
Efficient sequential and parallel algorithms
for record linkage
Abdullah-Al Mamun,1 Tian Mi,1 Robert Aseltine,2 Sanguthevar Rajasekaran1

1Department of Computer
Science and Engineering,
University of Connecticut,
Storrs, Connecticut, USA
2Institute for Public Health
Research, University of
Connecticut, East Hartford,
Connecticut, USA

Correspondence to
Dr Sanguthevar Rajasekaran,
Department of Computer
Science and Engineering,
University of Connecticut, 371
Fairfield Road, Unit 2155,
Storrs, CT 06269-2155, USA;
rajasek@engr.uconn.edu

Received 29 May 2013
Revised 1 October 2013
Accepted 5 October 2013
Published Online First
23 October 2013

To cite: Mamun A-A, Mi T,
Aseltine R, et al. J Am Med
Inform Assoc 2014;21:
252–262.

ABSTRACT
Background and objective Integrating data from
multiple sources is a crucial and challenging problem.
Even though there exist numerous algorithms for record
linkage or deduplication, they suffer from either large
time needs or restrictions on the number of datasets that
they can integrate. In this paper we report efficient
sequential and parallel algorithms for record linkage
which handle any number of datasets and outperform
previous algorithms.
Methods Our algorithms employ hierarchical clustering
algorithms as the basis. A key idea that we use is radix
sorting on certain attributes to eliminate identical records
before any further processing. Another novel idea is to
form a graph that links similar records and find the
connected components.
Results Our sequential and parallel algorithms have
been tested on a real dataset of 1 083 878 records and
synthetic datasets ranging in size from 50 000 to
9 000 000 records. Our sequential algorithm runs at
least two times faster, for any dataset, than the previous
best-known algorithm, the two-phase algorithm using
faster computation of the edit distance (TPA (FCED)).
The speedups obtained by our parallel algorithm are
almost linear. For example, we get a speedup of 7.5
with 8 cores (residing in a single node), 14.1 with 16
cores (residing in two nodes), and 26.4 with 32 cores
(residing in four nodes).
Conclusions We have compared the performance of
our sequential algorithm with TPA (FCED) and found
that our algorithm outperforms the previous one. The
accuracy is the same as that of this previous best-known
algorithm.

INTRODUCTION
Identifying duplicates in voluminous datasets is a
crucial problem in many areas of science and engin-
eering. This is especially true for medical records
of individuals from different health agencies.
Integration of medical records provides a great
opportunity to analyze and evaluate disease evolu-
tion.1 2 Methods3 exist for linking records across
multiple medical data centers to identify disease
origin and diversity.4 Copy detection in digital
documents also employs data integration techni-
ques to detect similarities.5 6 Data integration tech-
niques integrate records across different data
sources, usually in the absence of any global identi-
fier. This is a way to identify individuals who have
records in different datasets. If all the records per-
taining to the same individual are exactly correct,
the problem of identifying duplicates will be
straightforward to solve. Unfortunately, records of
the same person might look different owing to
errors introduced by typing, phonetic similarity,

etc. As a result, the record linkage problem is very
challenging. Existing algorithms take a very long
time, especially when the data size is large. Thus, it
is still an important open problem to discover
faster algorithms. In this paper we propose a
sequential algorithm that is up to two orders of
magnitude faster than one of the prior algorithms,
the two-phase algorithm using faster computation
of the edit distance (TPA (FCED)).7 We also
present a parallel algorithm that achieves a nearly
linear speedup.
A huge number of approaches have been devel-

oped in the literature. Most of these algorithms
link two datasets at a time. In practice, we have
much more than two datasets. If we have two data-
sets A and B and if na and nb are the numbers of
records in them, respectively, then in the worst case
we have to process na×nb record pairs.8 Some
learning algorithms generate comparison vectors
and classify them,9 which takes a large amount of
time to generate the vectors.
As the basis for our algorithms, we have used

hierarchical clustering,10 11 which is also widely
applied in information theory,12 gene expres-
sion,13–16 data mining,17 18 health psychology,19

and many other fields to identify distributions of
corresponding objects or data. Our algorithms use
the single linkage method to calculate distances. To
reduce load on calculating linkages, we employ
radix sort initially on records.20 Our algorithms
also consider different types of errors including
typing distance, reversal of the first name and the
last name, use of nicknames, truncation of attri-
butes, etc.7 We have thoroughly tested our algo-
rithms on a large number of synthetic and real
datasets. These tests show that the proposed algo-
rithms outperform previous algorithms in terms of
time and space. The parallel algorithm achieves a
very nearly linear speedup.

BACKGROUND AND SIGNIFICANCE
Record linkage among multiple datasets typically
involves millions of records and hundreds of thou-
sands of individuals. The problem of record linkage
can be thought of as one of clustering the records
such that each cluster has records pertaining to one
and only one individual.21 Clustering, in general, is
the process of partitioning objects so that similar
objects are grouped into the same group (ie,
cluster). A number of clustering methods can be
found in the literature, including hierarchical clus-
tering, graph-based clustering, statistical clustering,
and centroid based clustering. Any clustering
method employs a metric (known as linkage) for
defining the distance between two clusters.
Distance between two clusters indicates how similar
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these two clusters are. In complete linkage, distance between
two clusters (of records) A and B is defined as the maximum dis-
tance between a record in A and a record in B, while single
linkage uses the minimum distance. The distance between two
given records can also be defined in a number of ways.
Examples include the Levenshtein distance (also known as the
edit distance) and the Hamming distance.

Hierarchical clustering can be done in two different ways: (1)
The agglomerative approach (bottom-up) starts with n clusters
(where n is the number of records or points to be clustered),
where each cluster has a single point. From there on clustering
happens in iterations where in each iteration the two closest
clusters are merged into one. Iterations stop when we have only
a single cluster containing all the n points. The sequence of
merging steps done in the algorithm can be represented as a tree
called a dendrogram. If we have a target number of clusters in
mind, we can cut the dendrogram at an appropriate level. The
dendrogram can also be cut using a cluster threshold distance.
(2) The divisive clustering approach (top-down) starts with a
single cluster having all the n points. This cluster is then split
hierarchically until we end up with n clusters, each cluster
having a single point.

In this paper we employ agglomerative hierarchical clustering,
using single linkage. We treat each record as a string of charac-
ters and define the distance between two records based on edit
distance. Different kinds of common errors have been taken
into account: reversal of first and last names, truncation of attri-
butes, etc.7

METHODS
Previous methods
A simple brute force approach for record linkage is to compute
the distance between every pair of records and identify the pair
as a match or a non-match. This would take too much time.
Some of the previous methods generate comparison vectors and
define classification.9 Cluster-based entity resolution that uses
both relational and attribute information has been shown to
perform better than attribute-based record linkage.22 Linking
several datasets using record linkage methods23 and deduplica-
tion24 to merge records and remove repetitions are popular
techniques. A wide range of studies on methods for record
linkage have been done.25 The expectation-maximization (EM)
algorithm provides improved decision rule in the Fellegi–Sunter
model of record linkage by employing probability estimation.26

Traditional probabilistic linkage models classify pairs of records
as matches if they agree on some of their common attributes,
and non-matches otherwise.27 The probabilistic linkage system
AutoMatch results in better linkage quality than some determin-
istic ones, as shown in a recent study.8 Many other probabilistic
methods also exist.28–30 Identity uncertainty and citation match-
ing problems have been solved by the relational probability
model.31 Conditional models also cover the problem of identity
uncertainty.32 Conditional random fields have been used to
segment and label data.33 These are also applied in a relational
partitioning algorithm.34 Multi-relational record linkage allows
propagation of matches.35 Personal name matching techni-
ques,36 distance calculation,37 matching methods,38 automated
correction of text techniques,39 longest common substring,40

and many other techniques are also available for comparisons.
FEBRL is famous for the linkage of two datasets.41 42

IntelliClean is another framework to identify duplicates by com-
puting the transitive closure under uncertainty and anomalies
efficiently.43 The multi-pass approach for merge/purge problem
considers alternate key attributes and applies these results to

compute the transitive closure.44 Many of these techniques use
a blocking phase as a preprocessing step where the records are
hashed into buckets (or blocks) based on some of the characters
in the records, including canopy clustering.45 Unsupervised and
unconstrained partition-based clustering algorithms exist which
are different from hierarchical clustering methods.46 We have
improved the TPA (FCED) algorithm, which is one of the
fastest known record linkage algorithms, significantly.

Some parallel algorithms for hierarchical clustering have been
developed.47–50 Parallel methods for record linkage also
exist.51–54 P-Swoosh uses match and merge processes, and also
uses domain knowledge.51 An algorithm that performs better
than P-Swoosh has been reported.52 This algorithm achieves an
almost linear speedup, for example 6.55–7.49 on eight proces-
sors. A different blocking technique in initial data partitioning
followed by a matching phase has also been introduced.53 54

Algorithms that we propose in this paper are based on single
linkage hierarchical clustering. Single linkage has been shown to
perform better, from a time complexity perspective, over com-
plete linkage and average linkage.48 An analysis on different lin-
kages in hierarchical clustering has also been conducted.55

Our approaches
Naïve algorithms for record linkage take O(n2L2) time, where n
is the number of records and L is the maximum length of any
record. The length of any record is nothing but the total aggre-
gated length of all the attributes employed in the record linkage
analysis. When the data size is very large, these algorithms take
a very long time. Thus it was an important open problem to
devise faster algorithms. To make the record linkage process
faster and more reliable, we propose a very fast sequential algo-
rithm and a parallel algorithm.

Sequential algorithm
The proposed algorithm is independent of the number of data-
sets. Thus, we are able to integrate data from any number of
datasets in an elegant way. It is true that any algorithm that links
two datasets can be employed to integrate more than two data-
sets by invoking the algorithm multiple times, each time inte-
grating two. For example, if we have three datasets A, B, and C,
we can first merge A and B to get A0 and then merge A0 and
C. However, the output and accuracy of this approach will
depend on the order in which these pairwise merges are done.
In our sequential algorithm called RLA (record linkage algo-
rithm), we collect all the records from all the datasets and form
a collection X; we sort X after concatenating some or all of the
common attributes (first name, last name, gender, address, etc.)
in each record. Using this sorted list exact duplicates are elimi-
nated. Two records are treated as identical if they agree on the
common attributes. Note that in any record linkage algorithm
record distances are calculated using only these common attri-
butes. Let X0 be the set of records remaining after the elimin-
ation of duplicates. Clustering is performed on X0. We use
blocking on X0 based on l characters of the last names (for some
suitable value of l). Blocking may be done on last name, first
name, or any other relevant attribute. In our experiments on
real datasets we have realized that the use of last names yields
the best accuracy. Each block consists of records that share an
l-mer (ie, a substring of length l) in the last names. An l-mer is
also referred to as an l-gram in the literature. Two records r1
and r2 will be in the same block if they share at least one l-mer
in their last names. Since a record might share an l-mer with
many other records, it could be in many different blocks. If q is
the maximum number of blocks that a record is in and if n0 is
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the number of records in X0, then the expected size of each
block is qn0=26l, assuming the English alphabet. Single linkage
and edit distance are used for the clusters and records, respect-
ively. Instead of constructing the entire dendrogram, we utilize a
threshold τ (an input parameter) to generate a partial dendro-
gram that has only edges with distances no more than τ. Then a
graph G(V, E) is generated in which V is X0. Two nodes in V
have an edge between them if and only if they are in the same
cluster of the partial dendrogram from some blocking. Thus,
each connected component of G contains the records pertaining
to one individual.

Algorithm 1: RLA
1. Collect all the records from all the datasets and form a

single list X.
2. Sort the records in X and form groups such that each group

consists of identical records. Pick one record from each such
group and let X0 be the resultant collection of records.

3. Do blocking on X0. Specifically, there could be a block for
every possible l-mer. (Note that there are 26l possible l-mers
when the alphabet corresponds to English.) Consider one
such l-mer y. If two records have y as an l-mer in their last
names then these two records will be in the block correspond-
ing to y. If there is an l-mer y0 that does not occur in the last
name of any record, then the block corresponding to y0 will
be empty. Also, the same record could be in many different
blocks. So a record is going to be in (L− l+1) blocks where L
is the length of this record and the blocking size is l.

4. Cluster every block obtained in step 3. Employ hierarchical
clustering with single linkage. Specifically, two records r1
and r2 will belong to the same cluster if the distance
between them is no more than τ. We have employed a fast
algorithm for computing the edit distance between two
records. This algorithm, also used in Mi et al,7 takes O (τk)
time where k is the minimum of the two record lengths and
τ is the specified threshold.7

5. We generate a graph GðV; EÞ where V is the collection X0.
Two records have an edge between them if there exists at
least one cluster in at least one block in which both of these
records belong.

6. Find the connected components of GðV; EÞ.
7. Output each connected component as a cluster. While out-

putting a connected component, also output records that are
identical to records in the component. (Note that informa-
tion about identical records is available from step 2).

Analysis
The most time-consuming part of the proposed algorithm is the
calculation of linkages between records in blocks to generate the
graph GðV; EÞ. Let b be the number of blocks in X0, ba be the
average number of records in a block, L be the maximum length
of a record, n0 be the number of records in X0, and τ be the
threshold on the distance. The time complexity of algorithm 1
(steps 3–7) is Oðbb2aLtÞ. In practice we have noted that bba=O(n0)
and hence it takes O(n0baLτ) time for steps 3–7. Clearly, the
smaller the value of n0 the better will be the run time. Steps 1
and 2 of algorithm 1 take time that is linear in the size of X. We
refer to the average number of (identical) duplicates we have for
each record as multiplicity. Another prominent idea we have
applied is to cache misses. As the cache memory of each proces-
sor is limited and most of the times it is not enough to hold all
the records, cache misses occur frequently. We handle this issue
by copying frequently needed data into a separate array so that
these data will be in contiguous memory locations. TPA (FCED)

consumes a considerable amount of time in removing duplica-
tion of linkages. We have cut this amount of time by considering
a graph-based solution where we find connected components in
linear time.

Parallel algorithm
We have parallelized the sequential algorithm (parallel record
linkage algorithm, or PRLA), which achieves nearly linear
speedups. We keep a copy of the input list X with each proces-
sor. One of the processors is identified as the master and the
other processors are called slaves. Let p be the number of slaves.
The steps in the algorithm are enumerated below.

Algorithm 2: PRLA
1. The master broadcasts all the input records to the slave

processors.
2. Each processor sorts a portion of X in parallel. Specifically,

the records of X are grouped based on the first two charac-
ters of the last names. Note that there are 262 possible
2-mers of characters and hence there are these many possible
groups (some of which could be empty). Each processor
sorts 262=p groups. As a by-product of this sorting, each
processor picks a representative from every group of identi-
cal records that it sorted. In other words, we form X0. The
slaves inform the master about their findings.

3. The master assigns jX0j=p number of records from X0 to
each processor for the purpose of blocking. Each processor
then performs blocking on its records and sends the blocks
information to the master.

4. The master aggregates the blocks. In particular, let y be
some possible l-mer. Parts of the block corresponding to y
could be with multiple processors. The master merges these
partial blocks.

5. Let B1;B2; . . . ;Bt be the blocks in X0. Note that t≤26l,
where l is the blocking size. Let ni ¼ jBij, for 1 � i � t. The
master sorts n21; n

2
2; . . . ; n

2
t values in descending order. Let

s ¼ Pt
i¼1 n

2
i . The master then distributes the blocks among

the processors so that the work assigned to each processor is
nearly even. Specifically, the distribution is such that the sum
of squares of block sizes assigned to any processor is nearly
s=p.

6. The next task is to generate the graph GðV; EÞ. To do this,
each processor finds the edges in its blocks along the same
lines as in the sequential algorithm. All of these edges from
all the processors are sent to the master.

7. The master finds the connected components in the graph.
These connected components together with the initially
removed copies of records yield us the clusters of interest.

Analysis
Let n be the number of records and n0 be the number of distinct
records in the input. Let L be the maximum length of any
record in the input.

In step 1, the broadcasting takes O(n) time. Grouping in step
2 can be done by sorting the records based on two characters
and hence this sorting step takes O(n) time as well. Once the
groups are formed (based on two characters), we can expect
each group to have n/262 records and hence the sorting of
groups takes an expected O(n/p) steps. The communication of
the slaves with the master takes O(n) time.

In step 3, the master sends a subset of X0 to each of the
slaves. This communication takes O(n0) time. If l is the blocking
size, then, each processor spends Oðn0=pðL� lþ 1ÞÞ time in
forming the blocks. Note that there will be a total of 26l blocks.
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Each slave sends the master information about its blocks. In par-
ticular, for every block it sends a list of indices of all the records
that belong to this block. As a result, the amount of information
sent from each slave to the master is Oðn0=pðL� lþ 1ÞÞ.
Therefore, the total communication time in this step is O(n0(L
− l+1)).

In step 4, aggregation of the blocks received from all the
slaves in step 3 is done in O(n0(L− l+1)) time by the master.
Then a sorting is done on the list of sizes of the blocks. This
takes O(26l) time using radix sort.

In step 5, the blocks are distributed among the slaves such
that the value of s is nearly balanced across the slaves. Note that
this problem is NP-complete. We use the sum of squares of
block sizes to compute s for the following reason. To compute
the edges within each block, in the worst case, each record is
compared with every other record. As a result, the worst case
time spent on each block is proportional to the square of the
block size. We have tried several ways of distributing the blocks.
In each of these ways, a block might get split between two adja-
cent processors to ensure a close partitioning. Therefore, each
of the techniques we have employed does not guarantee an
exactly even partitioning (or an optimal partitioning). One
simple partitioning we have used is to use the sorted list
Q ¼ n21; n

2
2; . . . ; n

2
t . We will identify a minimum prefix of this

sequence whose sum equals or exceeds s/p. If this prefix sum
equals s/p, then this prefix sequence of blocks will be assigned
to the first processor. If this prefix sum exceeds s/p, then the last
block in this prefix sequence will be split between the first and
the second processors. The splitting will be done to ensure that
the work assigned to the first processor is as close to s/p as pos-
sible. By the work assigned to a processor we mean the sum of
squares of the blocks assigned to the processor. In the case of
the prefix sum exceeding s/p, a portion of the last block in this
prefix sequence will be assigned to the second processor. The
second processor will also be assigned the next number of
blocks in the sorted sequence Q. This number of blocks will be
such that the work assigned to this processor is nearly s/p, and
so on. The time taken by the master in step 5 is O(t) where t is
the number of blocks. If the blocking size is l, then t≤26l. After
this, the master creates a list of records for each slave to work
on. This takes O(n0(L− l+1)) time. Subsequently, the master
sends the individual lists to the slaves. This communication also
takes O(n0(L− l+1)) time.

In step 6, each processor works on its blocks. The time spent
in this step is O(s/p). Note that the expected size of each block
is n0 (L− l+1)/26l. Also, the time spent in computing the dis-
tance between any two records is O(τL). Thus the expected
value of s is ððn0Þ2ðL� lþ 1Þ2=26lÞtL. Our empirical results
indicate that the total number of edges generated across all the
processors is O(n0(L− l+1)). In this case, the communication
time is O(n0). As a result, the connected components in step 7
can also be found in O(n0(L − l+1)) time.

In summary, the total expected run time of the algorithm is
Oðnþ n0ðL� lþ 1Þ þ ððn0Þ2ðL� lþ 1Þ2=p� 26lÞtLÞ. It turns
out that the last term is the dominating one among the three
terms in this time complexity. Table 4 explains why we get a
speedup that is close to linear. Please note that blocking is
quite useful in reducing the run time. For example, even if
L=15, for a value of l=3, the value of ðn0Þ2ðL� lþ 1Þ2=26l is
0.0096 (n0)2.

Also, the run times of most of the (sequential and parallel)
algorithms found in the literature depend on n2. Thus the work
done by our algorithm is expected to be significantly better than
competing algorithms since our run time depends on (n0)2. In

practice the value of (n0)2 is much smaller than that of n2.
Although parallel algorithms exist (see Greiner,56 for example)
for finding connected components, we have not used them here
since the time needed for this step is very small.

RESULTS
We have implemented our sequential version for simulated data
in C++ to make a better comparison with the parallel version,
as PRLA has been implemented using MPI with C++. We have
also used C++ implementation of the TPA (FCED) algorithm
to compare with our sequential version. As TPA (FCED) was
originally implemented in java, we have also implemented our
algorithm in java to make a fair comparison with the results in
Mi et al.7 Our sequential algorithm outperforms TPA (FCED),7

especially when the multiplicity is large.
We have tested our algorithms on both synthetic and real

data. We have collected real datasets from the Connecticut
Health Information Network (CHIN). As TPA (FCED)7 ensures
very high accuracy of record linkage but consumes a large
amount of time, our main purpose was to provide a much faster
solution. So we have developed our algorithms in such a way
that the accuracy remains the same, but the algorithms run
much faster. In the blocking phase, we have used 4-mer for all
the experiments. The value of l in the blocking phase has to be
chosen carefully. If l is low, the accuracy will be high. A higher
value will result in a reduction in the run time but the accuracy
might suffer.

Results on simulated data for the sequential algorithm
The implementation has been deployed in the HORNET cluster
housed in the Booth Engineering Center for Advanced
Technology (BECAT), University of Connecticut. This cluster
has 64 nodes, each of which has 12 Intel Xeon X5650
Westmere cores, 48 GB of RAM, and 500 GB of local storage.

Running time of our algorithms is independent of the
number of datasets as we add all the records to a single list and
work with only this list. As in TPA (FCED),7 we have employed
both constant and proportional threshold values in the cluster-
ing step. Our algorithm has been tested for each type of distance
calculation. The total number of records used for this test
ranges from 50 000 to 5 000 000 to reveal the power of our
algorithm. Five records have been generated for each individual,
in which four are error free. So, on the five records of any indi-
vidual, exact clustering will find two clusters.

To compare with TPA (FCED), we employ edit distances of
two attributes, namely the first name and the last name. TPA
(FCED) spends around 650.49 s for 1 000 000 data whereas
our algorithm takes only 92.99 s, which is seven times faster for
this amount of data. Table 1 summarizes the comparison.
Figure 1 provides a graphical representation of this comparison.

When the input data contains a large number of records, TPA
(FCED) spends too much time to complete. Table 2 displays the
time taken by RLA on various steps.

When we have 1 000 000 records, finding clusters using exact
matching (steps 3–6 in the sequential algorithm) takes only
8.8 s. The size of X0, after removing duplicates, is only 387 707.
From table 1, we see that TPA (FCED) takes around 178.74 s to
find clusters for 400 000 records. But RLA clusters 387 707
records by approximate clustering within 83.21 s. This improve-
ment is because of the graph-based solution and the avoidance
of cache misses. So clustering of 1 000 000 records takes only
92.99 s. Even when the multiplicity is 1, our algorithm runs
around two times faster than TPA (FCED). Since in practice the
multiplicity of data is more than 1, our algorithms run much
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faster as shown in figure 1. Our proposed algorithm is more
than 20 times faster than the previous algorithm TPA (FCED)
on the datasets of records having a multiplicity of 5. Figure 2 is
a graphical representation of table 2.

A similar experiment, which uses reversal edit distance, also
shows superiority of the RLA algorithm. Reversal edit distance
takes in two groups of attributes, calculates edit distance in both
original direction and reversal direction, and returns the smaller
one. In our experiments, we aggregate the edit distance of the
first attributes of the two records and the edit distance of the

second attributes of them. Again we add the edit distance
between the first attribute of the first record and the second
attribute of the second record and the edit distance between the
second attribute of the first record and the first attribute of the
second record. We then take the smaller of these two distances,
as this is the reversal distance value. Figure 3 shows almost the
same efficiency for RLA on this distance as well.

But in this case, both the algorithms take more time than that
for the previous distance calculation as two edit distances are
needed to be calculated as per the definition of reversal
distance.

We have performed another experiment using edit distance as
the distance method but adding a parameter, namely truncation
count. We have used a truncation count of 2, which means that
we only employ the first two characters of any attribute con-
cerned. Both the algorithms produce more clusters in this case.
The process is slow since more linkages will have to be dealt
with. Figure 4 shows the comparison.

Figure 1 Results on synthetic data (y axis denotes time in seconds; x axis corresponds to number of records in thousands). RLA, record linkage
algorithm; TPA (FCED),two-phase algorithm using faster computation of the edit distance.

Table 1 Comparison of results on simulated data

Number of records Algorithm Run time in seconds

50 000 TPA (FCED) 7.35
RLA 1.19

100 000 TPA (FCED) 24.81
RLA 3.67

200 000 TPA (FCED) 71.47
RLA 10.25

400 000 TPA (FCED) 178.74
RLA 26.09

600 000 TPA (FCED) 324.82
RLA 45.99

800 000 TPA (FCED) 489.43
RLA 68.67

1 000 000 TPA (FCED) 650.49
RLA 92.99

2 000 000 TPA (FCED) 1844.52
RLA 256.51

3 000 000 TPA (FCED) –

RLA 490.54
4 000 000 TPA (FCED) –

RLA 800.02
5 000 000 TPA (FCED) –

RLA 1123.85

–, the algorithm took too long to terminate.

Table 2 Analysis of results on simulated data (RLA)

Number
of
records

Number
of exact
clusters

Number
of
clusters

Exact
cluster
time

Approx
cluster
time

Merge
time

Total
time

50 000 19 582 12 130 0.21 0.95 0.03 1.19
100 000 39 201 23 965 0.48 3.11 0.08 3.67
200 000 78 453 46 487 1.11 8.97 0.17 10.25
400 000 156 934 88 725 2.71 23.04 0.34 26.09
600 000 232 866 130 746 4.67 40.74 0.58 45.99
800 000 309 615 173 617 6.52 61.42 0.73 68.67
1 000 000 387 707 214 912 8.8 83.21 0.98 92.99
2 000 000 771 004 427 269 27.21 227.31 1.99 256.51

3 000 000 1 154 323 639 501 45.07 442.46 3.01 490.54
4 000 000 1 537 531 851 729 61.69 732.89 5.44 800.02
5 000 000 1 920 723 1 064 825 77.14 1041.28 5.43 1123.85
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In the above cases, we have used constant threshold to find
clusters. The next test shows results for using proportional
threshold, which is dependent on the length of the considered
attributes. Results are shown in figure 5.

Proportional threshold sometimes works better as it is
dependent on the data. We omit details on the proportional
threshold, as the procedure is similar to the constant threshold.

Clearly, the threshold has a great impact on the accuracy of
clusters as a too small or too large threshold will normally yield
a low error-rate. That is why a training phase is needed to learn
the threshold.

Results on real data for the sequential algorithm
Our experiments on real data have been conducted on the CHIN
server for security reasons. The computer has a CPU of Intel(R)
Xeon(R) X5460, 3.16 GHz, and 4 GB RAM. The data come from
four different datasets having a total of 1 083 878 records.

Table 3 shows the comparison. RLA employs two attributes,
namely the first name and the last name. Within 15 s, it outputs
112 404 exact clusters. The rest of the steps take around 19 s.
The algorithm terminates within 34.5 s whereas TPA (FCED)
spends around 2961 s. RLA is 85 times faster than TPA (FCED)
for this real data. The accuracy is 93.0% for both.

Figure 2 Analysis of results on
synthetic data using the record linkage
algorithm (y axis denotes time in
seconds; x axis corresponds to number
of records in thousands).

Figure 3 Comparison on reversal edit distance (y axis denotes time in seconds; x axis corresponds to number of records in thousands). RLA, record
linkage algorithm; TPA (FCED),two-phase algorithm using faster computation of the edit distance.
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We have also used the date of birth attribute in addition to
the above two attributes. The running time is also impressive.
RLA takes only 48.7 s whereas TPA (FCED) takes 3402 s. In
this case, RLA is 70 times faster; 97.8% accuracy is achieved for
these data since the use of a larger number of attributes removes
many occurrences of false positives.

Results on simulated data for the parallel algorithm
In our experiments, we have used at most 32 cores from four
nodes, eight from each node. In this case, we have used another
set of synthetic data, in which the multiplicity is nearly 1.

An algorithm is fully parallel when the speedup is linear. We
have optimized our algorithm to make it almost linear. Table 4

Figure 4 Comparison on truncation edit distance (y axis denotes time in seconds; x axis corresponds to number of records in thousands).
RLA, record linkage algorithm; TPA (FCED),two-phase algorithm using faster computation of the edit distance.

Figure 5 Results on synthetic data using proportional threshold (t=0.1, y axis denotes time in seconds; x axis corresponds to number of records in
thousands). RLA, record linkage algorithm.
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analyzes the running time of PRLA for 6 million records. The
first column shows the number of cores used. The total time
spent in broadcast operations that take place in steps 1, 3, and 5
is shown as bcast. The total time for the other communications
that happen in steps 2, 3, 4, and 6 is shown as comm. As we
can readily see, these communication overheads are very low.
Master performs certain tasks on its own in steps 3, 4, 5, and
7. This total time is displayed as master in table 4. The time for
sorting and finding duplicates in step 2 is dedup. The total time
for blocking (block, in step 3), merging (merge, in step 4), distri-
bution of blocks (dist, in step 5), and finding connected compo-
nents (concomp, in step 7) is very low as well. Generating edge
lists is the major time consuming step. This time is shown as
edgelist. The fact that this step dominates the entire run time is
also revealed in our time complexity analysis above. The first

row, seq, shows the runtime consumed by sequential RLA.
Figure 6 graphically describes the data in table 4.

The time results are also shown in figure 7. The x-axis repre-
sents the number of cores used and the y-axis shows time in
seconds.

Our results show that the speedup is around 7.5 for eight cores
(that reside in a single node), 14.1 for 16 cores (residing in two
nodes), and 26.4 for 32 cores. Values show almost linearity in
speedup (figure 8). We have tested on 1, 2, 4, 8, 16, and 32 cores.

DISCUSSION
Our algorithms ensure the same accuracy as the previous algo-
rithm TPA (FCED). Accuracy and completeness have been calcu-
lated on real dataset. Social Security Number (SSN) or DDS
identification number was available for these records that we

Table 3 Results on real datasets (1 083 878 records)

Number of attributes Algorithm Time (s) Created clusters Correct clusters Number of individuals Accuracy % Com. %

2 TPA (FCED) 2961 94 381 87 756 108 800 93.0 80.7
RLA 34.5

3 TPA (FCED) 3402 101 864 99 562 108 800 97.8 91.6
RLA 48.7

Figure 6 Analysis of results on
synthetic data using the parallel record
linkage algorithm (y axis denotes time
in seconds; x axis corresponds to
number of processors).

Table 4 Distribution of running time for 6 000 000 records

Pr Total time
Seq bcast comm master dedup block merge dist edgelist concomp 4861.7 Speedup

1 0 0 3.95 74.44 4.07 0.26 50.22 4719.8 0.69 4853.5 1.00
2 0.06 0.8 3.75 54.56 2.21 0.16 49.15 2329.0 0.6 2440.3 1.99
4 0.1 0.38 3.19 21.3 1.19 0.11 19.68 1220.9 0.54 1267.4 3.84
8 0.23 0.34 2.96 12.04 0.7 0.08 10.03 622.18 0.54 649.1 7.50
16 2.56 1.99 2.76 8.35 0.4 0.07 2.72 325.58 0.67 345.1 14.1
32 3.48 2.08 2.52 5.73 0.21 0.06 0.71 169.0 0.53 184.3 26.4
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utilized for calculating the accuracy. These numbers were
revealed to us only after our algorithms produced the results.

To cluster records more accurately, an appropriate threshold
value is necessary. Such a threshold can be obtained in a learn-
ing process as described in Mi et al.7 The idea is to have a train-
ing phase in which records for which the right clustering is
known will be utilized. The whole procedure is described elab-
orately in Mi et al.7 We have used a constant threshold value of
1 and a proportional threshold value of 0.1.

Besides using edit distance, we have also employed reversal
edit distance and truncation distance. A common error occur-
ring in records is the reversal of the first and last names. In
these cases, reversal edit distance will yield better results.
Truncation distance is used when a specific portion of records is
sufficient for determining the clusters. All of these distance cal-
culations make our algorithms versatile.

We experimented on four real datasets of total size 1 083 878
records. Two datasets came from the University of Connecticut’s

Figure 7 Results on simulated data (for 6 million and 9 million records; y axis denotes time in seconds; x axis corresponds to number of
processors).

Figure 8 Speedup (for 6 million and 9 million records; y axis denotes speed up; x axis corresponds to number of processors).
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Dental Clinic (UCHC) and two from the Connecticut
Department of Development services (DDS).

To generate simulated data, we collected 200 000 records of
dead people from ssdmf.info. Each record has SSN, last name,
first name, middle name, date of death, and date of birth attri-
butes. Then we introduced 2–3 new characters in the first name
or last name for 90% of the records. For the others, we have
altered 1–3 characters of the first name or last name. We have
thus generated 1 000 000 records. Then we replicated the file
three times. We also generated another eight datasets of
1 000 000 records, introducing errors using the above
procedure.

CONCLUSIONS
To integrate a huge number of records across multiple datasets,
especially from diverse medical and health datasets, our algo-
rithms ensure very fast solutions with high accuracy.

The overall runtime of our algorithms depends on the multi-
plicity. Even for a multiplicity of 1, our algorithm is faster than
TPA (FCED) by a factor of 2. For larger multiplicities, our algo-
rithm achieves impressive speedups over TPA (FCED). For
instance, if the multiplicity is 10, then the speedup is more than
100. Runtime and accuracy of our algorithms also depend on
the value of l used for blocking. In general, some learning tech-
niques should be applied to figure out a good threshold value.
The parallel algorithm achieves a nearly linear speedup.
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