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T he heart is a metabolic omnivore that re-
quires use of a plethora of substrates, not
only to meet energetic demands for

continual contraction, but also to provide necessary
building blocks for turnover of cellular constituents
and synthesis of metabolically derived signaling spe-
cies (1). A key concept for cardiac metabolism centers
around the need for homeostasis (i.e., maintenance of
processes within a discrete physiological range) in the
face of perpetual fluctuations in environmental stim-
uli and/or stresses. This is achieved through meta-
bolic flexibility, which in essence affords a buffering
capacity. A simple example involves perturbations
that occur over the course of the day; sleep and/or
wake and fasting and/or feeding cycles result in daily
fluctuations in energetic demand and nutrient avail-
ability, as well as a host of additional neurohumoral
factors that are met by reciprocal oscillations in car-
diac metabolism (2). During cardiac disease states,
the heart is often described as metabolically inflex-
ible, typically being suspended at extremities (i.e.,
chronic activation or repression, depending upon
the pathology and metabolic parameter), coupled
with an inability to appropriately respond to physio-
logical challenges (3). This is exemplified by heart
failure. The failing human heart has been described
as an engine without fuel, due to severe metabolic
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impairments and an inability to generate sufficient
adenosine triphosphate (ATP) for maintenance of
contractile performance (4). Dysfunction of mito-
chondria (the primary site of ATP synthesis via oxida-
tive phosphorylation) appears to be central to this
pathology (4). Consistent with this idea, numerous
studies suggest that myocardial oxidation of both
glucose and fatty acids (major substrates for the
heart) are reduced during heart failure. This is despite
observations that circulating levels of these sub-
strates are often elevated (5), which potentially leads
to an imbalance between carbon availability and use.
Glucose serves as a good example. During heart fail-
ure, diminished glucose oxidation occurs concomi-
tantly with accelerated glucose uptake and
glycolytic flux (4,5). This uncoupling of glycolysis
from glucose oxidation is associated with accumula-
tion of lactate and protons; the latter decreases
cardiac efficiency, in part, through augmented ATP-
dependent ion homeostasis required for proton
extrusion from the cardiomyocyte (6). Uncoupling of
glycolysis from glucose oxidation has been reported
during other pathological states, including diabetes
mellitus and acute ischemia and/or reperfusion (7,8).
Multiple groups have reasoned that targeting
metabolic derangements during heart failure has the
therapeutic potential to improve cardiac function.
The uncoupling of glycolysis and glucose oxidation
was targeted in the study by Wang et al. (9) in this
issue of JACC: Basic to Translational Science. More
specifically, these investigators hypothesized that
pharmacological inhibition of malonyl-CoA decar-
boxylase (MCD) would decrease the severity of heart
failure in a rat model of myocardial infarction (per-
manent ligation of the left anterior descending ar-
tery). MCD is most commonly known for regulation of
fatty acid oxidation; by catabolizing malonyl-CoA (an
https://doi.org/10.1016/j.jacbts.2019.05.001
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established endogenous inhibitor of the mitochon-
drial carnitine shuttle, a process critical for fatty acid
uptake into the mitochondrial matrix), MCD promotes
fatty acid oxidation (FAO) (10). Accordingly, MCD
inhibition is predicted to increase malonyl-CoA
levels, thus inhibiting FAO. Initially, it may appear
counterintuitive to selectively inhibit FAO in the
failing myocardium, because this process is appar-
ently diminished already. However, due to the
interrelationship between FAO and glucose oxidation
[initially described by Randle et al.(11)], inhibition of
FAO invariably promotes glucose oxidation (thereby
augmenting coupling with glycolysis). As a proof of
concept, Wang et al. (9) reported that a pharmaco-
logical inhibitor of MCD (CBM-3001106) acutely (<1 h)
increased cardiac malonyl-CoA levels, in parallel with
attenuated FAO and concomitant glucose oxidation
augmentation (in ex vivo perfused working rat
hearts). The investigators also observed an improve-
ment in cardiac function in vivo (echocardiographic
parameters, such as ejection fraction and fractional
shortening) when rats with heart failure were treated
with the MCD inhibitor either acutely (2 h) or for the
long term (4 weeks). Moreover, improvements in
cardiac function following 4 weeks of MCD inhibition
persisted in ex vivo working heart perfusions. The
latter studies also revealed a dramatic reduction in
glycolytic flux in rats with heart failure treated with
the MCD inhibitor (translating to a significant reduc-
tion in calculated proton production) and improved
cardiac efficiency. Adverse remodeling markers were
also attenuated in rats with heart failure following
long-term MCD inhibitor treatment (in the absence of
differences in infarct size). This included normaliza-
tion of sarcoplasmic/endoplasmic reticulum Ca (2þ)
ATPase 2a (SERCA2a) levels and lactate dehydroge-
nase (LDH) isoform switching. Additional parameters
were assessed, including forkhead box O3 (FOXO3)
nucleo-cytoplasmic distribution and superoxide dis-
mutase 2 (SOD2) acetylation, both of which were
normalized in the failing heart by MCD inhibition.
Collectively, these observations suggested that MCD
(and presumably, FAO) inhibition reversed adverse
remodeling of the failing myocardium, potentially
through improved coupling of glycolysis with glucose
oxidation.

Metabolic modulation as a heart failure therapy is
an attractive concept. In addition to extensive evi-
dence that perturbed myocardial metabolism plays a
causal role in adverse remodeling during heart failure,
various cardiometabolic disease states are significant
contributors to the etiology of heart failure. These
include obesity and diabetes mellitus. Moreover, heart
failure profoundly disrupts systemic metabolism, in a
manner similar to cachexic states (e.g., skeletal muscle
loss, lipolysis, insulin resistance). Heart
failure�induced perturbations in systemic meta-
bolism likely worsen myocardial contractility and
outcomes (i.e., a viscous feed-forward cycle de-
velops). Pharmacological inhibition of FAO as a ther-
apeutic for cardiometabolic diseases and/or heart
failure has been proposed previously. Both inhibitors
of carnitine acyl-transferase I (CPTI) (the carnitine
shuttle component inhibited by malonyl-CoA; CPTI
inhibitors include oxfenicine, perhexiline, and eto-
moxir) and b-oxidation enzymes (e.g., trimetazidine
inhibits 3-ketoacyl thiolase) have reported beneficial
effects in preclinical models of heart failure, as well as
in humans (12). For example, oxfenicine attenuated
heart failure progression in a dog model (13), whereas
perhexiline was shown to improve ejection fraction in
patients with heart failure (14). However, some CPT1
inhibitors might have detrimental side effects. For
example, although etomoxir initially appeared to
confer contractile function improvements in patients
with heart failure (15), clinical trials were halted due to
hepatotoxicity (16). This led to concerns that CPTI in-
hibition in the liver may promote nonalcoholic hepatic
steatosis (NASH). Wang et al. (9) proposed that one
advantage of targeting MCD was that the liver isoform
of CPT1 was less sensitive to malonyl-CoA�mediated
inhibition, relative to the muscle isoform. However,
whether prolonged MCD inhibition, particularly dur-
ing dyslipidemic states (e.g., obesity, diabetes), leads
to NASH is a distinct possibility. Germline MCD
knockout mice developed triglyceride accumulation
in the liver with age (17).

In addition to an uncoupling between glycolysis
and glucose oxidation, heart failure is also charac-
terized by an uncoupling between substrate avail-
ability and use. Circulating levels of glucose, fatty
acids, ketone bodies, and amino acids (notably
branched chain amino acids [BCAAs]) are typically
elevated during heart failure, concomitant with
decreased myocardial oxidative metabolism (5).
This mismatch has the potential of precipitating
contractile dysfunction. Putative glucose- and lipid-
dependent mechanisms have been studied exten-
sively, including imbalances in signaling metabolites
(e.g., ceramide, diacylglycerol), redox status (e.g.,
NAD(P)þ/NAD(P)H ratios), and post-translational
modifications (e.g., protein palmitoylation and/or
O-GlcNAcylation) (5). Recently, impaired ketone body
and BCAA oxidation has been reported in the failing
myocardium (18–20); accumulation of metabolites in
these catabolic pathways adversely affects cellular
signaling, protein acetylation, and mitochondrial
function. In light of these findings, the failing
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myocardium has been described as a broken engine
flooded with fuel (5). How might MCD (and therefore,
FAO) inhibition help resolve this mismatch? Two
main possibilities exist. First, inhibition of FAO in
tissues such as skeletal muscle and the liver would
likely lower circulating glucose (through increased
skeletal muscle glucose use and reduced hepatic
gluconeogenesis; etomoxir was initially developed as
a glucose-lowering agent), BCAAs (through increased
oxidation in both muscle and liver), and ketone
bodies (through decreased hepatic acetyl-CoA avail-
ability for ketogenesis) levels. Second, FAO inhibition
in the heart would increase myocardial glucose, ke-
tone body, and BCAA oxidation. Together, a balance
between availability and oxidation would be re-
established for these substrates. The study by Wang
et al. (9) provides indirect evidence of this concept, at
the level of protein acetylation. Elevated SOD2 acet-
ylation in the failing heart is normalized by MCD in-
hibition. Moreover, nuclear translocation of FOXO3
following MCD inhibition is consistent with reduced
acetylation [as acetylation sequesters FOXO3 in the
cytosol (21)]. These observations raise the possibility
that, in addition to improving the coupling between
glycolysis and glucose oxidation, MCD inhibition may
improve coupling between substrate availability and
oxidation, thereby reducing excess acetyl-CoA (and
subsequent use for protein acetylation). However,
MCD inhibition would not normalize the balance be-
tween lipid availability and oxidation, an issue that
may become more problematic in dyslipidemic states.

In summary, Wang et al. (9) have revealed MCD
inhibition as a promising therapeutic target for heart
failure. Improved cardiac function and efficiency
following MCD inhibition (in a rat model of myocar-
dial infarction�induced heart failure) was associated
with reduced myocardial glycolytic flux (and pre-
sumably, proton accumulation). The investigators
postulated that benefits of MCD inhibition were pri-
marily through coupling of glycolysis with glucose
oxidation. The relative contribution of other
metabolism-related mechanisms (e.g., coupling be-
tween substrate availability and oxidation) requires
further elucidation.
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