulated in Karpas-299 and SU-DHL-1 cells submitted
to NPM-ALK inactivation, we next investigated the effect of miR-7-5p enhanced levels on
crizotinib-induced cytotoxic effects. Therefore, these two NPM-ALK+ ALCL cell lines were transiently
transfected with either miR-7-5p mimics (miR-7-5p) or control miRNA (miR-Neg). One day after
transfection, the cells were treated or not with increasing doses of crizotinib for 48 h. We observed
that increased levels of miR-7-5p significantly reduced the viability of Karpas-299 and SU-DHL-1 cells
treated with crizotinib and that this potentiation occurred at all tested crizotinib concentrations. As an
example, crizotinib treatment at 500 nM for 48 h induced a 46 ± 2.6% decrease in Karpas-299 cells
viability and the elevation of miR-7-5p levels, in the same conditions, resulted in a 69 ± 3.6% decrease
in cell viability (Figure 2A). Similarly, a miR-7-5p-induced-increase of the cytotoxic effects of crizotinib
was observed in SU-DHL-1 using lower doses of the drug due to the known intrinsic higher sensitivity
of this cell line (Figure 2B) [50].

These results indicate the potentiation of crizotinib-induced cytotoxicity in ALCL cell lines by
increased levels of miR-7-5p. As similar results were previously obtained by our team in modulating
autophagy in combination with crizotinib treatment [17], and by other groups in other cancers types and
conditions [51–53], we investigated whether higher levels of miR-7-5p could also impact the autophagic
flux in the same way. To address this question, we used Karpas-299 cells, engineered to stably express the
red fluorescent protein-enhanced green fluorescent protein-microtubule associated protein light chain
3 (RFP-EGFP-LC3) fusion protein, and measured the autophagic flux as an increase in the RFP/EGFP
ratio—a method described by Gump et al. [54] that we recently validated in NPM-ALK+ ALCL [17].
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Figure 2. The effects of miR-7-5p increased levels on cell viability and autophagic
flux. (A) Karpas-299 cells were transfected for 72 h with either scramble miRNA
(miR-Neg) or miRNA-7-5p mimics (miR-7) and treated or not for the last 48 h with
increasing doses of crizotinib (0, 125, 250, and 500 nM). The cell viability was determined
using a (3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium,
inner salt) (MTS) assay. (B) SU-DHL-1 cells were treated as in (A) with slightly different doses of
crizotinib, as indicated. The graphs represent the mean values ± SD from three to four independent
experiments. Statistical analysis was performed by one-way ANOVA followed by the Newman–Keuls
multiple comparison test; ns: not significant; * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001. (C) Karpas-299 cells
stably expressing mRFP-EGFP-LC3 were transfected for 72 h with miR-7-5p mimics (miR-7) or their
corresponding negative controls (miR-Neg) and treated (Crizo) or not (Ctrl) for the last 24 h with
crizotinib (125 nM). Upper part: Representative FACS plots of the RFP/EGFP fluorescence ratios are
shown. Bottom part: Histogram representation of enhanced autophagy flux in response to miR-7-5p
transfection and crizotinib treatment. Data represent the mean ± SD; n = 4; ** p ≤ 0.01; unpaired
Student’s t test.

These RFP-EGFP-LC3 Karpas-299 cells were transfected with miR-7-5p mimics or miR-Neg for
72 h and treated or not, during the last 24 h, with 500 nM crizotinib. Interestingly, we observed both a
potentiation of the basal (20% ± 0.5% versus 37% ± 5.6% of autophagic cells, p-value = 0.0084) and
crizotinib-induced autophagic flux (57% ± 8% versus 79% ± 6% of autophagic cells, p-value = 0.0046)
in miR-7-5p transfected cells in comparison with miR-Neg transfected RFP-EGFP-LC3 Karpas-299
(Figure 2C). Similar findings were obtained when we performed endogenous LC3B immunofluorescence
staining on miR-Neg or miR-7-5p transfected Karpas-299 cells, treated or not with crizotinib.

We observed that miR-7-5p mimics increased the basal number of LC3B autophagosomal dots
(2.0 ± 0.2-fold increase) and further potentiated the crizotinib-induced autophagosome formation
(4.9 ± 0.5-fold increase) in comparison with control condition (Figure S1A,B). Finally, LC3B and
p62 western-blotting further corroborated our findings (Figure S1C). We concluded that miR-7-5p,
through the binding and downregulation of potentially several targeted mRNAs, is a potent regulator
of cell viability and cell autophagy in Karpas-299 cells, as previously described in other studies [55–58].
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2.3. miR-7-5p Directly Targets RAF1 and Downregulates Its Expression

We next investigated which of the miR-7-5p target(s) could be involved in the activation of the
autophagic flux in Karpas-299 cells. To start, we looked in the literature for experimentally validated
miR-7-5p targets and then narrowed our research to the ones described to participate in the regulation
of the autophagy process. The RAF1 kinase mRNA was an interesting candidate as it fulfilled these
criteria both as a target of miR-7-5p, as described in melanoma cells [59], and as a regulator of autophagy,
as previously reported [60,61].

Using a biotinylated miRNA pulldown assay [62,63], which allowed us to capture and identify the
physical targets of miR-7-5p in untreated and crizotinib-treated Karpas-299 cells, we found selective
binding of the RAF1 mRNA to the biotinylated miRNA miR-7-5p (Figure 3A). The relevance of this result
is emphasized by the presence of two predicted binding sites of miR-7-5p on the 3’ untranslated region
(3’UTR) of the RAF1 mRNA described on the microRNA.org database (http://www.microrna.org/)
(Figure 3B). We validated that higher levels of miR-7-5p in Karpas-299 cells resulted in both RAF1
mRNA and protein level decreases (Figure 3C,D). Downregulations of 37.5 ± 21.6% (p = 0.0395) and
50% were observed, respectively, for RAF1 mRNA and RAF1 protein (24 or 48 h post miR-7-5p mimics
transfection) in comparison with miR-Neg conditions. Similar results were obtained in SU-DHL-1 cells
(Figure S2).

Thus, consistent with other examples in the literature, our results showed a direct interaction
between miR-7-5p and RAF1 mRNA in NPM-ALK+ ALCL cells. Finally, as endogenous miR-7-5p
expression levels decreased upon crizotinib treatment (Figure 1), we investigated how NPM-ALK
inactivation could impact the RAF1 mRNA and protein levels. We observed a 2 ± 0.4-fold increase
(p = 0.0427) in the RAF1 mRNA levels using Karpas-299 cells transfected with siRNA targeting ALK
(siALK) (Figure S3A). This result was confirmed by analyzing the publicly available transcriptomic
data, from Piva et al. and Marzec et al. [64,65] where the RAF1 mRNA expression levels were found to
be increased upon NPM-ALK doxycycline-inducible (Dox) knock down (using shRNA targeting ALK)
(Figure S3B,C) or NPM-ALK pharmacological inhibition using pyrrolocarbazole-derived compounds
(Figure S3D) or using CEP-14083 (Figure S3E).

In accordance with these data, we found a slight and sustained increase in the RAF1 mRNA levels
upon crizotinib treatment (Figure S3F), which was corroborated by a slight but significant fold increase
(1.43 ± 0.15; p = 0.039) in the RAF1 protein level (Figure S3G). Altogether, these results suggest that the
RAF1 mRNA and protein levels are regulated, at least in part, through a NPM-ALK/miR-7-5p axis in
NPM-ALK+ ALCL cells.

2.4. RAF1 Inhibition Mimics miR-7-5p Cellular Effects

Having demonstrated a direct interaction between miR-7-5p and RAF1 mRNA, we next
investigated whether the pharmacological inhibition of RAF1 could reproduce the results obtained by
the transfection of miR-7-5p mimics on cell viability and on the autophagic flux. For that purpose,
we treated the Karpas-299 cells with vemurafenib (VEM), a compound described as an ATP-competitive
oral inhibitor of RAF1 and v-raf murine sarcoma viral oncogene homolog B1 (BRAF) (wild type and
V600E mutated) [66,67]. The efficiency of the vemurafenib treatment was assessed by western-blotting
for the decrease in the phosphorylation of the MEK proteins (Figure S4). We first analyzed the effects
of miR-7-5p mimics transfection or vemurafenib alone, and the one of their combined administration
on cell viability.
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Figure 3. The identification of RAF1 mRNA as a target of miR-7-5p. (A) The RNAs co-purified with
biotinylated miR-7 versus with biotinylated cel-miR-39 (control miRNA from C. elegans) were analyzed
by qRT-PCR using PCR primers for two miR-7 predicted target genes (ULK1 and RAF1). RAF1 mRNAs
were significantly pulled-down with the biotinylated miR-7 versus cel-miR-39 whereas the ULK1
mRNAs were not. GAPDH mRNA was not predicted as a miR-7 target, and allowed us to evaluate
and remove the pulled-down background. Data represent the mean ± SD; n = 3; ns: not significant;
** p ≤ 0.01; unpaired Student’s t test. (B) Sequence alignment between miR-7 and the 3′UTR of RAF1
mRNA identified two complementary sites (www.microrna.org). (C) qPCR analysis of RAF1 mRNA
expression in control miRNA (miR-Neg) or miR-7-5p (miR-7) transfected Karpas-299 cells (mean ± SD
of independent experiments, n = 4, * p ≤ 0.05; unpaired Student’s t test). (D) Representative western
blot showing the RAF1 protein levels 24 or 48 h following control miRNA (miR-Neg) or miR-7-5p
(miR-7) transfection in Karpas-299. Actin was used as a loading control. RAF1/Actin densitometric
ratios are indicated.

As shown in Figure S5, we observed that miR-7-5p mimics alone slightly impacted the cell viability,
a result consistent with other reports in the literature demonstrating the higher potential of miR-7-5p
in cancer therapy when given in combination with other therapeutic agents, such as tyrosine kinase
inhibitors [44]. Regarding vemurafenib treatment, we found that it impaired the viability of the fragile
transfected cells, at 24 or 48 h and, importantly, that these effects were not significantly potentiated at
24 h (Figure S5, panel A) or only slightly potentiated at 48 h (Figure S5, panel B) by miR-7-5p mimics
transfection. Altogether, these results indicate the stronger effect of vemurafenib, in comparison to
miR-7-5p mimics alone, on cell viability, and suggest mostly common targets (likely including RAF1)
upon 24 h of treatment and the appearance and combination of off-target effects at 48 h.

We then studied the impact of crizotinib and vemurafenib, as single or combined treatment,
on cell viability and autophagy flux. As shown in Figure 4A, we observed a significant decrease in
cell viability, from 50% ± 5% upon single crizotinib treatment to 26% ± 1.3% upon crizotinib and
vemurafenib co-treatment (p = 0.011). Regarding the autophagic flux, we observed that the addition of
vemurafenib potentiated both the basal and crizotinib-induced autophagic flux in the RFP-EGFP-LC3
Karpas-299 cells, as assessed by the increase of the RFP/EGFP ratio (Figure 4B). These results were
further confirmed by the LC3B immunofluorescence, which showed LC3B positive autophagosome
formation upon crizotinib and vemurafenib single treatments (2.3 ± 0.7- and 2.3 ± 0.6-fold increases,
respectively) and a potentiated autophagy flux upon combined treatment (4 ± 0.6-fold increase) in
comparison with the control condition (Figure S6).
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Figure 4. RAF1 pharmacological and molecular inactivation potentiates the crizotinib cytokilling effect
and autophagy flux. (A) Karpas-299 cells were treated or not (Ctrl) for 48 h with crizotinib (Crizo)
(500 nM) or vemurafenib (VEM) (20 µM), alone or in combination. The cell viability was determined
using an MTS assay. The graphs represent the mean values ± SD from three independent experiments.
Statistical analysis was performed by one-way ANOVA followed by the Newman–Keuls multiple
comparison test; ** p ≤ 0.01; *** p ≤ 0.001. (B) mRFP-EGFP-LC3 Karpas-299 cells were treated or not
(Ctrl) with crizotinib (125 nM) (Crizo) or vemurafenib (10 µM) (VEM), alone or in combination for
24 h. Left part: Representative fluorescence-activated cell sorter scan (FACS) plots of the RFP/EGFP
fluorescence ratios, indicative of the autophagic flux, are shown. Right part: Histogram representation
of the enhanced autophagy flux in response to crizotinib and vemurafenib treatment. Data represent
mean ± SD; n = 4; ** p ≤ 0.01; **** p ≤ 0.0001; unpaired Student’s t test. (C) Western blot showing
RAF1 protein levels in Karpas-299 cells that were transfected for 24, 48, 72, or 96 h either with a
scramble siRNA (siSCR) or with an RAF1-targeted siRNA (siRAF1). Actin served as the internal control
to ensure equal loading. The RAF1/Actin densitometric ratios are indicated. (D) mRFP-EGFP-LC3
Karpas-299 cells were transfected for 36 h with siRNA targeting RAF1 (siRAF1) or corresponding
negative controls (siSCR) and treated (Crizo) or not (Ctrl) for the last 18 h with crizotinib (125 nM).
Left part: Representative FACS plots of the RFP/EGFP fluorescence ratios are shown. Right part:
Histogram representation of the enhanced autophagy flux in response to crizotinib treatment and
RAF1 molecular knock down. Data represent the mean ± SD; n = 4; ns: not significant; * p ≤ 0.1;
**** p ≤ 0.0001; unpaired Student’s t test.

Similarly, a slight but significant potentiation of the crizotinib-induced autophagic flux was
observed upon RAF1 molecular downregulation using siRNA targeting RAF1 (Figure 4C), in comparison
with the siRNA Scramble (siSCR) condition (Figure 4D). We also noticed that there was no potentiation
of the basal autophagy when using siRAF1 transfected cells, a result different than the ones observed
with the pharmacological inactivation of RAF1 using vemurafenib. Thus, we propose that the
vemurafenib larger spectrum of action could account for this difference in basal condition.

Finally, to understand by which means cell death was potentiated, we investigated the impact
of RAF1 inhibition on apoptotic cell death. We found that the molecular downregulation of RAF1,
combined with crizotinib treatment, significantly increased cell apoptosis (fold increase: 3.24 ± 0.60) in
comparison with crizotinib single treatment (fold increase: 1.97 ± 0.40) (p = 0.0462) and normalized
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to the untreated condition (Figure S7). Similar results were observed upon vemurafenib and
crizotinib co-treatment. Altogether, our data showed that the inhibition of RAF1 potentiated both
crizotinib-induced toxicity and crizotinib-induced autophagic flux in Karpas-299 cells.

2.5. RAF1 Controls the Autophagic Process in Crizotinib-Treated Karpas-299 Cells through Phosphorylation of
ULK1 at Serine757 Inhibitory Residue

Having found that RAF1 participates in the control the autophagic flux in NPM-ALK+ ALCL cell
lines, we hypothesized that this effect could be attributed to its serine or threonine kinase activity on
key players of the autophagy machinery. We focused our interest on ULK1 as its regulation through
serine phosphorylation, notably by two major kinases controlling the initiation step, i.e., mTOR and
AMPK, has been largely documented [22]. We first investigated if the pharmacological inhibition
of RAF1 (using vemurafenib) could impact the phosphorylation of ULK1 at its phosphoSer757 site
(inhibitory phosphorylation). As shown in Figure 5A, we found a significant decrease (63.7 ± 13%;
p = 0.0136) of the phosphoSer757 ULK1 signal in Karpas-299 cells submitted to the combined NPM-ALK
and RAF1 inactivation (using crizotinib and vemurafenib, respectively) in comparison with no treatment
or single drug conditions (crizotinib: 32 ± 9.8%; p = 0.0315) (vemurafenib: 32.3 ± 12.1%; p = 0.0381).
In the same line, we found a decrease in the phosphorylation of the Ser757 ULK1 residue in Karpas-299
cells knocked-down for RAF1 (upon either siRAF1 or miR-7-5p mimics transfection) and treated with
crizotinib, when compared to the untreated cells (Figure S8A,B).
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Figure 5. The effects of combined treatment on ULK1 Serine 757 phosphorylation. Karpas-299 cells
were treated or not (Ctrl) overnight (16 h) with crizotinib (CZ) 250 nM and either vemurafenib (Vem)
10 µM (A) or mirdametinib (Mird) 1 µM (B) as single agents or in combination. Left parts: Whole cell
lysates were loaded twice on a same gel and probed for total ULK1 and phospho-Ser757 ULK1 contents
by western blot. The efficiency of the mirdametinib treatment was assessed by western-blotting for
decreased phospho-ERK1/2. Right parts: Densitometry analysis of the phospho-ULK1 (Serine757)
levels was calculated relative to the control samples (normalized over the hsp90 or actin signals) and
relative to the total ULK1 signals. The data are representative of three independent experiments.
(C) mRFP-EGFP-LC3 Karpas-299 cells were treated or not (Ctrl) with crizotinib (250 nM) (Crizo) or
mirdametinib (1 µM) (Mird), alone or in combination for 24 h. Upper part: Representative FACS plots of
the RFP/EGFP fluorescence ratios, indicative of the autophagic flux, are shown. Lower part: Histogram
representation of the enhanced autophagy flux in response to crizotinib and mirdametinib treatment.
Data represent mean ± SD; n = 3; ns: not significant; * p ≤ 0.1; *** p ≤ 0.001; unpaired Student’s t test.
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This result was further corroborated using Karpas-299 clonal cells invalidated for RAF1 using
the CRISPR/Cas9 system (Figure S8C,D). By combining crizotinib with the MEK inhibitor PD0325901
(Mirdametinib), we found that this ULK1 phosphorylation did not rely on the MEK/ERK kinases
(Figure 5B). This result highlighted that the function of RAF1 in regulating ULK1 phosphorylation
occurred independently of the MEK/ERK signaling cascade. In accordance, we found that the treatment
with mirdametinib did not potentiate the basal and crizotinib-induced autophagic flux, as assessed by
flow cytometry using the RFP-EGFP-LC3 Karpas-299 cells (Figure 5C).

Finally, we investigated whether RAF1 could directly phosphorylate ULK1 at Ser757 inhibitory
residue and performed an in vitro kinase assay. As shown on Figure 6, we found indeed that the
recombinant RAF1 enzyme phosphorylated the ULK1 protein as a substrate on its Ser757 residue.
This phosphorylation was reproducibly and significantly impaired in the absence of ATP or in the
presence of vemurafenib in the kinase assay buffer, where a 52.3 ± 7.4% (p = 0.0195) and 51.7 ± 8.4%
(p = 0.0255) decrease in the RAF1 activity were observed, respectively. Altogether these results strongly
suggest that RAF1 may negatively control the autophagy process in NPM-ALK+ ALCL cells through
phosphorylation of ULK1 at Ser757 residue.
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Figure 6. RAF1 can directly phosphorylate ULK1 at the Ser757 residue. Left part: Representative results
of an in vitro kinase assay performed by incubating the human recombinant RAF1 kinase (306–648)
(20 ng) and ULK1 full length (1–1050) (200 ng) proteins in the presence (+) or absence (−) of ATP
(200 µM) and vemurafenib (100 nM), as indicated. RAF1 kinase activity was monitored by western blot
analysis using the indicated antibodies. Right part: Histogram representation of the kinase activity
of RAF1 on the serine757 site of the ULK1 protein. Data represent the mean ± SEM; n = 3; * p ≤ 0.1;
unpaired Student’s t test.

3. Discussion

The use of crizotinib in the treatment of ALK+ ALCL is so far limited to patients not responding
to chemotherapy or who underwent relapses [68]. Its use as a front line therapy is currently being
investigated in three clinical trials (NCT01979536/NCT02034981/UMIN000028075). Despite the initial
successes of ALK TKI, cases of resistance to the drug have been reported [8,9,69]. To overcome or
prevent these resistances, the design of combined therapeutic strategies, aiming at inhibiting the
ALK oncogene concomitantly with another essential cell growth and survival pathway, appears as a
promising approach [1,6,14,70].

In the literature, targeting the autophagic flux was described as a rational way to fight
resistance in diverse hematological malignancies [71,72]. Indeed, depending on the context,
autophagy inhibition [27,73] and activation [74–76] have been shown to prime cancer cells to cell
death. In consensus with this literature, we first demonstrated that the inhibition of crizotinib-induced
cytoprotective autophagy could be beneficial for the treatment of NPM-ALK positive lymphoma [15].
Recently, we further reported that combining crizotinib with BCL-2 knock-down resulted in autophagy
flux potentiation and increased cell death [17].
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In the present study, we identified another possible combined therapy, associating NPM-ALK
and RAF1 inhibition, which also increased autophagy and cell death (Figure 7). RAF1 inhibition was
achieved using either pharmacological (vemurafenib) [66] or molecular (siRNA targeting RAF1 or
miR-7-5p mimics) approaches [43]. Of translational importance, vemurafenib is already used for the
treatment of diverse RAF-driven cancers [77], and miR-7-5p replacement therapy holds the promise
for clinical development, but still requires further investigations [44].
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Figure 7. The proposed model of action of NPM-ALK and RAF1 inhibitions on autophagy flux and
cells outcome. The pharmacological inactivation of the NPM-ALK oncogene in NPM-ALK+ ALCL was
previously shown to induce a cytoprotective autophagic flux. This status was shown to be associated
with the downregulation of miR-7-5p levels and the increased expression of one of its targets: RAF1.
When pharmacological or molecular tools allowing RAF1 inactivation were used in combination with
NPM-ALK inhibition, the autophagy flux was potentiated and associated with increased cell death,
therefore, highlighting the superiority of the co-treatment to kill NPM-ALK+ lymphoma cells.

The delivery of miRNAs in patients remains challenging, and their formulation and appropriate
route of administration are the matter of abundant studies in mice models [78–80]. We thus analyzed
the literature in search for other studies that could corroborate our in vitro findings. Of relevant
interest, miR-7-5p mimics were found to potentiate the gefitinib induced cytotoxicity in lung cancer,
via inhibiting the epidermal growth factor receptor (EGFR) and insulin like growth factor 1 receptor
(IGF1R) pathways [81], and other studies reported that inhibiting the EGFR signaling allowed autophagy
to contribute to cell death [82].

In the same line, Song et al. reported that radiation-induced exosomal miR-7-5p
promoted bystander autophagy in non-targeted bronchial epithelial cells through inhibition of
the EGFR/Akt/mTOR axis [57]. The authors proposed that this bystander autophagy induction,
through exosomal miR-7-5p, might play a role in the detrimental effect of RIBE (Radiation-Induced
Bystander Effects). Of interest, an enhanced and detrimental autophagy was similarly observed
following an ALKBH5 silencing/miR-7-5p increase and subsequent downregulation of the
EGFR/Akt/mTOR axis in epithelial ovarian cancer cells [58].

In the literature, RAF1 inhibition was shown to induce autophagy and tumor regression in a
conditional mouse model for RAF1-induced lung tumorigenesis [61]. Conversely, Kinsey et al. recently
demonstrated that the RAF1/MEK/ERK pathway inhibition elicited protective autophagy in pancreatic
ductal adenocarcinoma cells, through the activation of the LKB1/AMPK/ULK1 signaling axis [83].
Another study showed that RAF1 was found co-localized with LC3-II at autophagosomal membranes
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in different cell types [84]. Altogether this literature suggests that RAF1 could possibly interact and
regulate different autophagy machinery proteins.

In line with this hypothesis, we demonstrated in an in vitro kinase assay that RAF1 was
able to phosphorylate ULK1 on its serine 757 inhibitory residue and that cells submitted to the
combined NPM-ALK and RAF inactivation, but not MEK inactivation, showed a strong defect in
this phosphorylation. Thus, our data indicate that RAF1 may be a new actor in regulating ULK1
phosphorylation and function, a result that should motivate further studies in other models.

We also found that RAF1 may impact the autophagic pathway independently of the MEK/ERK
kinases, a result consistent with the independent functions of RAF1 and MEK/ERK proteins in
NPM-ALK+ ALCL [85], as well as in other cancers [86,87]. We then investigated whether RAF1 and
ULK1 could interact directly or could be part of the same signaling complex. As we had difficulties in
proving such proximity between the two proteins, we hypothesized that their interaction could be
transient or could require and take place at autophagosomal membranes. Thus, further investigations
are needed to answer this question.

Our work demonstrates, for the first time, that NPM-ALK and RAF1 inhibition, by potentiating
autophagy and cell death, could be beneficial for ALK+ ALCL patients. Regarding the possible extension
of our findings to other ALK-dependent cancers, ALK inhibition in ALK-mutated neuroblastoma [88]
or ALK overexpressing rhabdomyosarcoma [89] has been proposed to activate autophagy associated
with cell death. Mechanistically, researchers suggested that this effect relied mainly on the inactivation
of the PI3K/Akt/mTOR signaling axis, a well-known negative regulator of the autophagy process [90].

Previous reports also highlighted the survival role of the mTOR pathway in
NPM-ALK+ ALCL [91–93]. Consistently, in NPM-ALK+ ALCL [13], as in EML4-ALK lung cancers [94]
and ALK-mutated neuroblastoma [95,96], a synergistic activity of ALK and mTOR inhibition had been
described, although the authors did not investigate the involvement of autophagy associated with
cell death in these settings. Of importance, we reported in NPM-ALK+ ALCL that such combined
ALK and mTOR inhibition, using crizotinib and rapamycine, respectively, resulted in an increased
autophagic flux and loss of cell viability [17].

In the same line, another interesting study, which was published during the time of the revision of
our present manuscript, reported the elimination of dormant, autophagic and drug-resistant ovarian
cancer cells upon crizotinib or other ALK inhibitors treatment through the potentiation of autophagy
and subsequent increase in apoptosis [97]. Thus, it is tempting to propose, based on our studies and
on the analysis of the literature, that any ways to push and/or turn autophagy into a death process
in NPM-ALK+ ALCL, and potentially in other ALK-related malignancies, should improve the TKI
therapy and patient outcome.

4. Materials and Methods

4.1. Cell Lines and Cell Culture Conditions

The Karpas-299 NPM-ALK-positive ALCL cell line bearing the t(2;5)(p23;q35) translocation was a
gift from Pr C. Gambacorti-Passerini and Dr M. Ceccon (Department of Health Sciences, University of
Milano-Bicocca, Milan, Italy). This cell line was cultured in Roswell Park Memorial Institute medium
1640 (RPMI-1640) supplemented with 10% Fetal Calf Serum (FCS), 2 mM L-glutamine, 1 mM sodium
pyruvate and 100 U/mL penicillin/streptomycin (all from Invitrogen, Carlsbad, CA, USA) at 37 ◦C with
5% CO2, and was maintained in the exponential growth phase. The SU-DHL-1 NPM-ALK-positive
ALCL cell line bearing the t(2;5)(p23;q35) translocation was obtained from DSMZ (German Collection
of Microorganisms and Cell Culture, Braunschweig, Germany). The FEPD ALK-negative cell line was
a gift from Dr. K. Pulford (Oxford University, Oxford, UK). SU-DHL-1 and FEPD cells were cultured
in Iscove’s Modified Dulbecco’s Medium (IMDM) supplemented with 20% FCS, 2 mM L-glutamine,
1 mM sodium pyruvate, and 100 U/mL penicillin/streptomycin at 37 ◦C with 5% CO2 and were also
maintained in exponential growth phase.
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4.2. Generation of RFP-GFP-LC3 Karpas-299 Cells

Five million Karpas-299 cells, in the exponential growth phase, were transfected by 5 µg of
mRFP-EGFP-LC3 plasmid (kindly provided by Pr Tamotsu Yoshimori (Department of Genetics,
Osaka university, Osaka, Japan)) by electroporation at 250 V and 950 µF using the Gene pulser II
Electroporation system (BioRad, Marnes-la-Coquette, France). Stable transformants were selected in
complete medium containing increasing concentrations of G418 (Sigma-Aldrich, St. Louis, MO, USA),
from 0.5 mg/mL to 1.2 mg/mL. For higher sensitivity and consistency, single cell sorting for RFP and
GFP double-positive cells was performed to isolate individual clones. One clone, called RFP-EGFP-LC3
Karpas 299 was then further amplified and tested for its ability to measure autophagic flux using
ratiometric flow cytometry [54] upon stimulation with Crizotinib (previously described to induce
autophagic flux in Karpas-299 cells, [15]). To maintain overtime, the RFP-EGFP-LC3 Karpas-299 cells
selection pressure, 1.2 mg/L of G418 was added to the medium two times a week.

4.3. Generation of Karpas-299 Cells Knocked Down for RAF1

We used the lentiCRISPR vector (Addgene, Cambridge, MA, USA, plasmid #52961) established by
the Zhang laboratory [98]. The design of the target gRNA sequences against Raf1 was performed using
the platform: http://crispr.mit.edu/. Raf1 exon 2 was the input for software analysis. Two top-scoring
gRNA sequences were selected (gRNA#1 = AGCAGTTTGGCTATCAGCGCCGG and gRNA#2 =

GCAGTTTGGCTATCAGCGCCGGG) and cloned into the lentiCRISPR vector as recommended by the
Zhang Lab GeCKO website http://www.genome-engineering.org/gecko/. The resulting lentiCRISPR-
Raf1 vectors were transfected into the host packaging cell line (HEK 293T) for the production of
lentivirus encoding Cas9 and the respective gRNAs. The lentivirus-containing media from HEK 293T
cells were subsequently transferred onto Karpas-299 ALCL cells to generate Raf1-deleted clones. After
24 h of infection, the medium was replenished with complete media containing antibiotic selection
puromycin (2 µg/mL). The culture medium was changed every 2 days for 2 weeks to generate stable
RAF1 depleted cells. A single cell dilution allowed the selection of clones that were evaluated for RAF1
(Cell Signaling Technology #3738) expression by western blot. Only one clone (clone 22) was used in
our studies.

4.4. Reagents

Crizotinib (Xalkori) was synthetized and purchased at @rtMolecule (Poitiers, France).
Chloroquine (Aralen) (#C6628) was purchased from Sigma-Aldrich (St. Louis, MO, USA).
Stock solutions of crizotinib and chloroquine were prepared in phosphate buffered saline (PBS).
Vemurafenib (PLX4032) and PD0325901 (Mirdametinib) were purchased from Selleckchem (Munich,
Germany), and stock solutions were prepared in DMSO. ATP was purchased from Thermo Fisher
Scientific (Illkirsh-Graffenstaden, France).

4.5. MiRNA Expression Profiling Assay

Karpas-299 cells were treated or not for 24 h with crizotinib 500 nM, washed once with PBS,
and harvested. Frozen cell pellets were sent to SABiosciences (Hilden, Germany), where both the
miRNAs extractions and the miScript miRNA PCR array were performed. The amplification data
(fold changes in Ct values of all the miRNAs) were analyzed by the ∆∆Ct method. The data were
normalized to control (PBS-treated) cells, assigned as 1. All experiments were repeated thrice.

4.6. RNA Extraction

The total RNA extractions were performed using the Trizol® reagent, (Invitrogen, Carlsbad, CA,
USA) according to the manufacturer’s instructions. No additional purification steps were performed.

http://crispr.mit.edu/
http://www.genome-engineering.org/gecko/
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4.7. Reverse Transcription

Messenger RNA (mRNA) was converted to cDNA with the Prime script RT-PCR kit (Takara Bio
USA, Inc. (Mountain View, CA, USA) starting from 500 ng of total RNA, according to the
manufacturer’s instructions. Reverse transcription thermocycling parameters were 65 ◦C for
5 min, to allow denaturation and annealing, followed by 42 ◦C for 15 min and 95 ◦C for 5 min.
Glyceraldehyde 3 phosphate dehydrogenase (GAPDH) was amplified as a control. For qPCRs of
miRNAs, miRNAs were converted to cDNA with the Universal cDNA synthesis kit II (Exiqon, Vedbaek,
Denmark) starting from 500 ng of total RNA. Briefly, RNA was polyadenylated and each miRNA
was detected by the mature DNA sequence as the forward primer and a 3′ universal reverse primer
provided in the Universal cDNA synthesis kit. Reverse transcription thermocycling parameters were
42 ◦C for 60 min and 95 ◦C for 5 min. Human small nuclear U1A1 RNA was amplified as a control.

4.8. qPCR

Prior to qPCR reactions being performed, the cDNA was diluted 1 in 5 and 1 in 80 for the
Takara and Exiqon assays, respectively. All qPCR was performed using the SYBR Green master
mix SYBR Premix Ex Taq II (Tli RNase H Plus) (Takara Bio, USA, Inc.) in a 10 µL final volume.
′Primer sequences used for miRNA amplification are not currently provided by the kit providers.
The primer sequences for the RAF1 amplification were (5′-GAGGAGGAGCGGGCGAGAAG-3′) for
the forward primer and (5′- GGAGCCATCAAACACGGCATCT-3′) for the reverse primer. The primer
sequences for the ULK1 amplification were (5′-CCTCGCCAAGTCTCAGACGC-3′) for the forward
primer and (5′-CCCCACCGTTGCAGTACTCC-3′) for the reverse primer. The primer sequences for
the GAPDH amplification were (5′-CAACGACCACTTTGTCAAGCT-3′) for the forward primer and
(5′-CTCTCTTCCTCTTGTGCTCTTGC-3′) for the reverse primer. All qPCR performed was conducted
at 95 ◦C for 30 s, and then 40 cycles of 95 ◦C for 5 s and 60 ◦C for 30 s. The specificity of the reaction
was verified by melt curve analysis.

4.9. miRNA Mimics and siRNA Transfection

SiRNA and miRNA mimic transfections were performed by electroporation using Gene Pulser Xcell
Electroporation Systems (Biorad, Hercules, CA, USA). Briefly 5 × 106 cells were electroporated at 950 µF
to 250 V in 400 µL IMDM or RPMI medium with 100 nM ALK siRNA, or 100 nM RAF1 siRNA, or miR-7
mimic of a 100-µmol/L stock solution or by the same quantity of a negative control miRNA (miR-Neg)
or scrambled siRNA (siSCR) (Eurogentec, Seraing, Liège, Belgium). The siRNA sequences used were
(5′-GGGCGAGCUACUAUAGAAATT–3′) for ALK and (5′-GGAACUGUUUAUAAGGGUATT–3′)
for RAF1. Following the shock, the cells were rapidly resuspended in 5 mL of IMDM or RPMI
supplemented with respectively 20% or 10% FCS. They were subsequently used either for protein
extractions, flow cytometry, or for viability/apoptosis assays.

4.10. Viability Assays

Karpas-299 and SU-DHL-1 cells were transfected with miR-7-5p mimic (miR-7) or negative control
(miR-Neg) for 24 h, then counted and treated with increasing concentrations of crizotinib (0 to 500 nM
for Karpas-299 and 0 to 400 nM for SU-DHL-1). The cells were seeded in 96-well plates (10,000 cells/well,
in respectively 100 µL RPMI/10%FBS or IMDM/20% FBS), incubated at 37 ◦C for an additional 48 h,
and the cell viability was assessed using the CellTiter 96 AQueous One Solution cell proliferation assay
(Promega, Fitchburg, WI, USA). Additionally, Karpas-299 were counted and seeded in 96-well plates
(10,000 cells/well, in 100 µL IMDM/20% FBS). The cells were incubated at 37 ◦C in the presence of
crizotinib 500 nM (Crizo) or vemurafenib 20 µM (VEM), alone or in combination and the cell viability
was assessed as stated after 48 h.
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4.11. Apoptosis Measurement

The analysis of apoptosis was done by annexin V (AnnexinV-FITC, BD Biosciences #556419,
Le Pont de Claix, France) and cell viability probe (Via-Probe, BD Biosciences #555815, Le Pont de Claix,
France) staining according to standard protocols, followed by flow cytometry using a MACSQuant
VYB cytometer from Miltenyi Biotec (Paris, France) and FlowJo software was used for results analysis.

4.12. Western-Blotting

The cells were lysed in radioimmunoprecipitation assay (RIPA) buffer (Tris HCl, 20 mM, pH 7.4,
NaCl 150 mM, EDTA 4 mM, Triton X-100 1%, and SDS 0.2%) supplemented with phosphatase inhibitors
(Na3VO4 1 mM, NaF 1 mM) and phenylmethylsulfonylfluoride (PMSF) 1 mM, purchased from
Sigma-Aldrich, and protease inhibitor cocktail (Roche, Penzberg, Germany). The protein lysates
were fractionated on SDS-PAGE (10% or 15%), and transferred to a nitrocellulose membrane
(Whatman) (GE Healthcare, Little Chalfont, UK). Western blotting was performed using ALK
(D5F3 XP, Cell Signaling Technology #3633, Ozyme, Saint Cyr l’Ecole, France), phospho-ALK (Y1507)
(Cell Signaling Technology, #14678), LC3-B (Cell Signaling Technology #2775), p62 (BD Transduction
Laboratories #610832), ULK1 (Cell Signaling Technology #6439), phospho-ULK1 (Ser757) (Cell Signaling
Technology #14202), RAF1 (Cell Signaling Technology #3738), MEK1/2 (Cell Signaling Technology #9122),
phospho-MEK1/2 (Ser217/221) (Cell Signaling Technology #9121), ERK1/2 (Cell Signaling Technology
#9102), phospho-ERK1/2 (Thr202/Tyr204) (Cell Signaling Technology #9106), β-actin (Santa Cruz #7210,
Heidelberg, Germany), and HSP90 (Origene #TA332385, Rockville, MD, USA) antibodies. The proteins
were visualized using the Clarity™ ECL Western Blotting Substrate (Bio-Rad, Hercules, CA, USA).

4.13. Measure of the Autophagic Flux by Flow Cytometry

The RFP-GFP-LC3 cells were harvested, washed in PBS, and resuspended in 1 mL of PBS. To assess
the autophagic flux, the fluorescence ratio of RFP/EGFP was measured using a BD LSRFortessa™ X-20
flow cytometer. As stated by Kimura et al., the use of this RFP-GFP reporter system for autophagic flux
quantification takes advantage of the higher sensitivity of EGFP fluorescence to the acidic environment
of the autolysosome relative to RFP [99]. Thus, cells with high autophagic flux become less green
(because of the fusion of the autophagosomes with lysosomes), and harbor an increased RFP/EGFP
ratio. The results analysis was performed using the FlowJo software.

4.14. Immunofluorescence Staining

Cells were seeded onto glass slides (Fisher Scientific) coated with 0.01% poly-L-lysine (Sigma),
then fixed in 4%formaldehyde for 8 min. After phosphate buffered saline (PBS) washes, the cells were
incubated in 0.01% saponin containing 3% BSA for 30 min and then incubated with anti-LC3B antibodies
(MBL, PM036, 1/700) for 45 min. The cells were then washed before incubation with an anti-rabbit
Alexa-488 secondary antibody (Invitrogen, 1/800) for 30 min, followed by PBS and distilled water
washes and mounting in ProLongTMGold antifade medium with DAPI (4′6-diamidino-2-phenylindole,
Invitrogen). Images were acquired using a confocal Zeiss LSM 780. For quantification, fields were
chosen arbitrarily based on DAPI staining, and the number of LC3B dots per cell of at least 100 cells
per independent experiment was determined with Image J software (U.S. NIH, Bethesda, MD, USA).

4.15. RNA Pulldown Using Biotinylated miRNA

Karpas-299 cells were harvested 18 h post-transfection with biotinylated miR-7-5p (Exiqon,
Vedbaek, Denmark) or biotinylated cel-miR-39 (negative control, Exiqon) in IP-buffer composed of
25 nM Tris-HCl pH 7.5, 200 nM NaCl, 0.2% Triton-X100, 5 mM MgAc, 1 mM DTT, protease inhibitors
(Roche, Penzberg, Germany) and 0.2 U/µL RNase OUT (Invitrogen, Carlsbad, CA, USA). Magnetic beads
coupled with streptavidin were first incubated with BSA (0.5 mg/mL) and yeast tRNA (0.2 mg/mL)
for 30 min at 4 ◦C and then washed twice with the IP buffer. The cells were then lysed by sonication,
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and the lysates were incubated with the streptavidin beads for 2 h at 4 ◦C. The beads were then washed
five times with 1 mL of IP buffer. The remaining RNAs were then extracted using the Trizol reagent
(Invitrogen, Carlsbad, CA, USA), according to the manufacturer’s instructions. The biotin pulldown
efficiency was expressed as a percentage of the input.

4.16. In Vitro Kinase Assay

The recombinant full-length human ULK1 (H00008408-P01) and recombinant human active
RAF1 protein (4540-KS) were purchased from Bio-Techne (Rennes, France). The in vitro kinase assay
was performed by incubating ULK1 (200 ng) and RAF1 (20 ng) at 30 ◦C for 1 h in reaction buffer
(25 mM MOPS pH 7.2, 25 mM MgCl2, 2 mM EDTA, 5 mM EGTA, and 0.25 mM DTT) with or without
vemurafenib 100 nM (RAF1 inhibitor) and 200 µM ATP. The kinase reaction was stopped by the
addition of Laemmli buffer 2×, and the samples were then heated for 5 min at 95 ◦C, loaded onto
SDS-PAGE, transferred to a nitrocellulose membrane, and probed with the RAF1 (Cell Signaling
Technology #3738), total ULK1 (Cell Signaling Technology #6439), and p-ULK1 (Ser 757) (Cell Signaling
Technology #14202) antibodies.

4.17. Statistical Analysis

The results are presented as the mean values ± standard deviations (SD) from at least three
independent experiments unless otherwise indicated. Determination of the statistical significance
was performed using an unpaired Student t-test for side by side comparison of two conditions.
Welsch’s correction was applied when the variances were significantly different.

5. Conclusions

NPM-ALK+ ALCL treatment still requires improvement to prevent refractory/relapse cases
following standard chemo- or NPM-ALK targeted-therapies. Our study provides evidence, for the
first time, that the dual inhibition of NPM-ALK and RAF1 (using pharmacological (vemurafenib) or
molecular approaches (siRNA or miRNA (miR-7-5p mimics) targeting RAF1)) may be superior to
single NPM-ALK targeted therapies (crizotinib) in killing tumor cells. We found that this combined
therapy triggered enhanced autophagy, notably through the relieved inhibition of the ULK1 protein,
and ultimately led to lymphoma cell death. Thus, our work stresses the importance of autophagy in
the responses to anti-cancer drugs and highlights a new therapeutic approach for NPM-ALK+ ALCL.
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