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Instability of expanding bacterial droplets
Andrey Sokolov1, Leonardo Dominguez Rubio2, John F. Brady3 & Igor S. Aranson1,2

Suspensions of motile bacteria or synthetic microswimmers, termed active matter, manifest a

remarkable propensity for self-organization, and formation of large-scale coherent structures.

Most active matter research deals with almost homogeneous in space systems and little is

known about the dynamics of strongly heterogeneous active matter. Here we report on

experimental and theoretical studies on the expansion of highly concentrated bacterial

droplets into an ambient bacteria-free fluid. The droplet is formed beneath a rapidly rotating

solid macroscopic particle inserted in the suspension. We observe vigorous instability of the

droplet reminiscent of a violent explosion. The phenomenon is explained in terms of

continuum first-principle theory based on the swim pressure concept. Our findings provide

insights into the dynamics of active matter with strong density gradients and significantly

expand the scope of experimental and analytic tools for control and manipulation of active

systems.
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Collective motion and self-organization of motile suspen-
sions is active topic of research1,2. Recent studies uncov-
ered many salient features of active matter, both living3–7

and synthetic8–10. Various theoretical approaches, from discrete
particle simulations11,12, probabilistic kinetic approaches13,14 to
phenomenological hydrodynamic theories15 are used to describe
various aspects of collective motion in active suspensions. It is
appealing to use thermodynamic or state-like variables, e.g.,
pressure and temperature, in the context of active matter. In fact,
recent studies demonstrated that while the thermodynamic ana-
logy has limitations, many aspect of active suspension dynamics
can be properly captured in the terms of swim pressure and
corresponding equation of state16–21.

Most of the microswimmer research so far has focused on the
dynamics of homogeneous active suspensions where the micro-
swimmer density fluctuations are small4,15,22. In a related system
of synthetic swimmers8,9, it was found that the self-propulsion
can naturally cause some non-equilibrium densification and
clustering termed motility-induced phase separation23. However,
nothing is known about the dynamics of active matter with strong
density heterogeneities. These conditions can be achieved, for
example, by submersing a rapidly rotating solid macroscopic
particle into bacterial suspension. The rotation leads to the
expulsion of most bacteria from the particle but some bacteria is
trapped near the particle24. The trapped bacteria are then released
upon cessation of rotation.

In this study experiments are conducted at much higher
rotation rates that lead to the formation of highly concentrated
bacterial droplets with a range of concentrations not available in
previous experiments. Most surprisingly, cessation of rotation
leads to a violent explosion of the droplet. The observed behavior
is reminiscent of the Richtmyer-Meshkov instability of two fluids
of different density that are impulsively accelerated25. However,
the analogy with the Richtmyer-Meshkov instability is somewhat
deceiving. The instability of accelerating fluids is due to a volume
force arising from the density difference. In contrast, for the
bacterial droplets suspended in essentially zero Reynolds number
fluid material acceleration is insignificant. Thus the instability is
entirely due to self-propulsion and hydrodynamic interactions
between the micro-swimmers. Here we characterize the observed
instability experimentally using a variety of techniques, from
fluorescent microscopy, particle-image velocimetry to optical
coherence tomography. We establish that the droplet edge velo-
city increases with the droplet's local curvature, which provides a
positive feedback mechanism driving the instability. Furthermore,
we capture the onset of the instability in terms of a swim pressure
concept generalized to rod-like particles such as bacteria. The
model is derived in the limit when the Peclet number based on
the swim diffusivity is small.

Results
Characterization of droplet instability. A pendant drop
containing a bacterial suspension (about 8–10 μL) was attached to
the bottom of a microscope glass slide. A magnetized nickel
particle (30–40 μm radius) is placed in the droplet. Due to gravity,
the particle sinks to the bottom of the drop and is kept at
this position by capillary forces. The particle is spun with the
frequency 100–400 Hz by a rotating horizontal magnetic field
created by a pair of orthogonal Helmholtz coils, see Fig. 1a.
Two main differences compared to our earlier experiment24 are:
the rotation frequency was 10–20 times higher (100–400 Hz vs
2–20 Hz); the bacterial concentration was 100 times higher
(2 × 1010 cm−3 vs 1–5 × 108 cm−3 in ref.24).

These very different experimental conditions yield fundamen-
tally new behavior, see Fig. 1b,c. In addition to the previously
observed expulsion of bacteria from the particle (seen as a bright
white halo in Fig. 1b), the high-frequency particle rotation (400
Hz) resulted in the formation of a highly compressed bacterial
droplet beneath the particle seen as a dark accretion disk. We
estimate that the concentration of bacteria in the droplet is about
1011 cm−3. Upon cessation of rotation, a violent instability of the
disk is observed, reminiscent of an explosion, see Fig. 1c and
Supplementary Movies 1 and 2. Reduction in the rotation
frequency results in the reduction of the disk diameter, taming of
the instability, and uniform expansion of the droplet, see
Supplementary Movie 3. No instability was observed for the
frequencies below 100 Hz.

Fluorescent and tomography experiments. In order to char-
acterize the distribution of bacteria near the surface, we con-
ducted experiments with fluorescent bacteria, see Fig. 2a–d. Two
different fluorescent strains, DK3394 (green) and DK400 (red), of
swimming bacteria Bacillus subtilis, were used. Strain DK400 was
killed before the experiment and then mixed with live strain DK
3394. From the fluorescence intensities of green and red colors we
established the densities of active swimmers and non-motile
(dead) bacteria. The non-motile bacteria have an advantage
compared to passive tracers: they have the same size, shape, and
density as the living bacteria, and therefore are affected by the
centrifugal forces in the same fashion. From the fluorescent
images, we established that the motile bacteria are concentrated
under the spinning particle, Fig. 2c. In contrast, non-motile
bacteria are uniformly distributed, Fig. 2d.

We also characterized the three dimensional distribution of
bacteria in the vicinity of spinning particle by optical density
measurements. For this purpose we used optical coherence
tomography (OCT), a non-invasive low coherence interferometry
technique that uses infrared light to measure optical scattering
profile of the media. From the OCT images, Fig. 2e, we
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Fig. 1 Illustration of droplet instability. a Three-dimensional schematic representation of the experimental setup. A 60 μm nickel particle is spun by an
external magnetic field inside a pendant drop with swimming bacteria. Rotation of the particle creates a vortex; the vortex redistributes bacteria and forms
a dense bacterial droplet. b Stable bacterial concentration distribution for rotation frequency of 400Hz. Scale bar is 50 μm. c Vigorous explosion of the
concentrated bacterial droplet 1 s after cessation of rotation
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established that the bacteria are depleted in the bulk of the fluid
droplet and accumulated under the particle in the thin accretion
disk. We can also see from these images that upon cessation of
rotation, the bacteria expand in a relatively narrow layer near the
open surface of the droplet, Fig. 2e and Supplementary Movie 4.
The height of the expanding layer is comparable with 1/2 particle
diameter or 5–6 bacterial lengths. The height of the dense layer
remains roughly the same during the expansion, while the
horizontal size changes from 2–3 particle diameters (20 bacterial
lengths) to 5–6 particle diameters (60 bacterial lengths), as can be
seen in Fig. 2e. In addition, we did not see in the experiments
strong density modulations within the expanding layer in the
vertical direction. Fig. 2f illustrates evolution of bacterial radial
distribution. The overall diffusive-like behavior is qualitatively
similar to that observed in early experiments on acoustic trapping
of microswimmers17.

Thus, both fluorescence and optical tomography measure-
ments prove that accumulation of bacteria occurs in a relatively
thin and dense accretion disc located under the particle. These
observations justify the quasi-two-dimensional description of the
phenomenon.

Instability of the droplet interface. From the experimental
images and results of computational simulations discussed below,
we tracked the interface between dense and dilute regions after
cession of rotation. From the position of the interface in con-
secutive frames, we calculated the normal interface velocity V and
its local curvature χ. The results are shown in Fig. 3. Just after
cession of rotation, the edge (interface) of the dense bacteria
droplet was tracked. The droplet's interface was divided into 64

angular sectors with respect to the center of rotation, see
Fig. 3a–c. The local curvature χ and interface normal velocity V
were calculated for each frame in the experiment Fig. 3d and
simulation Fig. 3e. Despite the experimental noise, one can see
the obvious correlation between V and χ. Overall, the velocity
increases with the curvature; see Fig. 3f, consistent with a linear
law

V ¼ V0 þ D0χ ; ð1Þ

where linear regression gives the following values: V0= 10 μm s−1,
D0= 2400 μm2 s−1 for experiments and V0= 7 μm s−1, D0=
1400 μm2 s−1 for simulations. This behavior is a hallmark of a
long-wave instability of the interface. The instability characteristic
length practically does not depend on the rotation frequency and
is roughly 50–100 microns.

Discussion
The underlying reason for the concentration of bacteria under a
rotating particle is a stagnation zone due to the proximity of a
boundary26. The computed flow distribution for typical experi-
mental conditions (frequency of rotation f= 400 Hz, particle
radius 30 μm) is shown in Fig. 4a. The formation of a stagnation
zone is a finite Reynolds number effect due to fluid inertia. We
observe that swimming bacteria are accumulated in the
stagnation zone. The computational analysis shows that the size
of the stagnation zone is practically independent of the rotation
frequency. However, the circulation flow magnitude increases
linearly with the rotation frequency, Fig. 4b.

In the Stokes limit (zero Reynolds number Re), a sphere
rotating in an unbounded fluid around a vertical axis produces

dcba

4f

3

2

n
/n

0

1

0
0 50

P
ar

tic
le

100 150
R , µm

200 250 300

0 s
2 s
3 s
5 s
7 s

e 0 s

2 s

4 s

6 s

8 s

nm

0

Fig. 2 Fluorescence and tomography analysis. a–d Images of fluorescent bacteria in the vicinity of a rotating particle. White color corresponds to higher
concentration of bacteria. Images are made from the bottom. The frequency of rotation is 160 Hz. a The initial distribution of live bacteria near the bottom
of the film before the onset of rotation. b Uniform distribution of bacteria immediately after the onset of rotation. c Stationary distribution of swimming
bacteria around the rotating particle. Bacteria are concentrated in the close proximity of the particle. Red dashed circles illustrate the size of the particle. d
Distribution of dead (non-motile) bacteria remains uniform. Scale bar is 50 μm. e The OCT images showing bacterial distribution around the particle in a
vertical cross-section at different moments of time after cessation of rotation. The OCT probe is scanning from the bottom. Bright white color corresponds
to higher bacterial concentration, nm= 1011 cm−3. The bottom part of the spinning particle (dashed red circle) and concentrated bacteria are visible as a
bright spot near the center of the first image. The droplet of concentrated bacteria is expanding along the bottom surface of the film in four consecutive
images. Scale bar is 200 μm. f Averaged radial distributions of bacteria around the particle at different moments of time after cessation of rotation. n0 is
concentration of bacteria far from the particle
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pure azimuthal flow with velocity Vφ= ωR2 cos(θ)/r2, where R is
the sphere radius, r distance from the center of rotation, and φ, θ
are the corresponding azimuthal and polar angles. Due to fluid
inertia (Re > 0), the centrifugal effect produces a swirling radial
outflow in the equatorial region of the sphere. The radial flow
must be maintained by a flow towards the poles along the axis of
rotation. A boundary slows down the poleward flow in its vici-
nity, which is therefore no longer balanced by the poleward flow
from the opposite side. As a result, the radial flow is directed
towards the plane. This causes the formation of a stagnation
ring26. Consequently, some fluid is trapped between the radial jet
and the plane. As we have shown in24, the combined effect of the
bacteria motility and curvature of the flow streamlines leads to
migration of bacteria across the streamlines and accumulation in
the stagnation zone. An increase in the rotation frequency
increases the flow strength, and, consequently, results in a larger
number of trapped bacteria.

Eqs (5) and (6) governing the evolution of the bacterial con-
centration n and the nematic order parameter Q (see Methods
section) are one of the simplest models of an active nematic27,28.
This model exhibits large-scale spatio-temporal chaos represented
by random-like break-up, drift, and re-connection of nematic
band-like solutions. It was shown in ref.27 that planar stationary
nematic bands are always unstable in a large domain. The
underlying reason is the generation of polar order from a slightly
deformed nematically aligned state. Imagine a planar interface
separating an isotropic state from a nematically ordered state of
self-propelled particles moving on opposite tracks parallel to the

interface, see Fig. 5a. A small deformation of the interface leads to
the onset of local polar order and streaming of self-propelled
particles perpendicular to the interface into the adjacent isotropic
region, and, ultimately, amplification of the initial deformation,
Fig. 5b. Simple calculations (see Methods section) yield
that distortion of the nematic order (induced polarization)
P=−U0τR∇ ⋅Q, where U0 is the swimming speed of the bacteria
and τR is their reorientation or tumbling time, and their product
is the run length ‘ ¼ U0τR. Furthermore, a generalization of the
band instability to the case of a planar front yields the following
linear approximation of the relation between the normal front
velocity V and its local curvature χ: V= 4Dswimχ, where Dswim ¼
U2

0 τR=2 is the swim diffusivity in 2D. This expression qualita-
tively agrees with the experimental value of D0 ≈ 2400 μm2 s−1

obtained for the configuration shown in Fig. 3d,f. The significant
scattering of experimental data can be attributed to such factors
as initial noise in bacterial length, orientation, swimming speed
and image processing errors. While the linear dependence
between the front velocity and the local curvature was clearly
present in every experiment, we observed noticeable fluctuations
between the experiments due to an uncontrollable variability of
the initial conditions. Therefore, we avoided averaging results
over many different experiments.

However, the experimental situation does not correspond to a
stationary band but to an expanding spot. Therefore, as an initial
condition, we set a localized circular spot of a radius r0. Inside the
spot, we set n ¼ n0 � nc, Qj j ¼ Q0, i.e., the homogeneous stable
nematic state; here, nc is the critical concentration for the
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Fig. 3 Droplet's interface instability. The sequence of three consecutive snapshots illustrating the evolution of the dense droplet for times t= 0.15 s (a), t=
0.3 s (b), and t= 0.4 s (c) after cessation of rotation. The interface between dilute (bright) and dense (dark) regions is shown in green line. Rotation
frequency is 400 Hz. Dependence of the interface velocity V (green) on the interface curvature (χ) for the exploding droplet 0.2 s after cessation of
rotation. d, e Dependence of the interface velocity V (dashed red) and the interface curvature χ (solid black) on the polar angle φ for the experimental data
(d) and the data obtained from simulations (e). A noticeable correlation between V and χ is observed both in experiments and simulations. f Parametric
dependence of the interface normal velocity V vs curvature χ for experimental data (blue diamonds) and simulations (red circles). Two lines are linear
regression fits
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isotropic to nematic transition. Outside the spot n= n1 < nc,
Q= 0, i.e., the isotropic state. In additions, a depletion zone with
n < n1 was imposed by initial conditions in the domain r0 < r < 2r0
to model more closely the experimental situation. Inside the spot
the orientation of the nematic was chosen parallel to the spot
boundary. This assumption is consistent with our observation24

that a vortical flow aligns the bacteria along the streamlines. The
nematic state is then stabilized by the rotation. Cessation of
rotation triggers the onset of the instability. The depletion zone in
our simulation was introduced for better correspondence to the
experiment. As a matter of fact, the instability of the droplet
occurs even without a depletion zone as long as the density
outside the droplet remains below the nematic threshold,
although with somewhat smaller growth rate.

The computational results can be summarized as following, see
Fig. 5 and Supplementary Movie 5. As in the experiment, the spot
initially expands due to the high internal swim pressure. If the
initial bacterial concentration was not too large, then the spot
expanded smoothly and no instability was observed. In the
experiment, this situation corresponds to slow rotation rates, f <
100 Hz. However, for a large enough initial concentration the
expansion becomes unstable and explosion-like, see Fig. 5, as it
was seen for higher rotation rates, compare Fig. 1c. While the
detailed shapes of the exploding droplets show more angular
variation than our simplified model, the computational modeling
qualitatively agrees with the experiments. Furthermore, compu-
tational model and the experiment show similar correlation
between interface velocity and local curvature, compare Fig. 3d,e.
For the permissible values of swim diffusivity, the slope of the
computational dependence of V vs χ in Fig. 3f is lower than the
experimental one. This is likely due to model assumption: we
neglected advection of bacteria by the fluid, which possibly would
increase the droplet expansion rate.

In conclusion, we have described a generic instability of a
highly compressed bacterial droplet. The observed instability is
interpreted in terms of a simple model derived from conservation
laws for the microswimmer local concentration and linear
momenta. The model yields qualitative agreement with the
experiments. Further refinements, such as taking into account
large-scale flow generation, may result in an even better
agreement.

Depletion of bacterial concentration by a rotating particle in a
dilute regime was a focus of our previous study24. Accumulation
of bacteria was observed as well, but the nature of the accumu-
lation was not clarified. More importantly, no instability was
observed. As the theoretical description is concerned, in a certain
limit Eqs. (5) and (6) are similar to that of refs.27,29. However, our
starting point is very different. In contrast to27,29, there is an
additional source of an anisotropic stress (swim pressure). The

notion of swim pressure was needed to estimate the model
parameters. The observed behavior cannot be interpreted in
terms of a generic instability of a homogeneous nematic state30

near the onset of nematic-isotropic transition. In contrast, our
instability occurs in strongly heterogeneous high density systems
whereas the homogeneous nematic state is stable.

While the fluid flow formally can be neglected in the limit of
small Peclet number16, the fluid motion probably does play a role,
especially after the onset of the instability when the radial flow
becomes comparable with the bacteria swimming speed. How-
ever, as a first modeling framework, we can use the simplest
model to explain the experimental observations. The underlying
reason for the instability is the onset of polar order from a slightly
deformed nematic state. This instability mechanism is generic
and not system-specific. Thus, we anticipate that our results may
have relevance for a broad class of active systems under extreme
conditions, such as microtubule gliding assays31, realizations of
active nematics6,32, and even for a variety of synthetic active
matter systems8,33.

Methods
Bacterial strains preparation. Three different strains of Bacillus subtilis were used
in our experiments. For bright field microscopy and OCT measurements we used
strains 1085 inoculated on a LB (Lysogeny broth) agar plate and then grown in
Terrific Broth growth medium at 30 °C. The bacteria were extracted from the
growth medium by centrifugation at the end of their exponential growth stage and
washed. For fluorescent microscopy, we used strains DK400 (mCherry) and
DK3394 (mNeonGreen) grown in Terrific Broth with the addition of isopropyl β-
D-1-thiogalactopyranoside (IPTG, Sigma Aldrich) at 1 mM concentration. Bacteria
DK400 were killed by transferring them to a glass container and heating to 90 °C,
and then cooling to room temperature. Then dead bacteria DK400 were mixed
with live bacteria DK3394 at the same ratio. The desired concentration in the range
of 2 × 1010 cm−3 was made by additional centrifugation. Concentrated bacteria
were transferred to a microscope glass plate with a prepared nickel particle by a
digital micropipette. With the exception of the OCT experiments, the drop was
enclosed in a small optically clear chamber 7 mm × 7mm by 2mm thick to
minimize evaporation. OCT scanning requires placing an optical probe at a dis-
tance of a fraction of millimeter from the bottom of the drop. Scanning time for
each frame is ~1 s.

Equations of motion. The observed phenomena can be interpreted in the fra-
mework of the swim stress and from the conservation laws for the microswimmers'
number density n and linear momenta16,17,20,34. The mixture of bacteria and fluid
forms a suspension, which we model as a continuum with stress tensor σ and
suspension velocity u. Both quantities are averages over a volume element con-
taining both bacteria and fluid. The suspension velocity is incompressible,
∇ ⋅ u= 0, and the momentum balance for the suspension is ρDu/Dt=∇ ⋅ σ, with
D/Dt being the material derivative. The constitutive equation for the suspension
stress is σ= σf+ σp, where σ=−pfI+ 2ηe, is the usual stress tensor for a fluid,
with pf the pressure in the fluid and e the rate of strain tensor.

The particle contribution to the suspension stress, σp, arises from the activity of
the swimmers, and takes the following form16,34

σp ¼ �ζDtr nI� ζDswim nIþ 2Qð Þ; ð2Þ
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Fig. 4 Stagnation zone. a A stagnation zone formed by a sphere rotating around an axis perpendicular to a plane: stream surfaces in a plane containing the
rotation axis for f= 400Hz, radius of the particle a= 30 μm. Velocity is measured in mm s−1. b Magnitude of the vortex velocity Uv vs frequency
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where Dtr is the translation diffusivity giving the effective osmotic pressure,
Dswim ¼ U2

0 τR=2 is the random-walk swim diffusivity (in 2D) due to activity, I is
the identity tensor, ζ is the viscous drag coefficient of the swimmers, and Q is the
nematic order tensor describing the orientation of the bacteria, which is a
symmetric traceless 2 × 2 tensor. The translational diffusion Dtr=DT+Dtum

includes thermal diffusivity, DT= kBT/ζ, kB is the Boltzmann constant, T is the
temperature. Translational diffusion Dtum arises due to displacements of the
bacterium center of mass in the course of random tumbling event. This center of
mass displacement is due to non-uniform distribution of flagella over the bacterial
body: when the bacterium tumbles, it unbundles the flagella35. The forces from
flaggelar motors applied at random positions of the bacterial body results in
random reorientation of the body and random displacement of the center of mass.
In most situations, DT � Dtum and Dswim � Dtum.

For the geometry of the problem we model the swimming as two dimensional.
The diffusivity Dtr acts to stabilize the system at small wavelengths. Eq. (2) is the
proper generalization of the swim pressure to its full tensorial form34. The swim
stress is defined as the moment of the swim force σp � �n xFswimh i, with Fswim=
ζU0q(t), where q(t) is the orientation of the bacteria, and x ¼ R t

0U t′ð Þdt′. From the
overdamped Langevin equation for the bacterial motion it follows that σp =−
nζU2

0

R t
0 qðtÞqðt′Þh idt′=−ζU2

0 τR nqq. Using the identity nqq ¼ Qþ n
2 trðqqÞI,

where Q ¼ nqq� n
2 trðqqÞI is traceless symmetric tensor, we obtain expression (2).

A local number density (or concentration) n obeys the usual conservation law

∂tnþ ∇ � jp ¼ 0; ð3Þ

where the particle flux jp can be obtained either form a linear moment balance of
active particles treated as a phase in the mixture of particles and fluid: −ζjp+∇ ⋅
σp= 0, or from the Smoluchowski equation in position and orientation space for
the probability density for swimmers. Both approaches give the same result:

∂tnþ ∇ � 1
ζ
∇ � σp

� �
¼ 0: ð4Þ

In writing Eq. (4) we have neglected any advection of the swimmers due to the
fluid suspension motion, which requires the Peclet number based on the swim
diffusivity to be small. For small Peclet numbers, which we discuss below, the
motion of the swimmers can be decoupled from that of the suspension and
therefore we do not need to find the suspension velocity field. Also, for simplicity

we have neglected any 'collisional' contributions to the stress and thus Eq. (2)
contains the leading order effects of the bacterial concentration. The evolution of n
is then given by

∂tn ¼ Deff∇2nþ 2Dswim∇∇ : Q: ð5Þ

where Deff=Dtr+Dswim. The evolution equation for the nematic order tensor
follows from the Smoluchowski equation in position and orientation space for the
probability density for swimmers; its simplest form in 2D can be written as36

∂tQ ¼ �ξ 1� n=ncð ÞQ� μ Qj j2Qþ Deff∇2Qþ Dswim ∇∇� 1
2
I∇2

� �
n: ð6Þ

Here, ξ(1− n/nc)Q describes the onset of nematic order above the critical
concentration nc, and the nonlinear term Qj j2Q is needed for saturation of the
exponential growth; Qj j2¼ Q : Q. From the Smoluchowski equation for
nematics36, ξ= 2/τR and μ= 2ξ/n2. Experimentally, the rotational diffusion
(reorientation) was DR ≈ 1/τR= 0.05–0.1 rad2 s−1, and the average bacterial swim
speed U0 ≈ 10–15 μm s−1, which gives a swim diffusivity
Dswim ¼ U2

0 τR=2 � 500� 2250 μm2 s−1. For the thermal diffusivity we take DT ≈
0.05 μm2 s−1. According to ref.24, the value of translational diffusion Dtr ≈ 20–70
μm2 s−1, i.e., Dtr � DT. The run length, ‘=U0τR ≈ 70–100 μm, likely determines
the characteristic length of the instability.

Writing Eqs. (5) and (6) in this continuum perspective implies that the polar
order field, m, is slaved to the concentration and nematic fields. The polar order
field evolution can be derived from the governing Smoluchowski equation, yielding

∂tmþ ∇ � jm þm=τR ¼ 0; ð7Þ

where the polarization flux jm=−Dtr∇m+U0Q+U0nI/2 (see ref.20 for details).
The resulting equations were investigated in ref.29. They exhibit overall similar
behavior to the much simpler Eqs. (5) and (6), including spatio-temporal chaos and
band instability. Neglecting the time derivative and the Laplacian of m in Eq. (7),
the polarization can become slaved to the concentration and nematic fields:
m=−(U0τR/2)∇n−U0τR∇ ⋅Q. Substituting this into the corresponding equations
for the concentration and nematic fields yields Eqs. (5) and (6).

Finally, for the Peclet number, Pe=Uflowl/Dswim, we take the characteristic
length scale the bacterial size, l ≈ 5 μm, the swim diffusivity Dswim ≈ 103 μm s−1 and
the observed flow velocity Uflow ≈ 50 μm s−1, which gives Pe ≈ 0.25, justifying the
neglect of fluid advection on the concentration and nematic fields.

a b

c d e

Fig. 5 Expansion of a spot. a, b The onset of polar order (indicated by red arrow) from a slightly perturbed nematic state. c–e A sequence of gray-scale
images illustrating expansion and instability of the dense spot for t= 2 (c), t= 25 (d), t= 34 (e) dimensionless time units after cessation of rotation. The
nondimensional concentration field n is coded from white (n= 0) to black (max(n)). Initial spot radius is r0= 20, and initial nondimensional concentration
is n= n0= 8. Outside the spot, the concentration is n= n1= 0.85, i.e., dimensional n < nc. A depletion zone, seen as a bright halo, is imposed by initial
conditions n= 0.2 in the domain r0 < r < 2r0, see panel (c). For the parameters of computational model see Methods section
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Here we emphasize that the concept of swim pressure is distinct from the active
particle stress arising from the hydrodynamic stresslet for non-spherical particles,
see e.g., refs.11,13. The ratio of the magnitude of the hydrodynamic stresslet to the
swim stress is proportional to the ratio of the bacteria size to the run length16, l=‘
= l/(U0τR) < 0.1 in these experiments.

Instability of planar front. Stability of a stationary nematic planar band solution
in the framework Eqs. (5) and (6) were studied in27,29. It was proved that the
nematic band is always unstable with respect to long-wave undulations. Here we
present a simplified analysis for a planar front. The result can be deduced from the
instability of a band27 when the band's width diverges.

Consider 1D stationary front solution to Eqs. (5) and (6): n= n0(y),
Qxx=Q0(y), Qxy= 0. Functions n0, Q0 satisfy equations

Deff∂2yn0 � 2Dswim∂2yQ0 ¼ 0 ð8Þ

ξ n0=nc � 1ð ÞQ0 � 2μQ3
0 �

Dswim

2
∂2yn0 þ Deff∂2yQ0 ¼ 0 ð9Þ

Here we denoted Deff=Dswim+Dtr. Concentration n0 can be expressed from the
first equation

n0 ¼ 2Dswim

Deff
Q0 þ n ð10Þ

where n= n0(y →−∞)= const. Plugging n0 into the second equation, we obtain an
equation for Q0

ξ n0=ncr � 1ð ÞQ0 � 2μQ3
0 þ ~D∂2yQ0 ¼ 0 ð11Þ

where ~D ¼ Deff � Dswimð Þ2
Deff . Some exact solutions in the form of a stationary front or

nematic band are obtained in27,29.
Here we examine front stability with respect to transverse undulations by

considering solution in the form

n � n0ðy þ y0ðx; tÞÞ ð12Þ

Qxx � Q0ðy þ y0ðx; tÞÞ ð13Þ

Qxy � P0ðy þ y0ðx; tÞÞ ð14Þ

We assume that the front position is slowly changing in time t and along x, i.e.,
∂xy0 ¼ OðϵÞ � 1. Here P0 ~O(ϵ) is a polarization induced by the front
deformations.

Substituting Eqs. (12), (13) and (14) into Eq. (6), we obtain in the lowest order
in ε (linear in P0)

ξ n0=nc � 1ð ÞP0 � 2μQ2
0P0 þ Dswim∂xy0∂

2
yn0 þ Deff∂2yP0 ¼ 0 ð15Þ

Here we neglected the higher-order terms like (∂tx0)∂yP0,(∂xy0)2∂yP0 etc. Using Eq.
(11), we immediately see that it is satisfied if we set

P0 ¼ �2∂xy0Q0 ð16Þ

As we can see from Eq. (16), a front deformation (∂xy0 ≠ 0) results in the onset of
polarization. Now, substituting Eq. (16), in Eq. (5), we obtain in the leading order
(using Eq. (10))

∂t y0∂yn0 ¼ ∂2xy0 Deff∂yn0 þ 2Dswim∂yQ0
� �þ 4Dswim∂x∂yP0 ¼

∂2xy0 Deff∂yn0 þ 2Dswim∂yQ0
� �� 8Dswim ∂2xy0

� �
∂yQ0 ¼ �4Dswim∂2xy0∂yn0

ð17Þ

Thus, canceling ∂yn0, from the above equation immediately follows the condition
for the front evolution

∂ty0 ¼ �4Dswim∂2xy0 ð18Þ

Thus, the front is always unstable, and the growth rate is simply 4Dswim. The
analysis also can be done rigorously using the solvability condition27.

Numerical methods. Multiphysics computational engineering platform ANSYS
was used in the calculation of flow past a rotating particle. The CFX high-
performance computational fluid dynamics software tool was applied. To reduce the
number of mesh points, periodic boundary condition in the azimuthal direction and
an open boundary condition on the exterior of the integration domain were applied.

To solve Eqs. (5) and (6), a massive parallel algorithm was implemented on the
graphical processing units, and a semi-implicit code based on the fast Fourier
transformation (FFT) was used to minimize the lattice artifacts. The integration
was performed in a double periodic square domain of size L= 200, 1024 × 1024
FFT harmonics were used. The following scaling of variables in Eqs. (5) and (6)
were employed: coordinates r are normalized by the length of a bacterium, l= 5

μm, time t by t0= l2/Dswim ≈ 0.025 s, concentration n and the nematic order
parameter Q are normalized by the critical concentration nc. The two remaining
dimensionless parameters were set to unity: ξl2=Dswim ¼ n2cμl

2=Dswim ¼ 1.
Furthermore, we set Deff/Dswim= 1.05.

Data availability. All data generated and/or analyzed during this study are
available from the corresponding author on reasonable request.
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