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Cell invasion by the intracellular protozoans requires interaction of proteins from both

the host and the parasite. Many parasites establish chronic infections, showing they

have the potential to escape the immune system; for example, Trypanosoma cruzi is

an intracellular parasite that causes Chagas disease. Parasite internalization into host

cell requires secreted and surface molecules, such as microvesicles. The release of

microvesicles and other vesicles, such as exosomes, by different eukaryotic organisms

was first observed in the late twentieth century. The characterization and function of

these vesicles have recently been the focus of several investigations. In this review, we

discuss the release of microvesicles by T. cruzi. The molecular content of these vesicles is

composed of several molecules that take place during parasite-host cell interaction and

contribute to the parasite-driven mechanism of evasion from the host immune system.

These new findings appear to have a profound impact on the comprehension of T. cruzi

biology and highlight novel potential strategies for developing more efficient therapeutic

approaches.
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Key points

• Exosomes cargo promotes Trypanosoma cruzi cell invasion and evasion from host

immune response.

• Exosomes cargo derived from Trypanosoma cruzi modulates the content of host

cell-derived exosomes.

INTRODUCTION

Chagas’ disease is an anthropozoic vector-borne parasitic infection, caused by the protozoan
parasite, Trypanosoma cruzi. There are about six to seven million people infected in Latin America
and approximately 25 million people living in areas with potential risk for infection. About
10,000 people die from the disease each year worldwide (WHO, 2015). The migration of infected
individuals to non-endemic countries turned Chagas’ disease into an emerging worldwide public
health problem (Coura and Viñas, 2010; Álvarez et al., 2014).
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Trypanosoma cruzi is a heterogeneous flagellate parasite,
and its populations are characterized by a diverse morphology,
heterogeneous biological behavior, high genetic variability, and
distinctly different clinical courses (Macedo and Pena, 1998).
The clonal-histotrophic model of Chagas’ disease describes a
correlation between the clonal-population structure of T. cruzi
and its tissue tropism, and it explains the variety shown by this
parasite (Macedo et al., 2004). It is now accepted that T. cruzi
strains can be divided into six discrete typing units (DTUs),
T. cruzi I to VI (Zingales et al., 2009).

Exosomes are formed within the endolysosomal network.
The generation is initiated upon the endocytosis of extracellular
material in the early endosome that results in multivesicular
body (MVBs) formation. This compartment, also termed late
endosome, has various intraluminal vesicles, which may degrade
the cargo content or be secreted to the extracellular milieu
as exosomes (Harding et al., 1983; Pan et al., 1985; Mantel
and Marti, 2014). Exosomes contain specific proteins involved
in vesicle formation and specific markers of the endosomal
pathway, such as members of the Rab GTPase family, chaperones
and tetraspanins (Ostrowski et al., 2010). Some have suggested
extracellular vesicles (EVs) have a role in disease outcome, such
as cancer, and physiological regulation because several infectious
conditions lead to an increase in EVs in the body fluids of
patients (Minciacchi et al., 2015). Some pathogenic organisms
are capable of releasing exosomes, for example, the fungus
Cryptococcus neoformans (Rodrigues et al., 2008), Leishmania
major (Silvermann et al., 2010), and Trypanosoma cruzi (Bayer-
Santos et al., 2013). EVs from eukaryotic parasites can be secreted
from extracellular pathogens or produced by host cells infected
by intracellular pathogens (Twu and Johnson, 2014). The EVs can
mediate parasite-parasite and host-parasite interactions. Infected
cell-derived exosomes enable communication between distant
parasites and facilitate the spreading of virulence factors (Mantel
and Marti, 2014).

Some authors have shown plasma membrane and flagellar
pocket from T.cruzi epimastigote forms release vesicles, which
comprise glycoproteins, glycolipids, and glycopeptides of the
parasite surface (Da Silveira et al., 1979). T. cruzi can produce
exosomes that stimulate host cells to produce EVs, in particular
monocytes and lymphocytes, to modulate the host immune
response (Cestari et al., 2012; Mantel and Marti, 2014). Later,
in this sense, authors have found trypomastigote produces
exosomes that contain surface components, like glycoproteins,
such as gp85/transialidases, alphaGal-containing molecules,
proteases, cytoskeleton proteins, mucins, and associated to
GPI (glycosylphospatidylinositol)-anchored molecules. Besides
proteins, small RNA in exosomes fromT. cruzi has been reported,
including tRNA, which were actively secreted to the extracellular
medium and acted as vehicles for transferring these molecules
to other parasites and to mammalian cells (Bayer-Santos et al.,
2014).

Based on these results, intriguing questions may be raised:
Why does the parasite shed these components? Would these
exosomes play any role in the pathogenesis of Chagas disease
or the evasion of parasite from the immune system? How would
they modulate infection? These are the main topics of this article.

INVASION MECHANISM OF
TRYPANOSOMA CRUZI

In the past decades, many laboratories have attempted to
identify surface and secreted components of T. cruzi implicated
in host-cell invasion, which consists of a multi-step process
involving various parasite and host-cell molecules. To invade
mammalian cells, some surface glycoproteins present in
metacyclic trypomastigotes, such as gp82, gp35/50 or gp30,
known as a gp82 variant expressed in gp82-deficient isolates,
trigger events that lead to intracellular Ca2+ mobilization
in both parasite and host cell (Burleigh and Andrews, 1998;
Yoshida and Cortez, 2008). These parasites may also take
advantage of secreted components, such as proteins from
the SAP (serine-, alanine and proline-rich proteins) family;
these proteins have a central domain (SAP-CD) responsible
for invasion of mammalian cells by metacyclic forms (Baida
et al., 2006; Zanforlin et al., 2013). Tissue culture-derived
trypomastigotes (TCTs) have components, such as Tc-85, gp83,
Tc-1, cruzipain, oligopeptidase B, and POP Tc80, that traverse
the extracellular matrix and invade host cells (Burleigh and
Andrews, 1998; Yoshida and Cortez, 2008). Through the surface
molecules of gp85/transialidase superfamily, the parasites bind
to fibronectin/laminin (Ouaissi et al., 1986; Giordano et al.,
1994) and pave the way for the action of enzymes, such as the
serine protease POP Tc80 that hydrolyses collagen (Santana
et al., 1997; Grellier et al., 2001). Upon encountering the target
cells, trypomastigotes attach to them in a manner mediated
by Tc-85 (Alves et al., 1986), gp 83 (Villalta et al., 2001), or
Tc-1 (Augustine et al., 2006). This interaction induces the
activation of oligopeptidase B (Burleigh and Andrews, 1995;
Caler et al., 1998) that generates a calcium-signaling factor from
a precursor molecule. Alternatively, or simultaneously, cruzipain
is secreted by attached trypomastigotes within the confines of
parasite-target cell juxtaposition. Its action on the kininogen
generates bradykinin, which interacts with its receptor and
induces a calcium response (Scharfstein et al., 2000; Todorov
et al., 2003). Calcium mobilization by all these factors inside the
host cell promotes invasion. During this process, gp83 is released
and can induce upregulation of laminin γ-1 expression by host
cell (Kuratomi et al., 2002; Nde et al., 2006). Human galectin-3
enhances parasite adhesion to laminin (Moody et al., 2000),
contributing to the pathogenesis of the disease.

After that, the protein P21 can be secreted in the parasite-
target cell juxtaposition and activates a signaling cascade
still unknown that leads calcium mobilization from parasite
acidocalcisomes, phosphorylation of T. cruzi polypeptides
(Fernandes et al., 2006), culminating in the activation of Rac1 and
in membrane actin ruffles formation (Fernandes and Mortara,
2004) within microdomains enriched in cholesterol and GM1
(Fernandes et al., 2007) leading to parasite internalization. The
protein P21 triggers host cell invasion by all infective forms. This
protein binds to CXCR-4 receptor (Silva et al., 2009; Rodrigues
et al., 2012), recruits immune cells, induces IL-4 production,
and decreases blood vessels formation. This protein can be a
potential target for developing novel treatment against chagasic
cardiomyophaty (Teixeira et al., 2015).
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During an in vivo infection, trypomastigotes present in
the bloodstream can transform into extracellular amastigotes
(EA), and when infected cells are ruptured, they may release
intracellular amastigotes (IA). These amastigotes (EA and IA)
may contribute to the infection progression by infecting cells
in an actin-dependent manner, in a microenvironment context
(Procópio et al., 1998, 1999). Amastigotes take advantage of
carbohydrate epitopes present in Ssp-4 to attach to host cells
prior to invasion (Silva et al., 2006).

The general expression of these proteins offers a potential
target for novel therapies; besides inhibition of crucial biological
pathways for parasite survival, the infective form appears to be a
prospective strategy in specific drug discovery.

MODULATION MECHANISMS OF
EXTRACELLULAR VESICLES CARGO

Approximately 367 distinct proteins were identified as cargo
of secreted vesicles and exosomes produced by T. cruzi. These
proteomic analyses classified those proteins into 16 categories,
involving host-parasite interaction, signaling, transporters,
oxidation-reduction, carbohydrate metabolism, and others
(Bayer-Santos et al., 2013).

To invade host cells, T. cruzi metacyclic trypomastigote
forms use distinct sets of surface and secreted molecules that
interact with the host cell; some were found as cargo of
microvesicles. In the past, different biological functions have been
attributed to EVs (Denzer et al., 2000). Today, it is accepted
that EVs represent an essential machinery for intercellular
communication. Virulence factors delivery via vesicles cargo
offers a potential mechanism to affect the host cells compared
to simple diffusion (Mashburn-Warren and Whiteley, 2006;
Rodrigues et al., 2008; Figure 1).

Trypanosome-secreted vesicles are associated with an inner
plasma membrane leaflet protein, like flagellar calcium-binding
protein (FCaBP), a-galactosyl glycoconjugates, GP35/50, and
gp85/trans-sialidase superfamily (Trocoli Torrecilhas et al., 2009;
Bayer-Santos et al., 2013). These compounds are important
in parasite adhesion to host cells and probably have similar
functions when located on secreted vesicles (Yoshida and Cortez,
2008). Also, inside extracellular vesicles, there are components
with acid and alkaline phosphatase activities responsible for
increased parasite adhesion and infection (Neves et al., 2014).

The nutrient starvation in epimastigotes induces the secretion
of extracellular vesicles carrying small tRNAs and TcPIWI-tryp
proteins as cargo. This cargo could be transferred to other
parasites and to mammalian cells, increasing metacyclogenesis,
and susceptibility of mammalian cells to infection (Fernandez-
Calero et al., 2015).

Molecules secreted by T. cruzi into the extracellular medium
may also participate in parasite internalization. The cruzipain
is main cysteine protease of the T. cruzi and is present
in all stages of the parasite, more abundant in replicating
forms. In epimastigote, it is found in organelles similar to
lysosome, the “reservosomes,” specific organelles pre-lysosomal-
epimastigote, the reservosomes that are exocytic fusion of MVBs,

resulting in exosomes (Bayer-Santos et al., 2013; Zanforlin
et al., 2013). In amastigotes, cruzipain is associated with the
plasma membrane through a GPI anchor. Other isoforms of
this protein are secreted into the medium by trypomastigotes,
which contributes to the virulence factor of Chagas disease
(Santos, 2010; Alvarez et al., 2012). Cruzipain matures in the
Golgi apparatus and is reserved in reservosomes, where it
is also active. It promotes the penetration of trypomastigotes
in host cells and plays an important role in the intracellular
development and metacyclogenesis, in development of host
immune response, and in the interaction with the insect
host (Santos, 2010; Ferrão et al., 2015). This enzyme also
contributes to the parasite’s invasion in mammalian cells through
the proteolysis of high and low molecular weight kininogen
or by the activation of the cascading plasma prekallikrein
conversion for active kallikrein (acting as kininogenases), then
it in occurs the production of proinflammatory peptide (Lys-
bradykinin), which interacts with receptors B2 (bradykinin
receptor), G protein-coupled, inducing the increase of transient
intracellular free calcium (Ca2+) (Del Nery et al., 1997;
Scharfstein et al., 2000; Santos, 2010; Alvarez et al., 2012). The
elevation of intracellular Ca2+ is one of the parasite invasion
pathways leading to synaptotagmin VII-dependent migration
and lysosome fusion to parasite binding site, preceding the
formation of the parasitophorous vacuole (Aparicio et al.,
2004). Cruzipain also works as an escape mechanism of
the host immune response, because it makes digestion of
“hinges” off all humans IgG subclasses (Berasain et al.,
2003).

The contents of extracellular vesicles are enriched with
glycoproteins of the gp85/trans-sialidase (TS) superfamily and
other a-galactosyl (a-Gal) containing glycoconjugates, such as
mucins; these proteins are released in different amounts, which
may be determinant in the immunopathologic events not only
in the early steps of infection, but also in the chronic phase
(Nogueira et al., 2015). GP85/trans-sialidase has been shown as
a conserved sequence or motif, called FLY, localized upstream
to the C-terminal of the gp85/TS molecules. It promotes
cell adhesion by binding to the intermediate filament protein
cytokeratin-18 (CK18), which allows for dephosphorylation and
activates ERK1/2 (extracellular signal regulated kinase) signaling
cascade. This ERK1/2 cascade increases parasite entry into
mammalian cells because these kinases are important for FLY
binding to host cell, and consequently, in dephosphorylation
of CK18 inducing redistribution and disassembly of filaments
(Magdesian et al., 2006). This interaction is not limited to
cytokeratin 18 (CK18), which may explain the wide variety of
cells infected by the parasite (Tonelli et al., 2010).

GP82 is a cell adhesion molecule that binds to the host
cell and is implicated in host-cell invasion of highly infective
T. cruzi strains (Ramirez et al., 1993). The signaling cascade
induced by gp82 when it binds to unknown receptors includes
the participation of phospholipase C (PLC), which generates
inositol triphosphate (IP3), which do Ca2+ mobilization from
endoplasmic reticulum (Yoshida et al., 2000; Yoshida, 2006).
This increase of intracellular Ca2+ leads to a rapid and transient
reorganization of host cell microfilaments, including disassembly
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FIGURE 1 | Mechanism of action by secreted proteins in vesicles. The graphical abstract shows the main proteins that are released in vesicles (TGF-β, Gp82,

Gp85/TS, SAP, Cruzipain) and their mechanisms of action, which increases the parasite invasion of the host cell.

TABLE 1 | Microvesicles cargo and respective function.

Components Function References

- FCaBP

- α-galactosyl glycoconjugates

- GP35/50

Host cell parasite adhesion. Yoshida and Cortez, 2008; Trocoli Torrecilhas et al., 2009;

Bayer-Santos et al., 2013; Neves et al., 2014

- Small tRNAs

- TcPIWI-tryp

Metacyclogenesis and susceptibility to infection. Fernandez-Calero et al., 2015

- Cruzipain Parasite host cell invasion. Digestion of “hinges” off

all humans IgG subclasses.

Del Nery et al., 1997; Scharfstein et al., 2000; Berasain et al.,

2003; Aparicio et al., 2004; Santos, 2010; Alvarez et al., 2012;

Bayer-Santos et al., 2013; Zanforlin et al., 2013; Ferrão et al., 2015

- GP85/trans-sialidase superfamily Cell adhesion, ERK1/2 activation. Magdesian et al., 2006; Tonelli et al., 2010; Nogueira et al., 2015

- GP82 Host cell phospholipase C (PLC). Ramirez et al., 1993; Dorta et al., 1995; Rodríguez et al., 1996;

Ruiz et al., 1998; Yoshida et al., 2000; Yoshida, 2006; Martins

et al., 2011

- SAP proteins Cell adhesion, lysosome exocytosis, calcium influx. Baida et al., 2006; Martins et al., 2011; Zanforlin et al., 2013

- TGF-β T. cruzi invasion, contributing to escape the

complement attack.

Cestari et al., 2012

of the actin cytoskeleton facilitating the invasion by parasites
(Dorta et al., 1995; Rodríguez et al., 1996; Ruiz et al., 1998;
Martins et al., 2011).

SAP proteins are released into the extracellular medium
by epimastigotes and metacyclic trypomastigotes as soluble
factors or as components of secreted vesicles. The SAP-CD has
regions SAP-NT (amino-terminal), SAP-CE (central), and SAP-
CT (carboxy-terminal) (Baida et al., 2006). The interaction of
SAP-CE fragment with host cells induce lysosome exocytosis

by up-regulating calcium, probably acting synergistically with
GP82 (Zanforlin et al., 2013). The lysosome exocytosis
contributes to the formation of parasitophorous vacuoles
(Martins et al., 2011).

Trypanosoma cruzi induce the release of exosomes from
the cells they infect, such as monocytes and lymphocytes;
these EVs also contain immunomodulatory cytokines,
as TGF-β. This cytokine bearing this MVBs promoting
enhance T. cruzi invasion leading to maturation and
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the continuation of the life cycle, contributing to escape
the complement attack, a fact demonstrated by the
inhibition of TGF-β by antibodies and receptor antagonists
(Cestari et al., 2012) (Table 1).

EXOSOMES AND TRYPANOSOMA CRUZI

INFECTION: DO THEY HAVE ANY IMPACT?

Antigens released via EVs are present at the parasite membrane
and in the flagellar pocket before secretion by the trypomastigote
(Gonçalves et al., 1991). Trocoli Torrecilhas and contributors
have suggested a potential role of EVs in increase virulence
by injecting them in BALB/C mice prior to infection with
Trypanosoma cruzi, which leads to increase parasitaemia, and
severe heart pathology and intense inflammation (Trocoli
Torrecilhas et al., 2009). T. cruzi trypomastigotes produce their
own EVs and can induce the production of EVs from other cells;
such EVs can bind to trypomastigotes protecting them against
lysis by the complement system (Cestari et al., 2012).

Both trypomastigote present in human blood and
epimastigote present in the insect vector release EVs from
the plasma membrane and from MVBs localized at the
flagellar pocket (Bayer-Santos et al., 2013). Fractionation
provided purified preparations of three fractions: the first
enriched in larger vesicles resembling ectosomes, the second
enriched in smaller vesicles resembling exosomes, and a
third fraction enriched in soluble proteins not associated
with extracellular vesicles. These data demonstrate a rich

collection of proteins involved in the metabolism, signaling,
nucleic acid binding, and parasite survival and virulence.
These findings support the notion that T. cruzi uses different
secretion pathways to excrete/secrete proteins (Bayer-Santos
et al., 2013).

The release of exosomes leads to an increase in IL-4 and IL-10
secretion observed with a reduction in iNOS expression in CD4+
T cells and macrophages. This mechanism inducesTh2 immune
response polarization causing dissemination and enhanced
parasite survival (Trocoli Torrecilhas et al., 2009; Coakley et al.,
2015).

Taken together, these data suggest T. cruzi-derived exosomes
may play an important role in the invasion of the host-cell and the
modulation of infection, favoring their perpetuation in the host.
However, the mechanistic machinery behind this activity and the
actual magnitude of the modulatory activity of these vesicles on
mammalian host infection are still unclear.
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