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Abstract: Matrix metalloproteinases (MMPs) are a large family of zinc-dependent proteolytic enzymes
associated with extracellular matrix protein turnover and tissue degradation. They participate to
many different physiological reactions but are also hyperactivated in several diseases. Various
literature studies have documented that MMPs play a role in the modulation of neuropathic and
nociceptive pain. The heterogeneity of clinical and pre-clinical data is an important issue in this
experimental context. Despite the presence of a good number of studies on MMP inhibitors, these
drugs showed scarce efficacy and relevant side effects. In the present manuscript, we reviewed studies
in the literature that define a possible role of MMPs in pain and the effects of their modulation.
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1. Introduction

Matrix metalloproteinases (MMPs) are proteolytic enzymes involved in several pro-
cesses (e.g., tissue regeneration, modifications of extracellular matrix (ECM), and the
modulation of cytokines and chemokines). Their synthesis and activation is summarized in
Figure 1 [1,2].Biomolecules 2023, 13, x FOR PEER REVIEW 2 of 24 

 

 
Figure 1. The activation of MMPs. After translation, MMPs are in the pre-pro-enzyme form, consti-
tuted by a signal peptide, a pro-domain, and enzyme complex. After the removal of signal peptides, 
the residual pro-MMP may be activated by several factors summarized in the figure. Then, the pro-
domain undergoes proteolysis, and the active isoform may perform its biologic or pathologic func-
tions. Alternative splicing may directly generate activated forms. 

Table 1. Matrix metalloprotease (MMP) structural classification. 

Classification MMPs 

Non-furin-regulated MMPs 
MMP-1, MMP-3, MMP-7, MMP-8, 

MMP-10, MMP-12, MMP-13, MMP-
20, MMP-27 

MMPs bearing three fibronectin-like inserts in the 
catalytic domain MMP-2, MMP-9 

MMPs anchored to the cellular membrane by a C-
terminal glycosylphosphatidylinositol (GPI) 

Moiety 
MMP-11, MMP-17, MMP-25 

MMPs bearing a transmembrane domain 
MMP-14, MMP-15, MMP-16, MMP-

24 

All the other MMPs 
MMP-19, MMP-21, MMP-23, MMP-

26, MMP-28 

Table 2. MMP substrate specificity, domain organization, and sequential similarity classification [2]. 

Type of MMPs Substrates 
Collagenases Types 

MMP-1 

Collagen types I, II, III, VII, VIII, 
X, and XI; entactin; 

tenascin; aggrecan; gelatin; fibronectin; 
vitronectin; myelin basic 

protein; ovostatin; and casein 

MMP-8 
Collagen types I, II, and III; 
fibronectin; aggrecan; and 

ovostatin 

Figure 1. The activation of MMPs. After translation, MMPs are in the pre-pro-enzyme form, consti-
tuted by a signal peptide, a pro-domain, and enzyme complex. After the removal of signal peptides,
the residual pro-MMP may be activated by several factors summarized in the figure. Then, the
pro-domain undergoes proteolysis, and the active isoform may perform its biologic or pathologic
functions. Alternative splicing may directly generate activated forms.
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Pro-enzymes and the activated forms of MMPs are controlled by the tissue inhibitor of
metallo-proteinases (TIMPs) and non-specific proteins (α2-macroglobulin and α1-proteinase
inhibitors) [2].

To date, 24 MMP isoforms have been described in humans, with structural and
functional differences (Tables 1 and 2) [2,3].

Table 1. Matrix metalloprotease (MMP) structural classification.

Classification MMPs

Non-furin-regulated MMPs MMP-1, MMP-3, MMP-7, MMP-8, MMP-10, MMP-12, MMP-13, MMP-20, MMP-27

MMPs bearing three fibronectin-like inserts in the catalytic domain MMP-2, MMP-9

MMPs anchored to the cellular membrane by a C-terminal
glycosylphosphatidylinositol (GPI)

Moiety
MMP-11, MMP-17, MMP-25

MMPs bearing a transmembrane domain MMP-14, MMP-15, MMP-16, MMP-24

All the other MMPs MMP-19, MMP-21, MMP-23, MMP-26, MMP-28

Table 2. MMP substrate specificity, domain organization, and sequential similarity classification [2].

Type of MMPs Substrates

Collagenases Types

MMP-1

Collagen types I, II, III, VII, VIII,
X, and XI; entactin;

tenascin; aggrecan; gelatin; fibronectin;
vitronectin; myelin basic

protein; ovostatin; and casein

MMP-8
Collagen types I, II, and III;
fibronectin; aggrecan; and

ovostatin

MMP-13

Collagen types I, II, III, IV, IX, X,
and XIV; tenascin C isoform;

fibronectin; laminin; osteonectin;
casein; fibrillin-1; aggrecan

core protein; gelatin; plasminogen;
and serine proteinase inhibitors

MMP-18 Collagen and gelatin

Gelatinases Types

MMP-2
Collagen types I, III, IV, V, VII, and X;
gelatin; some glycoprotein of ECM;

elastin; tenascin; fibronectin; laminin; aggrecan; myelin basic protein; and vitronectin

MMP-9

Collagen types IV, V, and XI; cytokines;
entactin; myelin basic protein; casein;

elastin; aggrecan; decorin; laminin;
chemokines; IL-8; and IL-1

Matrylisin Types

MMP-7

Faz ligand; pro-TNF-α; E-cadherin; syndecan-1;
fibronectin; laminin; vitronectin; entactin; tenascin; elastin;

casein; gelatin types I, II, IV, and
V; collagen types I and IV;

aggrecan; myelin; and
proteoglycans

MMP-26 (in vitro): collagen type IV; fibronectin; fibrinogen; vitronectin; α1-antipripsin; β-casein; gelatin;
α2-macroglobulin; and IGFBP-1

Membrane type Types

MMP-14 Collagen types I, II, and III; gelatin; fibronectin; fibrilin-1; tenascin; entactin; aggrecan; laminin-1;
vitronectin; cartilage proteoglycans; α1-proteinase inhibitor; and α2-macroglobulin

MMP-15 Laminin; fibronectin; gelatin; vibronectin; entactin;
aggrecan; and tenascin

MMP-16
Gelatin; collagen type

III; laminin; casein;
and fibronectin

MMP-17 Gelatin; fibrinogen; and fibrin

MMP-24 Fibronectin; gelatin; and
proteoglycans
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Table 2. Cont.

Type of MMPs Substrates

MMP-25 Collagen type IV; fibronectin;
gelatin; and proteoglycans

Stromelysin Types

MMP-3

Collagen types I, II, III, IV, V, X,
and IX; aggrecan; vitronectin;

entactin; tenascin; fibronectin; gelatin;
laminin; decorin;

myelin basic protein; ovostatin;
casein; osteonectin elastin; and

proteoglycans

MMP-10 Collagen types III, IV, V, IX, and X; proteoglycans; gelatin; fibronectin; laminin; elastin; aggrecan;
casein; and fibrilin-10

MMP-11
No protein of major relevance to ECM can be degraded by MMP-11, but it degrades the laminin

receptor and serine
proteinase inhibitors, α1-proteinases, and α1-antitrypsin inhibitors

Other MMPs Types

MMP-12

Gelatin type I; elastin; laminin; vitronectin;
proteoglycans; elastin; fibronectin; collagen

types I, IV, and V; entactin;
osteonectin; aggrecan; myelin;

fibrinogen; and
α1-antitripsin

MMP-19

Collagen types I and IV; laminin
and nidogen; tenascin-C

isoform; entactin; aggrecan;
fibronectin; and gelatin type I

(in vitro)

MMP-20 Ameloblasts; aggrecan;
odontoblasts; and amelogenin

MMP-21 -

MMP-22 -

MMP-23 Gelatin

MMP-27 Gelatin

MMP-28 Casein

ECM, extracellular matrix; IGFBP, insulin-like growth factor binding protein-1; MMPs, matrix metalloproteinases.

The ECM is made of various components: proteoglycans (syndecan-1 and aggrecan),
fibers (fibronectin, elastin, collagen, and laminin), glycoproteins (tenascin, vitronectin, and
entactin), and polysaccharides (hyaluronic acid). These substances regulate cell migration,
growth, and differentiation. Collagen is the most important protein in the ECM, giving
support to the structure of the cells. There are two main forms of collagen: fibrillar
(types I, II, III, V, and XI) and non-fibrillar. The non-fibrillar type includes short chains
(types VIII and X); facit-fibril-associated collagens with an interrupted triple helix (types
IX, XII, XIV, XIX, and XXI); basement membranes (type IV); multi-plexin (types XV and
XVIII); MACIT-membrane-associated collagens with an interrupted triple helix (types
XIII and XVII); and other types (types VI, VII, and VIII). Collagen is composed of three
chains in the triple helix, with two similar α chains (1 and 2). Degraded collagen is
transformed in gelatin that can be further processed by MMPs. This plasticity of ECM has
a relevant role in angiogenesis, wound healing, embryogenesis, morphogenesis, and tissue
remodulation. The excessive degradation may lead to the development of pathologies
(e.g., cancer, cardiovascular disease, immune disease, and metabolic disease) [2]. In this
context, MMPs act as modulators. Their main constitutive elements are signal peptides with
varying lengths that target the peptide for secretion; a pro-domain that maintains inactive
MMPs and is then removed; a catalytic domain with a zinc ion; a link (the hinge region) that
acts like a bridge between the catalytic domain and the hemopexin; a hemopexin domain;
and an additional transmembrane domain. These components are variously expressed in
the different isoforms, summarized in Figure 2.
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Figure 2. Main MMP structure. All the isoforms are basicly composed of a signal peptide (except for
transmembrane type II), a pro-domain, and a catalytic domain. Furin-activated MMPs contain a furin
recognition site near the catalytic domain, permitting the intracellular activation of the zymogen. GPI,
glycophosphatidylinositol; Zn, zinc.

MMPs play a role in inflammation and pain, regulating many functions including the
activity and bioavailability of cytokines, growth factors, and chemokines. Furthermore,
they play a role in tumor invasion, immune chemotaxis, and the regulation of inflammation
in several disease [4–20].

However, cytokines also upregulate a wide variety MMPs (e.g., ADAMTS4 (disintegrin
and metalloprotease with thrombospondin type I motifs), ADAMTS5, MMP-1, MMP-2,
MMP-13, and MMP-14) which suppress the expression of essential ECM genes [21].

Cytokines, chemokines, adhesion molecules, and growth factors may interact with
nociceptors. For instance, MMPs modulate these elements and then have an indirect influ-
ence [2]. Folgueras et al. [22] showed that MMP-24 deficiency led to enhanced sensitivity
to thermal stimulation under basal conditions. This phenomenon was determined by
increased innervation of the skin by mutant sensory neurons. After inflammation mice did
not develop hyperalgesia.

The aim of this review is to describe and discuss the role of MMPs in pain. Moreover,
we also assessed the possibility of a future MMP inhibition-based therapy.

2. Materials and Methods

The PubMed, Embase, and Cochrane library databases were searched for articles
published until 10 December in agreement with our recent papers [23–27]. The secondary
search included articles cited in the reference lists of papers identified by the primary
search. The records were first screened by title/abstract (GM, VR) and then full-text articles
were retrieved for an eligibility evaluation (CV). The remaining articles were then subject
to a citation search of all reference lists (LG and GDS). Papers were deemed eligible if they
included any of the words “MMPs”, “pain”, “TIMPs”, or “inhibitor”. All citations were
downloaded into Mendeley, and duplicates were deleted. To avoid a bias of exclusion,
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the full-text articles were retrieved following the first-round exclusions and were also
subject to two independent eligibility reviews, with perfect agreement this time. The
studies evaluated as eligible were included in the present review. We excluded manuscripts
without full text and without indications of effects on cancer, as well as manuscripts that
were not in the English language.

3. MMPs in Pain
3.1. Acute Injury

Pain transmission, generation, and memory after acute trauma are complex phenom-
ena inducing chronic pain, due to plastic changes in spinal cord (SC) with neuronal and
glial alterations. In this process, the ECM plays a significant role.

Adams et al. [28], who studied the synovial fluid of 21 patients with acute ankle
fracture and pain, documented significantly increased levels of MMP-1, MMP-2, MMP-3,
MMP-9, and MMP-10 in an acute-phase study, suggesting a highly catabolic acute post-
fracture environment, and increased levels of MMP-1, MMP-2, and MMP-3 6 months later.
These data show the persistence of intra-articular inflammation (with an increase in MMPs
and interleukins) after intra-articular ankle fracture healing, thus explaining the presence
of pain in these patients and suggesting that a specific treatment must be performed in
order to reduce inflammation, cytokines, and other inflammatory mediators [29].

In agreement with this study, in the same year (2015), Haller et al. [30], in a study on
45 patients with acute knee pain related to tibial plateau fractures, documented increased
levels of MMP-1, MMP-3, MMP-9, MMP-10, and MMP-12. Two weeks later, the authors
recorded an increase in MMP-13, suggesting that it requires a long time to increase, and its
modulation is a delayed process. These data suggest that articular cartilage interacts with
degradative proteases for a very long time following an acute injury; these proteases could
play a role in the development of post-traumatic osteoarthritis, supporting the idea that an
early treatment could reduce this expression.

In an experimental model of peripheral injury (tibia fracture), Tajerian and Clark [31]
documented the development of acute severe pain and, three weeks later, an increase
in MMP-8 expression in the spinal cord. In this model, the inhibition of MMP-8 using
M8I (3R)-(+)-[2-(4-methoxybenzenesulfonyl)-1,2,3,4-tetrahydroisoquinoline-3-hydroxamate
(1 mg/kg for 2 weeks) ameliorated the mechanical sensitivity. These data suggest that,
following peripheral acute trauma, increased MMP-8 activity may alter ECM, generating a
less rigid matrix without the ability of supporting structural changes in dendrites, leading
to neuronal plasticity and chronic pain [31]. The involvement of MMPs in acute injury is
summarized in Figure 3.
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Figure 3. MMP expression in acute injury. Bone injury induces (a) an acute increase in MMP-1,
MMP-2, MMP-3, MMP-9, MMP-10, and MMP-12 in synovial fluid; (b) a delayed increase in MMP-13
in synovial fluid; (c) an acute increase in MMP-8 in spinal cord.
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3.2. Osteoarthritis

Osteoarthritis is a chronic degenerative disease characterized by a degeneration of
articular cartilage or subchondral bone with inflammatory cell activation, cytokine release,
MMP activation, and chronic pain [32].

An in an vitro study [33], Kevorkian et al. found increased MMP-2, MMP-9, MMP-13,
MMP-16, and MMP-28 levels, as well as reduced MMP-3 levels, in human cartilage from
femoral heads.

The relationship between MMPs and the endocannabinoid system (ECS) has also been
described in a previous experimental study by Dunn and et al. [34], demonstrating that
synthetic cannabinoid agonists reduce MMP-3 and MMP-13 expression.

According to Galasso and colleagues’ literature review, MMP-1, MMP-3, MMP-7,
MMP-8, and MMP-13 are involved in osteoarthritis pathogenesis, but the role of gelatinases
(MMP-2 and MMP-9) is not negligible [35].

Pajak et al. [36] analyzed the expression of MMPs and the ECS in an experimental
model of knee osteoarthritis, showing an increase in MMP-2, MMP-3, MMP-13, TIMP-1,
and TIMP-2. The increase in MMPs (MMP-2 and MMP-13 in their active form) has been
described at the beginning and the latter stages of pathologies, when higher levels of pain
are present. The cartilage degradation is associated with higher pain perception, and it
is related to the disequilibrium between TIMPs and MMPs. In fact, MMP3 expression is
enhanced with respect to TIMP1 in synovial fluid.

Bahr and colleagues [37] assessed that the cannabinoid system is involved in several
processes, such as pain regulation, head trauma, schizophrenia, multiple sclerosis, and
seizures. The two main receptors are CB1 and CB2, i.e., two G-coupled receptors. In this con-
text, CB1 is relevantly expressed in the central nervous system (CNS), but it is also present
in the periphery. CB2 is considered a peripheral receptor; however, it has been found
also in the CNS (glial cells and neurons). After the discovery of ∆9-tetrahydrocannabinol
(THC) binding to this receptor, other endogenous ligands have been described, including
anandamide and 2-arachidonyl glycerol. Other potential cannabinoids are noladin, virod-
hamine, and N-arachidonyldopamine. The increase in cannabinoids after pathologic events
seems to indicate a compensatory system and CB1 is described as the main protagonist
of these actions. The removal of these receptors in experimental models may increase
susceptibility to several damage, including inflammation and seizures.

In osteoarthritis, higher expressions of cannabinoid receptors (CB1 and CB2) and
anandamide (AEA) were reported to degrade enzymes. The increased expression of CB
receptors reduces the pain, while the major degradation of AEA increases it [36].

Mehana et al. [38] reported that MMP-13 is the most relevant isoform in osteoarthritis,
according to its preferential action on type II collagen. It is one of the major factors involved
in the degenerative process. Other important isoforms are MMP-1, MMP-2, MMP-3, and
MMP-9. Moreover, MMP-1 and MMP-13 are rate-limiting in collagen degradation, whereas
the other three isoforms are involved in non-collagen protein disruption [38]. Other authors
described the role of MMP-13 in the progression of osteoarthritis [39–41], suggesting that
MMP-13 is primarily involved in the development of pain in patients with OA. The role of
MMPs in osteoarthritis is represented in Figure 4.

Furthermore, ADAMTS-12 seems to play a role in osteoarthritis. The ADAMTS-12
(activated by inflammatory cytokines) degradation of components such as the cartilage
oligomeric matrix protein (COMP) results in the release of ECM constituents with pro-
inflammatory activity. This pathway generates a feedback loop which feeds joint damage.
Nevertheless, ADAMTS-12 also exhibits anti-inflammatory activity, in turn modulating
pro- and anti-inflammatory cytokines [42,43].
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12, MMP-16, 28, MMP-3, MMP-13) and the modulation of the cannabinoid system. The cannabinoid
system inhibits MMP-3 and MMP-13.

3.3. Low Back Pain

The expression of MMPs and their role in low back pain have multiple implications.
The role of MMPs in the degeneration of intervertebral discs which can induce neck

pain, vertebral pain, or low back pain is directly related to the overexpression of MMPs. In
fact, the intervertebral disc consists of an outer fibrous ring, the annulus fibrosus (which
is rich in collagen type I, providing strength), and the centrally located nucleus pulposus
(which is rich in collagen type II and proteoglycans (mainly aggrecan)) [44]. Therefore,
the overexpression of MMPs induces the degradation of collagens and proteoglycans with
tissue degeneration and back pain.

Crean et al. [45] examined 34 discs from 29 patients with pain due to scoliosis and
disc degeneration and observed higher expressions of MMP-2 and MMP-9. The authors
showed that mechanical load may influence the expression of these enzymes.

Liou et al. [46] assessed the increase in MMP-2, MMP-9, MMP-17, and MMP-24
after sciatic nerve ligature and injury in animal models. In this paper, MMP-9 increased
immediately after nerve injury, returning to normal levels on day 3, whereas MMP-2,
MMP-17, and MMP-24 increased later.

Zhang et al. [47] observed the activity of MMPs in an animal model with spinal
cord injury and documented the increased activity of MMP-2 and MMP-9 involved in
the modulation of neuropathic pain and inflammation. Furthermore, MMP-9 has been
associated with the chemotaxis of leukocytes, apoptosis, and the dissolution of the blood–
spinal cord barrier. The most relevant achievement in this study is related to the different
timings of MMP action. In fact, the early inhibition of MMPs improves symptoms, but
MMP-2 plays a key role during wound healing and its inhibition is detrimental to the
reparative process.

In an animal model of hyperalgesia induced by spinal cord injury, Miranpuri et al. [48]
documented an increased expression of MMP-2, with respect to other groups without injury.
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In agreement with these experimental studies, other authors documented a correla-
tion between the MMP increase and clinical symptoms in patients with pain related to
disc herniation.

In fact, in lumbar discs from patients undergoing lumbar spine fusion, a correlation
between the increased expression of inflammatory cytokines, pain intensity, and disability
has been described, showing that increased levels of MMPs induce increased levels of
proinflammatory cytokines with the development of pain and disability [49].

Moreover, in disc degeneration, collagen (types I and II) is the principal target of
destruction, and MMP-1 and MMP-13 are primarily involved in this degenerative process,
even if other MMPs could be expressed [50].

In an experimental study, Kang et al. [51] evaluated 18 herniated cervical discs from
15 patients undergoing anterior disc surgery for pain and persistent radicular symptoms.
The discs were analyzed, and biochemical findings revealed increased levels of MMPs
(MMP-2, MMP-3, MMP-9, MMP-10, and MMP-11) and inflammatory mediators (IL-6 and
prostaglandin E2) compared with the control discs. These data suggest that the MMPs of
the group’s gelatinase and stromelysin (which degrades proteoglycan) are involved in the
degenerative process of the disc and are also involved in the induction and maintenance of
the inflammation, involved in clinical symptoms.

Bachmeier et al. [52] evaluated 37 discs from symptomatic disc herniation or degener-
ation and demonstrated the upregulation of MMP-3 and MMP-8, as well as of TIMP1 and
TIMP2, suggesting that MMPs are enhanced in the degenerated disc and are synthesized
by local cells, with an increase in TIMPs. These data support the previous results which
explain the role of MMPs in the development of inflammation and disc degeneration that
both induce pain and other symptoms.

Kameniak et al. [53] examined 70 subjects with disc herniation vs. 70 healthy patients at
the time of admission, as well as 1 and 3 months after the surgery. The authors documented
high TIMP-1 levels in patients with disc herniation vs. healthy patients 1 month after
the surgery, which were correlated with a numerical rating scale for the back (NRS-B). In
contrast, 3 months after surgery, they recorded higher levels of TIMP-2 with a reduced
MMP-2/TIMP-2, and the ratio of patients with disc herniation vs. healthy subjects that
were associated with an increase in the numerical rating scale for the leg (NRS-L).

More recently, Hsu et al. [54] analyzed both herniated disc tissue and the blood of
182 patients who underwent lumbar (93 subjects) or cervical (89 subjects) discectomy
and showed that leptin induces IVD degeneration via the upregulation and activation
of MMP-1.

Finally, in a study on 34 patients with low back pain, Aripaka et al. [55] documented
a significant increased expression of MMPs (MMP-1, MMP-3, MMP-10, and MMP-13),
ADAMTS (1 and 5), and proinflammatory cytokines (IL-6), thus suggesting their involve-
ment in low back pain and in ECM metabolism, and that drugs that have the ability to
inhibit these pathways could prevent a loss of ECM. An interesting point could be the
association between MMPS expression, disc degeneration, and Modic-type changes. In fact,
it has previously reported that disc degeneration is one factor leading to different types of
Modic changes, supporting the idea that severe degeneration can lead to severe endplate
damage, and hence type II changes often occur as well [56].

Interestingly, ADAMTS-7 and -12 were augmented in experimental models of disc
degeneration, resulting in an increase in COMP fragments. These data suggest the role of
these proteinases in IVD degeneration [42]. Figure 5 illustrates the main isoforms involved.
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Figure 5. Low-back-pain-associated increase in MMPs. The process is also related to an IL-6 increase
in disc pathology. Nerve injury is characterized by the expression of MMP-9 in early phases, and the
late increase in MMP-2, -17, and -24. Among MMPs, MMP-1 and -13 are mainly involved in collagen
disruption in intervertebral disc damage. IL, interleukin.

3.4. Neuropathic Pain

MMPs play a role in neuroinflammation’s ability to open the blood–brain barrier,
cleave cytokines, and generate direct cellular damage, in turn killing neurons through
their actions. MMP-2 and MMP-9 are involved in the development of neuropathic pain
(increasing peripheral nerve injury), the mediation of pain hypersensitivity through IL-1β
cleavage, and microglial–astrocytic activation [57,58]. The MMP-9/TIMP-1 axis is also
implied in regulating Schwann cells in nerve repair [59].

According to Ahmed and colleagues [60], MMPs are relevantly involved in spinal cord
injury. The balance between TIMPs and MMPs is significant in pain pathogenesis.

Cellular localization, the temporal pattern of MMP expression, and tissue distribution
are the main factors that describe the relevance of their role. Mice with MMP-9 deficiency
showed integrity disruption to the blood–spinal cord barrier (BSCB), reduced neutrophils,
and infiltrated macrophages. Reduced tissue damage and quicker recovery were also
observed. Nevertheless, MMP-9 also seems to have beneficial effects and MMPs are
associated with the formation of glial scar, revascularization, and ECM remodeling (and
with an increase in MMP-2) [60].

Spinal nerve injury allows us to understand the neuropathic pain mechanism and
the involvement of MMPs. In the first few days following injury, MMP-9 upregulation
in the dorsal root ganglion (DRG) becomes relevant, cleaving and activating IL-1β. Then,
MMP-9 moves to dorsal horn, activating microglia through the action of IL-1β and p38 via
the mitogen-activated protein kinase (MAPK). Successively (late-phase and maintenance
response), MMP-2 increases in the DRG, inducing the activation of IL-1β and extracellular-
regulated kinases (ERKs). MMP-2 is constitutionally expressed in healthy brain and spinal
cord, causing MMP-9 levels to increase after injury [59].

Furthermore, MMPs may be responsible for pro-nerve growth factor (NGF) and pro-
brain-derived neurotrophic factor (BDNF) activation [61]. However, other authors affirm
that the NGF and the BDNF activate MMP-9 [62].

Through experimental animal models, other authors have documented the role of
MMP-9 in the development of neuropathic pain. In particular, Kawasaki et al. [58] docu-
mented that the administration of an IL-1β-neutralizing antibody reverts allodynia induced
by MMP-9. Deng et al. [63] evaluated streptozotocin-induced diabetic neuropathy and
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highlighted the role of MMP-9 as an inductor of pathogenesis. These effects were reverted
using alpha lipoic acid, a potent inhibitor of MMP-9. A schematic representation of MMPs
actions in neuropathic pain is portrayed in Figure 6.
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Figure 6. Neuropathic pain is spinal cord injury shows an early phase in which an MMP-9 increase
in the DRG activates IL-1β, p38 MAPK, and then microglia. In the late phase, an MMP-2 increase
in the DRG and spinal cord astrocytes determines a further enhancement of IL-1β and the ERK.
These mechanisms augment pain perception and persistence, leading to neuropathic pain. ERK,
extracellular-signal-regulated kinase; IL, interleukin; MAPK, mitogen-activated protein kinase.

3.5. Orofacial Pain

According to orofacial pain’s main inflammatory origin, MMPs are estimated to play
an important role in its pathogenesis. Tjaderhane et al. [64], by examining 37 caries samples
after human teeth extraction, documented that MMP-2, MMP-8, and MMP-9, activated by
bacterial acids, are involved in dentin disruption. High levels of MMP-8 and MMP-9 were
documented in gingival crevicular fluid for advanced stages of periodontal disease [65–68].
Clinical conditions such as pulpitis show an increased expression of MMPs that is also
documented in periapical lesions. Inflammatory cells may produce MMP-1 and MMP-3 [61].

In temporomandibular diseases (TMDs), the pathogenetic moment may be constituted
by alterations of ECM components. For example, MMP-1, MMP-2, MMP-8, MMP-9,
and MMP-13 were increased in the synovial fluid of patients with a derangement of
temporomandibular joints (TMJs) [69,70]. Temporomandibular joints may be enriched by
several inflammatory modulators, as testified by synovial fluid analysis. In this context,
several proteinases and MMPs were increased [70]. Moreover, the MMPs of cartilage are
estimated to be the main enzymes involved in the TMJ ECM breakdown [71]. Synovial
inflammation is often associated with painful joint and synoviocites/macrophages through
inflammatory cytokines and determines the release of pro-MMP3 in synovial fluid [61,72].

Moreover, MMP-9 seems to modulate satellite glial cells (SGCs), probably those related
to pain persistence that strictly communicate with other nervous structures [73].

Interestingly, Nascimento et al. showed elevated levels of MMP-2 and MMP-9 in the
trigeminal ganglion of experimental models. An MMP inhibitor reduced hyperalgesia and
allodynia in rats. Enzymes produced in trigeminal ganglion may also move to the nerve’s
periphery by extending the pathologic process [61,74].
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Finally, MMP-2 and MMP-9 are involved in pain persistency with MMP-9 playing an
active role in cytokines and the activation of pro-neurotrophins [61]. Main MMPs patterns
are represented in Figure 7.
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Figure 7. MMP expression in orofacial pain is different, depending on the pathology. Interestingly,
in temporo-mandibular disease (TMD), MMP-2 and -9 are also increased in trigeminal ganglion.
Moreover, MMP-9 is associated with pain persistency through its action on satellite glial cells (SGCs)
and the activation of inflammatory cytokines.

3.6. Tendinopathy

Tendinopathy is a generic term used to describe tendon pain without knowing the
pathology. In particular, tendinitis is related to an inflammatory etiology, whereas tendi-
nosis supposes a degenerative process with few or no inflammatory cells [75]. Rotator
cuff is composed of four shoulder muscles: supraspinatus, teres minor, subscapularis, and
infraspinatus. Rotator cuff pathology has various modalities and intensities, including
injury, tendinopathy, partial tear, and complete tear. This clinical condition may determine
severe pain and functional limitations [76].

Some interesting studies on rotator cuff tendinopathy reported an increase in MMP-13
levels [77,78]. In the torn rotator cuffs of 33 patients, Lakemeier et al. [79] observed an
increase in the MMP-1 and MMP-9 levels and a decrease in MMP-3 levels. Jacob et al.
confirmed that MMP-13 is overexpressed in 16 patients with rotator cuff tears and its levels
were found to be related to pain severity [80].

Castagna et al. [81] analyzed 13 specimens from tendons of patients who underwent
surgery for the repair of rotator’s cuff tendons. In both pathologic tendons samples and
intact tendons, they observed an increase in MMP-1, MMP-2, MMP-3, TIMP-1, and TIMP-2.
In samples of 10 patients with severe rotator cuff tear, Lo et al. [82] described an increase in
MMP-13 and a decrease in MMP-3 mRNA. Furthermore, TIMP-2, -3, and -4 were reduced
in the torn tendons.

Shih et al. [83], who measured the biomarkers of 42 subjects in the synovial fluid of a
shoulder joint, observed higher levels of MMP-1 and MMP-13 in the massive full-thickness
group compared to the others.

Tendinopathy, independently from localization, also correlates with MMP activity.
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Magra et al. [84] reviewed the expression of MMPs in tendinopathy, showing that
MMP-2 is upregulated in tendinopathy; it may be up- or downregulated in complete
tendon tears and has the capacity of inhibiting TIMP-1/TIMP-2 in response to exercise.
Even though MMP-1 is generally upregulated in tendon tears, tendinopathy, and shear
stress, it is usually reduced in response to cyclical strain and static tensile load. For other
MMP isoforms, MMP-13 is upregulated in complete tendon tears and MMP-9 after exercise.
Evidence on TIMPs showed that TIMP-1 expression is briefly augmented (compensation)
after acute tendon tear and reduced in tendinopathy, whereas TIMP-2, TIMP-3, and TIMP-4
are downregulated in both tendinopathy and tears.

According to Pasternak and Aspenberg, Achilles tendon rupture has a characteristic
pattern of MMP expression/activity based on experimental models [85]. Moreover, Nie
et al. [86], showed that two single nucleotide polymorphisms (SNPs), rs679620 (MMP3) and
rs4789932 (TIMP-2), were significantly associated with chronic Achilles tendinopathy risk in
1084 patients. Godoy-Santos et al. [87] assessed the role of MMP-8 polymorphisms to de-
termine the tendinopathy of the primary posterior tibial tendon and reported that it is
involved in tissue destruction. A meta-analysis by Guo et al. [88] examined thirteen patients
with 2871 cases of tendinopathy, and demonstrated that MMP-3 polymorphisms were con-
sidered relevant to determine illness and/or rupture. MMP-3 is commonly downregulated
in tendinopathy, alongside TIMPs; this asset seems to contribute to clinical condition. In
fact, MMP-3 seems to play an important role in the maintenance and modelling of the
tendon. The expression of MMPs in tendinopathy is summarized in Figure 8.

Biomolecules 2023, 13, x FOR PEER REVIEW 14 of 24 
 

 

Figure 8. Tendinopathy shows complex and variable expressions of MMPs. In general, MMP-1 and 

-2 are often increased alongside TIMP-1. Conversely, TIMP-2, -3, and -4 are downregulated. Tears 

are characterized by increases in MMP-1 and MMP-13, as well as decreases in MMP-2 and TIMP-1, 

TIMP-2, TIMP-3, and TIMP-4. Specific settings show that rotator cuff tendinopathy variations are 

characterized by the overexpression of MMP-1, MMP-2, MMP-9, and MMP-13, whereas MMP-3 

may be down- or upregulated. TIMP-1 is generally increased, whereas TIMP-2 may be both in-

creased or decreased alongside TIMP-3 and -4 in tears. Achilles tendinopathy shows the relevant 

role of MMP-3 and TIMP-2 in pathogenesis. 

3.7. Cutaneous Inflammation 

Yokose and colleagues showed that UVB exposure photodamage leads to the upreg-

ulation of MMPs (MMP-1, MMP-2, MMP-3, MMP-9, and MMP-13). Their animal model, 

a xenograft of human skin, showed increased photoprotection when receiving a lentivirus 

vector expressing TIMP-1. The use of a TIMP-1-neutralizing antibody obtained the oppo-

site result [89]. In an experimental model, Knight showed that cutaneous inflammation is 

associated with an increase in TIMP-1. In this context, TIMP-1 appears to not only act as 

an MMP inhibitor (the N-terminal domain), but also as a receptor ligand. Therefore, 

MMP-independent mechanisms are also considered, according to the analgesic action ex-

erted by the TIMP-1 (C) domain. The increase in TIMP-1 is parallel to acute inflammatory 

pain and TIMP-1 knockout mice are characterized by hypersensitivity (persisting for long 

periods of time). Notably, the administration of recombinant TIMP-1 attenuated this phe-

nomenon. Interestingly, an increase in TIMP-1 is associated with pain control only when 

its levels are significantly augmented in comparison to previous values [90]. Keratinocytes 

may upregulate TIMP-1 during inflammation. In fact, they produce TIMP-1 to attenuate 

photodamage [90] (Figure 9). 

Figure 8. Tendinopathy shows complex and variable expressions of MMPs. In general, MMP-1 and
-2 are often increased alongside TIMP-1. Conversely, TIMP-2, -3, and -4 are downregulated. Tears
are characterized by increases in MMP-1 and MMP-13, as well as decreases in MMP-2 and TIMP-1,
TIMP-2, TIMP-3, and TIMP-4. Specific settings show that rotator cuff tendinopathy variations are
characterized by the overexpression of MMP-1, MMP-2, MMP-9, and MMP-13, whereas MMP-3 may
be down- or upregulated. TIMP-1 is generally increased, whereas TIMP-2 may be both increased or
decreased alongside TIMP-3 and -4 in tears. Achilles tendinopathy shows the relevant role of MMP-3
and TIMP-2 in pathogenesis.
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3.7. Cutaneous Inflammation

Yokose and colleagues showed that UVB exposure photodamage leads to the upregu-
lation of MMPs (MMP-1, MMP-2, MMP-3, MMP-9, and MMP-13). Their animal model, a
xenograft of human skin, showed increased photoprotection when receiving a lentivirus
vector expressing TIMP-1. The use of a TIMP-1-neutralizing antibody obtained the oppo-
site result [89]. In an experimental model, Knight showed that cutaneous inflammation
is associated with an increase in TIMP-1. In this context, TIMP-1 appears to not only act
as an MMP inhibitor (the N-terminal domain), but also as a receptor ligand. Therefore,
MMP-independent mechanisms are also considered, according to the analgesic action
exerted by the TIMP-1 (C) domain. The increase in TIMP-1 is parallel to acute inflammatory
pain and TIMP-1 knockout mice are characterized by hypersensitivity (persisting for long
periods of time). Notably, the administration of recombinant TIMP-1 attenuated this phe-
nomenon. Interestingly, an increase in TIMP-1 is associated with pain control only when its
levels are significantly augmented in comparison to previous values [90]. Keratinocytes
may upregulate TIMP-1 during inflammation. In fact, they produce TIMP-1 to attenuate
photodamage [90] (Figure 9).
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only thorough MMP inhibition, but also showing receptor-based activity. UVB, ultraviolet B.

3.8. Rheumatology

Rheumatology has always been a hot spot for the study of MMPs. Ribbens et al. [91]
highlighted the increase in MMP-3 in all rheumatologic conditions characterized by joint
synovitis (RA, psoriatic arthritis, and polymyalgia rheumatica) after the collection of serum
samples from 376 patients. Moreover, MMP-9 plays a role in vasculitis (e.g., Takayasu
arteritis), possibly relating to clinical responses to pharmacologic treatment. Higher enzyme
levels are associated with disease activity [92]. According to Vira and colleagues, MMP-
7 levels increased in 150 SLE patients depending on clinical severity [93]. Rheumatoid
arthritis (RA) is characterized by increases in MMP-2, MMP-3, and MMP-9. Moreover,
MMP-1 and MMP-13 (proteoglycan) disrupt aggrecan and are involved in collagen degen-
eration. In this context, TIMPs are increased in synovia from RA patients with protective
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effects. Nevertheless, these patients are estimated to develop an autoimmune response to
TIMPs [94]. Moreover, ADAMTS-12 seems to play a role in RA, according to the findings of
COMP fragments in the cartilage and synovial fluid of patients with RA [42]. The role of
MMPs in rheumatic pathologies is summarized in Figure 10.
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Figure 10. The expression of some of the main MMP isoforms in rheumatologic diseases is relevant
to pathogenesis. Rheumatoid arthritis is characterized by the increases in MMP-1, -2, -3, -9, and -13.
Nevertheless, other clinical conditions such as rheumatic polymyalgia, psoriatic arthritis, vasculitis,
and SLE show this phenomenon. SLE, systemic lupus erythematosus.

4. Discussion

Metalloproteinase’s role in generating or facilitating pain insurgence has been widely
described. Nevertheless, several points are still lacking sufficient evidence or practical solu-
tions. Each MMP isoform has been addressed to a specific role in each pathology, leading
to different phenomena. For example, the different properties and action timings of MMP-9
and MMP-2 in spinal cord pain are interesting aspects and are necessary to understand the
role of MMPs and the possibility of developing new therapeutic strategies [59,63]). In fact,
the inhibition of MMPs may be useful when determining pathologic actions, or deleterious
when they are implied in physiologic reactions [95]. Some MMPs (e.g., MMP-10) have the
power to activate other isoforms by extending the physiologic/pathologic process [55].

Another important point is related to MMPs playing their role, not as a single element,
but as part of a very complex net made of genetics and environmental stimuli. These factors
result in various cytokine expressions that regulate the production and activity of MMPs;
TNF-α and IL-1β exert an important role in this process. For example, TNF-α induces
MMP-2 through MMP-14 control. Moreover, IL-6 (induced by IL-1β and TNF-α) seems to
potentiate TNF-α and IL-1β catabolic actions [55,83]. The transforming growth factor (TGF)
β is activated by MMP-9 in fibroblast contraction models [96]. Nevertheless, TGFβ is also
involved in the increased expression of MMP-9 in astrocytes and breast cancer cells [97,98].

The main problems relating to these data concern their provenience, mainly from
experimental models and different pathological settings. The validity of some results must
be confirmed in human clinical settings of a specific illness. Clinical research has tried to
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produce MMP-based treatments with different aims or modalities. This kind of approach
has led to inconclusive results.

Paradoxically, Haro et al. [99] used intradiscal MMP-7 as a possible therapeutic option
in herniated disc management. Their experimental model in vitro and in vivo showed a
relevant decrease in the wet discs’ weight, reducing proteoglycan and water content. No
damage in tissues around the disc was documented. Nevertheless, the differences between
experimental models and human conditions, alongside the impossibility of assessing pain
levels in animals, are important limitations.

Doxycycline, an antibiotic of the tetracyclines class, is an MMP inhibitor. Bedi et al.
documented the improvement of rotator cuff tendons’ structure (after surgery) and MMP-
13 inhibition by doxycycline in their experimental model. Tendon-to-bone repair was
evaluated [95]. Pasternak and colleagues had a similar experience in Achilles tendon
transection. However, their results were different to the previous study, with function
worsening in animal models. They evaluated tendon-to-tendon repair, which may explain
this different finding. Moreover, their evaluation was more functional than histological.
Finally, doxycycline action on MMPs may also inhibit the physiological effects on the
repair of these enzymes [100]. The experimental model by Khodir et al. highlighted that
diclofenac and/or L-carnitine reduced knee swelling, inflammatory and oxidative stress
markers, pain-related behaviors, and histopathological alterations in knee osteoarthritis.
Moreover, they reduced MMP-13 and COX-2 expression. Diclofenac plus L-carnitine was
better than the two agents alone [101].

According to Mahdavi et al., who studied 69 patients with knee osteoarthritis, L-
carnitine significantly reduces MMP-1 and IL-1β [102]. Alpha lipoic acid is an inhibitor of
MMP-9 (through action on NFκB) and MMP-2 and in vitro [103,104].

Moretti and colleagues [105] described the effect of intraarticular clodronate for the
management of osteoarthritis. Clodronate is estimated to determine the apoptosis of
macrophages and then to reduce the production of MMP-2, -3, and -9. The data from
preclinical research and few clinical trials showed good responses for this treatment.

Corticosteroids are other well-known inhibitors of MMPs, with wide use in clinical
settings in several diseases, even if their molecular role in MMP inhibition has not been
fully understood [79]. Several MMP inhibitors have been used or tested in the management
of cancer or other diseases. These molecules include synthetic peptides or non-peptidic
molecules, bisphosphonates, tetracyclines, or natural inhibitors (e.g., TIMP-1). Despite
their good efficacy in preclinical testing, these compounds (especially those not available
on the market) only reached phase II in clinical trials. Musculoskeletal pain is often one
of the most important concerns and adverse drug reactions [106]. Inhibitors of MMPs
are considered potentially useful in several clinical settings. However, the biology and
physiology of MMPs are not fully understood and the use of compounds acting without
specificity can increase the risk of adverse drug reactions and clinical deteriorations. In
fact, the inhibition of the physiologic action of MMPs may also cause relevant side effects
(including gastrointestinal reactions). The main MMP inhibitor categories are summarized
in Table 3.

Table 3. Main MMP inhibitor classes.

Classes Compounds

Hydroxamate-based Marimastat, ilomastat, batimastat
New generation: cipemastat, prinomastat, MMI-270, MMI-166, PD-166793, ABT-770,

Non-hydroxamate rebimastat, tanomastat, Ro 28-2653, doxycycline

Catalytic domain (non-zinc binding inhibitors) PNU-141803, PNU-142372, neovastat, dieckol, and ageladine

Targeting alternative binding sites NSC405020 and JNJ0966

Antibody-based therapies REGA-3G12, REGA-2D9, AB0041,
AB0046, andecaliximab (GS-5745), DX-2400, human scFv-Fc antibody E3, mAb 9E8, and LOOPAB

Endogenous inhibitors
TIMPs, α2-macroglobulin, tissue factor pathway inhibitor (TFPI), membrane-bound

amyloid precursor protein, C-terminal proteinases enhancer protein, reversion-inducing cystein-rich protein with
Kasal domain motifs (RECK), and GPI-anchored glycoprotein
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Hydroxamates were the first compounds tested in clinical trials, showing good ef-
fectiveness in cancer animal models, even if their use is related to high toxicity and low
efficacy [94,107]. This class acts through a molecular structure that mimics the natural
substrate of MMPs and a group which chelates Zn2+ ions. The rest of the molecular back-
bone binds to the enzyme, with broad-spectrum inhibition and no specificity [94,107].
Non-hydroxamate compounds were created to overcome the chelation of metals of other
metalloproteins and metabolic inactivation associated with the previous class. However,
doxycicline is the only compound of this class approved for the management of periodontal
disease [94,107]. Moreover, according to Serra and colleagues, who conducted a study on
64 patients, this drug may be also useful in treating chronic venous ulcers [19].

To avoid scarce selectivity on the specific MMP isoform, alternative sites of inhibition
have been considered, leading to the development of new compounds. Other possible
options are offered by antibody therapy and endogenous inhibitors. Antibodies may also
target the activating MMPs to act indirectly on the pro-enzyme sited on the valley of the
chain. A more detailed list of compounds is provided by Laronha et al. [94,107].

Research on selective compounds may be particularly useful in the management of
osteoarthritis, as described by Wan and colleagues. The inhibition of MMP-13 may offer
important symptomatic relief, blocking a relevant part of the pathogenetic process. This
innovation would also be useful in reducing the use of other drugs commonly associated
with adverse events (non-steroidal anti-inflammatory drugs, NSAIDs) [108].

According to Cabral-Pacheco et al., the use of TIMPs represents a new avenue in clinical
research. In fact, TIMPs modulate MMPs, also promoting their activity. Nevertheless, their
action (and that of MMPs) is not constant in each pathology and no progress has been
achieved in this field [94]. Furthermore, the clinical efficacy of TIMPs has been observed
in pre-clinical experience. Knight described improved symptoms in clinical inflammation
and postulated the role of TIMP-1 as an alternative to opioid drugs. The antinociceptive
mechanism of the protein may be affected by adverse drug reactions [90].

Another issue of relevance in most studies is the contrast between both transcriptional
and protein activity levels. Increased mRNA concentrations do not correlate with a higher
number of active proteins. A discrepancy between results and real-life effects may be
related to this assumption. The microenvironment also plays a key role in MMP activity.
For example, MMP-3 has an optimum pH window between 5.5 and 6.5 and is particularly
active in disc degeneration where this condition is verified. Other MMPs may be less active
in similar conditions, since each MMP possesses different pH optima [52].

It is not futile to stress the concept that MMPs may interfere with other known or
unknown mechanisms. In the context of nerve sensitization, MMP-9 can mask opioid
analgesia, without interfering with opioid-induced hyperalgesia. For example, the MMP-9
activation of IL-1β and its action on SGC may reduce opioid pharmacologic action [61].
Moreover, MMP-9-dependent glial fibrillary acidic protein (GFAP) induced by morphine
subcutaneous injection increased in the satellite glial cells of DRGs [61].

Other complex molecular interactions may occur when drugs are administered. In
cancer setting, opioids may modulate MMP-9 production and then cancer progression [109].
Morphine may determine this action through an independent opioid receptor, but the cell
type is dependent on the mechanism. There are three main metabolic pathways in this
process. Morphine chronic or high-dose use may activate adenylate cyclase and then cyclic
adenosine monophosphate (cAMP), resulting in protein kinase A (PKA)/cAMP-responsive
element-binding activation, and finally the inhibited production of the nuclear factor kappa
light chain enhancer of activated B cells (NF-κB) and MMP-9 [109]. Acute or low doses can
stimulate the opioid receptor, activating the Gβγ complex which, at the end of the chain,
determines NF-κB activation and MMP-9 increases. The third additional mechanism is the
increase in nitric oxide, resulting in NF-κB inhibition and MMP-9 decreases [109].

Last, it is crucial to remember the setting in which MMPs act. In fact, ECM should not
be considered as a passive victim of their action, but as a main actor in the physiological
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and pathological events, leading to pain through various mechanisms [31] depending on
the clinical setting.

5. Conclusions

In conclusion, we observed that MMPs are strongly involved in the pain generation,
amplification, and persistence of several clinical conditions. They may be an intriguing
therapeutic target, but the lack of specificity and the difficulty in targeting their patho-
logic activity explain the treatment failure in clinical trials. Several compounds have been
produced, but they were not approved according to safety and efficacy concerns. Several
elements, including the microenvironment, the clinical molecular context, the administra-
tion of other drugs, pH, the ECM, cytokine expression components, and other factors, are
relevant to understand the net underlying the actions and reactions of MMPs. Pre-clinical
and clinical data on all these factors must be segmented and collected for single pathology
diagnostics, without making assumptions based on results relative to other conditions.
Then, these achievements should translate to patients and unique characteristics in order
to develop powerful compounds that can maintain the balance between hyperexpression
and inhibition. This would be possible only through chemical analysis and engineering,
resulting in more specificity and fewer side effects.
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