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Sarcopenia is characterised by the presence of diminished skeletal muscle mass

and strength. It is relatively common in older adults as ageing is associated with

anabolic resistance (a blunted muscle protein synthesis response to dietary protein

consumption and resistance exercise). Therefore, interventions to counteract anabolic

resistance may benefit sarcopenia prevention and are of utmost importance in the

present ageing population. There is growing speculation that the gut microbiota may

contribute to sarcopenia, as ageing is also associated with [1) dysbiosis, whereby the gut

microbiota becomes less diverse, lacking in healthy butyrate-producing microorganisms

and higher in pathogenic bacteria, and [2) loss of epithelial tight junction integrity

in the lining of the gut, leading to increased gut permeability and higher metabolic

endotoxemia. Animal data suggest that both elements may impact muscle physiology,

but human data corroborating the causality of the association between gut microbiota

and muscle mass and strength are lacking. Mechanisms wherein the gut microbiota may

alter anabolic resistance include an attenuation of gut-derived low-grade inflammation

and/or the increased digestibility of protein-containing foods and consequent higher

aminoacidemia, both in favour of muscle protein synthesis. This review focuses on

the putative links between the gut microbiota and skeletal muscle in the context of

sarcopenia. We also address the issue of plant protein digestibility because plant proteins

are increasingly important from an environmental sustainability perspective, yet they are

less efficient at stimulating muscle protein synthesis than animal proteins.

Keywords: protein digestibility, gutmicrobiota, sarcopenia, anabolic resistance, skeletalmuscle, ageing, probiotic,

leaky gut

INTRODUCTION

Sarcopenia refers to the adversemuscle changes that accrue overtime, resulting in the loss of skeletal
muscle quantity and quality (1). The estimated prevalence of sarcopenia in community-dwelling
individuals aged over 50 years old is 1–29% and 14–33% in those living in long-term care facilities
(2). Sarcopenia represents a threat to healthy ageing, as it can lead to difficulty in performing tasks
of daily living, dependence, and frailty (3, 4). In terms of the underlying biology, skeletal muscle
mass is largely regulated by muscle protein turnover, which comprises muscle protein synthesis
(MPS) and breakdown (MPB). Protein turnover fluctuates daily in response to anabolic (i.e., dietary
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protein ingestion, exercise, and, to a lesser extent, hormonal
stimulation) and catabolic stimuli (e.g., reduced amino acid and
insulin concentrations due to fasting) (5–7). Dietary amino acids
(AA) act as building blocks for de novo MPS, and indispensable
AA (IAA), particularly leucine, act as potent anabolic signals,
promoting translation initiation, largely via activation of
mTORC1 (8). During basal, postabsorptive conditions, MPB
rates exceed MPS rates, resulting in a negative net muscle protein
balance (7, 9). In healthy young adults, this transient muscle
protein loss is compensated by the increase in MPS, after protein
ingestion due to hyperaminoacidemia (10), and decrease in MPB
due to hyperinsulinemia (11). However, ageing is associated with
a blunted MPS response to anabolic stimuli, known as “anabolic
resistance,” which is one mechanism that can contribute to
muscle loss overtime (8, 12).

Resistance exercise (13) and adequate nutritional intake, in
particular energy and protein, are important factors contributing
to sarcopenia prevention and treatment (14, 15). First, not only
resistance exercise (16, 17) but also endurance exercise (18)
sensitises the muscle to subsequent dietary protein ingestion,
leading to a higher postprandial MPS response (13). In contrast,
inactivity and muscle disuse, which tend to accompany ageing,
show the opposite effect by desensitising the muscle to the
anabolic effect of AA on MPS (19, 20). Second, higher
protein intakes have been proposed to slow the loss of muscle
mass in ageing (21) because higher protein (and leucine)
intakes may compensate for anabolic resistance and induce an
optimal postprandial MPS response (8, 15). Nevertheless, the
interrelationship between dietary protein intake and long-term
muscle and strength maintenance is complex. It is understood
that low-protein intake may be a risk factor for sarcopenia since
a greater amount of protein are required to stimulate MPS in
the elderly (8, 12). However, many human dietary intervention
studies have shown little or no impact of protein (22, 23), leucine
(24–26), or IAA (27) supplementation on muscle mass and/or
strength in non-exercising older adults. Therefore, resistance
exercise, regulation of other nutrient sensors that modulate
MPS aside from AA, and/or even greater amounts of protein
supplementation/intake than those offered in this study may be
essential tools to fight sarcopenia in healthy older adults. Given
the age profile of the global population, we need to advance
knowledge in relation to effective interventions to attenuate the
age-related decline in muscle mass and function.

EVIDENCE FOR THE GUT-MUSCLE AXIS

Over the last two decades, there has been an exponential interest
in the role of gut microbiota in health and disease (28). To this
end, this review explores if and how this may play a role in
relation to the gut-muscle axis within the context of sarcopenia.
Before examining the emerging evidence in relation to a potential
role of the gut microbiota in muscle mass and function (29–
31), it is important to acknowledge the wealth of knowledge
in relation to factors that affect anabolic resistance (8, 12, 32)
and sarcopenia. Mechanisms involved in sarcopenia include poor
nutrition (21), physical inactivity (19, 20), changes in hormone

levels and sensitivity, especially insulin (33, 34), mitochondrial
dysfunction (35), aberrant intermuscular and intramuscular fat
deposition (36), and chronic low-grade inflammation (37, 38)
[discussed here (39)].

From the microbiota perspective, the interrelationships
between gut and muscle are not firmly established; nevertheless,
there are some interesting developing perspectives. Backhed et
al. (30) laid the foundation for recent research on the gut-muscle
axis, showing that germ-free mice exhibit a lean phenotype, even
on high-calorie, high-fat diets. Subsequent studies examining
the skeletal muscle of germ-free (free of all microorganisms)
vs. pathogen-free mice (free of pathogenic microorganisms)
provided key insights into the gut-muscle axis (29). Compared
with pathogen-free mice, germ-free mice had reduced skeletal
muscle mass, strength, and IGF-1 local expression and increased
local expression of genes associated with muscle atrophy (FoxO,
Atrogin-1, Murf-1, and MyoD) (29). The explanation of the
authors for the observed muscle mass reduction in germ-
free mice is an increase in MPB, rather than a significant
reduction in MPS, as that activation of Akt-mTOR-S6k was
unaffected in germ-free mice (29). Muscle protein turnover was
not directly measured. It is important to note that, in humans,
changes in MPS due to diet-mediated hyperaminoacidemia and
resistance exercise, rather than alterations in MPB, are better
understood and believed to largely determine net protein balance
and, ultimately, muscle size in nonpathogenic states (40, 41).
Gut microbiota transplantation from pathogen-free mice into
germ-free mice restored skeletal muscle mass, reduced muscle
atrophy markers, improved oxidative metabolic capacity of the
muscle, and elevated Rapsyn and Lrp4 expression, both of
which are essential for neuromuscular junction maintenance
(29, 42). Finally, they treated germ-free mice with a short-chain
fatty acid (SCFA) blend of acetate, butyrate, and propionate,
similar to what is produced by a healthy microbiota upon
polysaccharides fermentation and partially reversed the skeletal
muscle impairments and improved muscle strength (29). In
addition, antibiotic-induced depletion of microbiota inmurine
studies shows a reduction in muscle mass to a body mass
ratio in comparison to the microbiota-containing control (43–
45). However, restoring their microbiota led to an increase of
the muscle mass to the body mass ratio. We acknowledge the
difficulty in translating these data from mice to humans (46) and
that germ- and pathogen-free models are not a feasible study
design to understand the effect of the gut microbiota on muscle
in humans; however, germ-free mice models demonstrate the
relevance of the gut in muscle mass and function in vivo.

AGEING AND THE GUT
MICROBIOTA—INSIGHTS FROM HUMAN
STUDIES

The gut microbiota of a typical older person displays reduced
species richness and higher interindividual variability, together
with less beneficial butyrate-producing bacteria and tight
junction integrity, and a greater prevalence of pathogenic gram-
negative bacteria (47–49). The fact that older people, especially
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the older and frail subjects (31, 50), have a distinct gut microbiota
composition leads us and others (31, 51–56) to hypothesise the
involvement of the gut microbiota in sarcopenia development.

Claesson et al. (31) carried out a cross-sectional study in 178
individuals aged 78 ± 8 years old and living in three different
settings (community dwelling, short-term rehabilitation hospital
care, and long-term residential care). They showed that the gut
microbiota of the participant was clustered by living setting and
was related to dietary intake (31). The “unfavourable microbiota
profile,” displaying lower diversity in the long-term residential
care individuals, was correlated to frailty, comorbidities, poor
nutritional status, and inflammation markers (31). Compared
with community dwellers, short-term stay seniors showed a
lower frequency of microbial genes for SCFA and higher serum
markers of inflammation (31). The differences in dietary intake,
medication use, and clinical status between the subgroups had
an effect on modulating the gut microbiota (52, 57, 58) and
may have acted as confounding variables that contributed to
the associations observed between health and gut microbiota
composition in the study (31). Other studies also suggest that
physical frailty is inversely related to gut microbiota biodiversity
and the relative abundance of a number of key taxa (31, 50,
52, 59–63). However, even if these studies reduced or excluded
confounding factors, it is not possible in observational study
designs to establish a cause–effect relationship between a specific
gut microbiota composition or taxa and healthy ageing or
longevity. In a recent attempt to evaluate a causative role for
the gut microbiota in body composition and strength, germ-free
mice were colonised with the gut microbiota of high- and low-
functioning older adults (64). Compellingly, muscle strength, but
not lean mass or endurance, was significantly higher in mice
colonised with microbiota from high- vs. low-functioning older
adults (64).

PROBIOTIC AND THE GUT MICROBIOTA

Probiotics can be defined as “live microorganisms that when
administered in adequate amounts confer a health benefit
to the host” (65). Recent evidence points towards probiotic
supplementation as a plausible nutrition intervention to improve
muscle mass and/or function (66–73) and to help prevent
sarcopenia. To our knowledge, there is no evidence in relation
to the impact of probiotic supplementation on MPS, but a
possible role may be a probiotic-directed improvement of protein
digestibility, gut permeability, and SCFA production.While these
mechanisms do not inherently alter the protein composition
of the source (e.g., IAA or leucine content), better digestion
may increase postprandial aminoacidemia, and improved gut
permeability may reduce chronic inflammation, both in favour
of MPS (Figure 1).

PROBIOTIC AND THE GUT-MUSCLE AXIS

Bindels et al. (66) led one of the pioneer studies on gut
microbiota modulation as a way to alter muscle in leukemic
mice. Oral probiotic supplementation (Lactobacillus reuteri and

Lactobacillus gasseri, but not Lactobacillus acidophilus) restored
gut microbiota health from a baseline status of dysbiosis,
reduced serum levels of pro-inflammatory cytokines, and
increased muscle mass (66). In another murine cancer model,
L. reuteri supplementation reduced systemic inflammation and
preserved muscle mass (67). In healthy young mice without
systemic inflammation, probiotic Lactobacillus plantarum
supplementation not only improved lean mass but also muscle
function (68). A series of recent reviews (74–78) and original
studies (69–73) have investigated the impact of probiotic
supplementation on lean mass and physical performance
in humans. After probiotic supplementation, some studies
in athletes (predominately males) showed improvements in
muscle strength, power, and exercise recovery (69–72), but none
observed significant alterations in body lean mass (69–73). The
extent to which probiotic supplementation is able to alter the
intestinal gut microbiota is under debate (79, 80). However,
a proprietary form of Bacillus coagulans has demonstrated
an advantageous spore-forming ability to survive the harsh
condition of the stomach, which enables it to create a healthier
gut microbiota composition in the elderly (81) and aid with the
digestion of plant-based proteins in a validated in vitro model of
the stomach and small intestine (82).

In humans, only two studies, to our knowledge, have
investigated the effect of probiotic supplementation on
aminoacidemia, following pea (83) and milk (84) protein
ingestion. After 2 weeks of protein supplementation with or
without added probiotics, the participants reported to the
laboratory, and blood samples were taken in the fasted state and
following the ingestion of their respective supplement. In one
study, 15 physically active young men consumed isolated pea
protein with or without probiotic Lactobacillus paracasei (83).
In the other study, 30 young males and females ingested milk
protein concentrate with or without B. coagulans (84). Both
studies used postprandial maximum systemic AA concentration
(Cmax) and area under the curve (AUC) as proxy measurements
for AA digestion and absorption. Cmax and AUC were higher
after protein and probiotic co-ingestion in comparison with
protein alone in both studies (83, 84). Such an increase in
aminoacidemia may improve the muscle anabolic response to
dietary protein (70), although that outcome was not determined.

PUTATIVE MECHANISM 1: PROBIOTICS
AND PROTEIN DIGESTIBILITY

In addition to total protein intake, the quality of the protein
consumed in the diet is another important consideration
for muscle mass preservation with age. Plant proteins are
increasingly important from an environmental sustainability
perspective (85), yet they are less efficient at stimulating muscle
protein synthesis than animal proteins at the same protein dose
(86). Plant vs. animal proteins show lower digestibility (45–
80% vs. >90%, respectively) in both young and old individuals
due to high levels of insoluble fibres and/or anti-nutritional
factors (87–89). Anti-nutritional factors present endogenously,
like trypsin inhibitors in grain legumes or tannins in cereals
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FIGURE 1 | Proposed the gut microbiota role in protein digestion and absorption, and related MPS response. Polypeptides from protein-containing foods enter the

duodenum and are cleaved by enzymes into di- and tripeptides, and some single AA, which are absorbed by enterocytes (intestinal cell wall). Aminopeptidases of

enterocytes cleave di- and tripeptides into single AA that can now enter systemic circulation after first-pass splanchnic retention. In the lumen, enzymes of gut

microbes or probiotics may aid with the polypeptide and shorter peptides cleavage to increase AA delivery to the bloodstream. Undigested peptides reach the colon

and are fermented by the gut microbiota to release molecules like ammonia and hydrogen sulphide (harmful), and SCFA (in lesser amounts, SCFAs are mainly

ferments of undigested carbohydrates). A healthy gut microbiota composition (high concentration of beneficial microbes and diversity) may release higher amounts of

SCFA and is better able to control the translocation of harmful substances from the lumen into circulation. SCFA can improve gut permeability and may positively

modulate muscle biology. Reduced translocation of proinflammatory molecules is linked to lower systemic inflammation and may positively influence insulin sensitivity

in the muscle. Opposingly, unhealthy gut microbiota is associated with a leaky gut, which is less able to regulate the harmful translocation into the bloodstream of

microbes (e.g., Bacteroides sp.) and their components (e.g., LPS), as well as proinflammatory cytokines, all likely to be found in an “unhealthy” GIT. This leads to

(Continued)
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FIGURE 1 | low-grade chronic systemic inflammation that may contribute to insulin and anabolic resistance in the muscle. Therefore, healthy gut microbiota may

improve protein digestion and absorption by increasing peptide cleavage, and, in addition, promote SCFA production and reduce protein fermentation and the “leaky

gut.” As a result, more AA and SCFA, and less gut-derived harmful molecules enter systemic circulation, increasing the postprandial delivery of AA to the muscle and

reducing systemic and local inflammation, both in favour of MPS. Abbreviations: MPS, muscle protein synthesis; AA, amino acids; SCFA, short-chain fatty acids; LPS,

lipopolysaccharide; GIT, gastrointestinal tract—created with BioRender.com.

(90), or are formed during excessive heat and/or alkaline
processing, like Maillard compounds in milk, and may reduce
protein bioavailability (91, 92). Contrarily, the processing of
dietary plant proteins (gentle heating, soaking, germination, and
fermentation) may have a positive effect on digestibility (93–95).
This is important for plant proteins because poor digestibility
results in lower AA absorption and thus reduced AA availability
for MPS (96). Although the difference between protein digestion
and absorption kinetics in older vs. young individuals does not
appear to be the limiting factor for the observed difference
in MPS (97, 98), improving plant protein digestibility would
enhance the delivery of AA to circulation (and of special interest
IAA). This has already been identified in young healthy humans
for pea protein (83) and milk protein (84) with probiotic co-
ingestion, as mentioned above. An explanation for this could
be the release of proteases and peptidases by the probiotic to
facilitate protein digestion in the small intestine, although this
hypothesis would have been better supported if the protein had
been ingested in its raw form (as part of the intact food source;
peas and milk) and not as a protein isolate. This is particularly
relevant in older individuals as they need more protein per meal
to maximise the postprandial MPS response (99) and, thus, to
preserve muscle mass with age (100). An improvement in protein
digestibility would imply that older people could reduce the net
amount of protein consumption per meal for the same MPS
effect, which is crucial, given their reduced appetite (101).

PUTATIVE MECHANISM 2: PROBIOTICS
AND THE LEAKY GUT

The intestinal barrier is the key to maintaining gut
integrity, preventing leakage of bacterial cells and/or their
proinflammatory toxins into the bloodstream (102). The “leaky
gut” hypothesis proposes that as a result of intestinal barrier
breakdown, its permeability increases and is less able to regulate
the translocating of harmful substances, triggering the immune
system and inflammatory responses (102, 103). In this review, we
speculate that the leaky gut may be associated with sarcopenia
since low-grade chronic inflammation in older adults is one of
the factors believed to contribute to anabolic resistance and thus
sarcopenia development (38).

Rodent studies indicate that ageing is associated with a
leaky gut via gut-derived metabolic endotoxemia and low-grade
chronic inflammation (104–106). Poor mucosal barrier function
and increased inflammation have also been reported in aged vs.
young monkeys (103, 107). Qi et al. (108) measured zonulin, a
physiologic regulator of intestinal permeability (109), in healthy
young (18–30 years, n = 19) and old (≥70 years, n = 18)
adults. Serum zonulin concentrations were significantly higher

in older vs. younger adults, were positively associated with
proinflammatory cytokine levels (TNF-α and IL-6), and were
negatively associated with physical activity levels and skeletal
muscle strength (108). Furthermore, the serum microbiota of
young (20–35 years, n = 24) vs. old (60–75 years n = 24)
individuals differs and is linked to markers of age-related
systemic inflammation (110). While these data support the role
of a leaky gut in age-directed inflammation and frailty, data
from Valentini et al. (111) concluded that small intestinal barrier
integrity is not altered in healthy ageing. However, it supported
that low-grade chronic inflammation, which is common in older
adults (38, 112), compromises intestinal barrier permeability
(111). Therefore, one may question whether age-directed low-
grade chronic inflammation is the cause or the result of gut
barrier breakdown (113, 114).

It could be hypothesised that, irrespective of age, “fixing”
a leaky gut may enhance muscle function by reducing
the amount of detrimental microbial products (e.g., LPS
and indoxyl sulphate) that access systemic circulation. These
harmful substances are known to trigger low-grade systemic
inflammation, insulin resistance, and glucose intolerance in
murine skeletal muscle (115, 116). They have also been reported
to increase NFκB activity and JNK phosphorylation, blunt AMPK
phosphorylation in skeletal muscle tissue of patients with type
2 diabetes (117), and reduce insulin sensitivity in LPS-treated
human muscle cells (118).

Emerging evidence points towards a potential role for
probiotic-mediated alleviation of the leaky gut. Probiotic
supplementation improved markers of an intestinal barrier
and inflammation in trained men under exercise stress in a
randomised clinical trial (119), in rodents (120, 121), and in a
porcine intestinal epithelial cell line (IPEC-J2) (122). However,
a systematic review from 2013 that included human studies
measuring parameters of epithelial barrier function had evidence
for and against probiotic supplementation (123). Note that
the study population and probiotics employed were high in
heterogeneity. Therefore, more studies need to evaluate the
effect of microbiota modulation on the leaky gut and resulting
microbiota-derived inflammatory markers in circulation and
their effect on skeletal human muscle.

PUTATIVE MECHANISM 3: PROBIOTICS
AND MUSCLE NUTRIENT SENSORS

Another putative link between gut microbiota modulation and
the muscle could be regulated by muscle nutrient sensors, which
are gut microbiota by-products, mainly SCFAs (29), could alter
muscle biology [reviewed here (124, 125)]. Probiotic bacteria are
known producers of SCFAs (45, 126, 127). Emerging evidence
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from young germ-free mice fed with SCFAs shows an increase in
skeletal muscle mass and strength compared with the untreated
control (29). Also, sodium butyrate-supplemented high-fat diet-
fed young mice exhibited a reduction in skeletal muscle
insulin resistance vs. their non-supplemented counterparts (128).
Similarly, aged mice under a 10-month sodium butyrate-
supplemented diet treatment showed an increase in muscle
mass to body mass ratio when compared with the non-
supplemented control (129). Interestingly, SCFA-producing
bacteria include Barnesiella and Prevotellaceae and are both
found in higher concentration in high- vs. low-functioning
older adults, characterised based on the percentage of body
lean mass and physical functioning (64). These studies show a
strong association between SCFA and muscle mass and strength;
however, whether this link is casual in humans and its mechanism
is not known.

CONCLUSION AND FUTURE
PERSPECTIVES

Ageing is often associated with a reduction in muscle mass and
function together with a reduction in abundance, resilience, and
diversity of the gut microbiota (31, 50, 61, 62). While emerging
evidence supports a putative link between the gut and the muscle
that could be a potential target for the prevention and treatment
of sarcopenia, a causal relationship between the gut microbiota
and muscle protein synthesis has not yet been established in
humans, albeit evidence from murine models is strong (29).
However, the data examined in this review may underpin the
hypothesis that a healthy and diverse gut microbiota in an elderly
cohort, potentially modulated via probiotic supplementation,
may improve age-associated muscle decline, mechanistically, (1)
by improving the intestinal cell wall integrity, thus reducing
metabolic endotoxemia and consequential inflammation linked
to insulin resistance and anabolic resistance (also potentially
modulated by short-chain fatty acids), and/or (2) by improving
dietary protein digestion and absorption via gut-bacterial
enzymatic activity, leading to enhanced amino acid availability

for de novo protein synthesis. These points are relevant in the
context of healthy ageing in the present ever-growing older
population (130), where enhancing and preserving physical
strength, mobility, and independence are of utmost importance.
The review also highlights the need for a greater understanding
in relation to the area of nutrition that deals with sarcopenia
prevention and treatment based on protein supplementation
research disagreements on muscle mass and strength in older
adults. Within this research gap, we acknowledge that the plant
protein industry is booming, stemmed from environmental,
ethical, and health interests (131). Even though plant protein
may be less effective for preserving muscle mass in ageing, this
presents a research opportunity to clearly define the efficacy of
plant proteins on de novo protein synthesis in humans, which
may or may not be affected by the gut microbiota. Overall,
improving the digestibility and absorption of alternative protein
sources and their ability to stimulatemuscle protein synthesis will
ease the environmental and nutritional challenges of the future
global population while also favouring functional ageing.
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