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Semi-supervised deep learning for the biomedical graph and advanced manufacturing

graph is rapidly becoming an important topic in both academia and industry.

Many existing types of research focus on semi-supervised link prediction and node

classification, as well as the application of these methods in sustainable development

and advanced manufacturing. To date, most manufacturing graph neural networks

are mainly evaluated on social and information networks, which improve the quality

of network representation y integrating neighbor node descriptions. However, previous

methods have not yet been comprehensively studied on biomedical networks. Traditional

techniques fail to achieve satisfying results, especially when labeled nodes are deficient

in number. In this paper, a new semi-supervised deep learning method for the

biomedical graph via sustainable knowledge transfer called SeBioGraph is proposed. In

SeBioGraph, both node embedding and graph-specific prototype embedding are utilized

as transferable metric space characterized. By incorporating prior knowledge learned

from auxiliary graphs, SeBioGraph further promotes the performance of the target

graph. Experimental results on the two-class node classification tasks and three-class

link prediction tasks demonstrate that the SeBioGraph realizes state-of-the-art results.

Finally, the method is thoroughly evaluated.

Keywords: graph, semi-supervised deep learning, knowledge transfer, link prediction, node classification

INTRODUCTION

Graph analysis can be used for various fields including linguistics (Akimushkin et al., 2017), social
sciences (Rozemberczki et al., 2019), and biology (Theocharidis et al., 2009; Subramani et al., 2015).
In biomedical graphics, the modeling of entities and their relations is indispensable for different
tasks. Specifically, discovering synergistic or antagonistic effects between multiple drugs through
drug-drug interaction graphs (Segura-Bedmar et al., 2011), developing new drugs for the disease
through drug-disease graphs (Zhu Q. et al., 2013), and assisting doctors in clinical decision-making
via disease-symptom graphs are some typical task scenarios (Li et al., 2019).

Biological graphs are notoriously complex and hard to decipher. Until now, many biomedical
graph analytic methods have been proposed to analyze it (Grover and Leskovec, 2016; Fan et al.,
2018; Zhang et al., 2018b). Most of these approaches transform the original data into vectorial
data. In addition, the representation of the network is updated by integrating neighbor node
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descriptions. Therefore, the structure information of the graph
is preserved by the low-dimension representation of nodes. The
various downstream tasks of the biomedical graph can be divided
into three categories, as follow: clustering, link prediction, and
node classification (Hamilton et al., 2017; Cai et al., 2018).
Among them, the clustering analytic task aims to capture subsets
of approximate nodes and then collect them together. The link
prediction task is referred to predicting possible links or missing
links. The node classification task is to determine the label
of nodes.

However, these state-of-the-art graph analytic approaches are
mainly evaluated on non-biomedical datasets. At the same time,
most biomedical image analysis methods have limited receptive
fields and only focus on shallow layers. These methods cannot
perform medical traceability analysis. Especially, it becomes
even more difficult to obtain satisfactory performance when
the quantities of labeled nodes are scarce. Prediction of a link
or classifying a node has been challenging, because manual
annotations are often expensive, only a few nodes are involved.
Most human-labeled biomedical graph features are always
insufficient, while machine-labeled biomedical graph features are
not sufficient to characterize entities. All these lead to the inability
to build reliable and effective models. It follows that it is even
more challenging to achieve semi-supervised deep learning for
on biomedical graph than on independent identically distributed
data (e.g., biomedical images).

More comparison details can be found in Table 1.

Matrix Factorization
Matrix factorization technology has been broadly utilized for
graph data analysis areas, including but not limited to social
networks, natural language processing, and computer vision.
Through matrix factorization, different kinds of the graph can be
presented as affinity. Besides, each vertex can be represented via a
low-dimensional vector. Both Locally Linear Embedding (LLE)
(Roweis and Saul, 2000) and Singular Value Decomposition
(SVD) (De Lathauwer et al., 2000) are first focus on factorizing
the 1st-order data matrix. And then, the method developed
Laplacian Eigenmaps (LE) (Belkin and Niyogi, 2003) and Graph
Factorization (GF) (Ahmed et al., 2013).

Due to the limitation of representation, researchers attempt to
retain the graph structure by constructing various high order data
proximity matrices, such as GraRep and HOPE. GraRep (Cao
et al., 2015) proposes using k-step transition probability matrices
to factorization. At the same time, it optimized through stochastic
gradient descent, but it only applies to undirected graphs. HOPE
(Ou et al., 2016) adopts network similarity measures to preserve
high order network frameworks.

Random Walk
To a specified starting node and corresponding graph, the
random walk approach choosees an adjacent node randomly
and walk to this node. Generally, if the graph is too small
or too large, this method is particularly useful to measure the
graph completely.

DeepWalk (Perozzi et al., 2014) is a recently proposedmethod,
which only suits social graphs with binary edges. In DeepWalk,

random walks are mainly adopted to enlarge the neighbor of
every vertex. However, it fails to provide a clear goal that
definitely expresses which graph properties are retained. At the
same time, it only applies to the un-weighted graph. Similarly,
Node2vec (Grover and Leskovec, 2016) reserves the higher-order
proximity between various nodes. The node2vec uses a biased
random walk. It can balance the depth-first and breadth-first
search, so it can get more graph information than DeepWalk.
Additionally, Struc2vec (Ribeiro et al., 2017) first utilizes a
hierarchy weighted graph to encode the similarity between
nodes. In this structure, each layer k is decided by the k-hop
neighbor nodes.

Graph Neural Networks
Recently, GNNs are broadly adopted for data analysis (Kipf and
Welling, 2016; Ravi and Larochelle, 2016; Finn et al., 2017; Huang
et al., 2019; Liu et al., 2019; Zhang et al., 2019; Tang et al.,
2020). It aims to encode the nodes with signals that lie in the
receptive fields (Kipf and Welling, 2016). There are three lines
of GNNs methods: non-supervised methods, semi-supervised
methods, and supervised methods. All of these three approaches
have gained great breakthroughs in diverse graph-based tasks,
such as graph classification and node classification. However,
these progressive methods are most analyzed and evaluated on
non-biomedical graphs (e.g., social graphs) (Tang et al., 2015,
2016; Wang et al., 2016; Velickovic et al., 2017). Therefore, only a
few studies have targeted biomedical networks (Wang et al., 2017;
Gligorijevic et al., 2018; Ma et al., 2018; Zitnik et al., 2018).

In LINE (Finlayson et al., 2014), two functions are defined
which include a 1st-order and a 2nd-order proximities function.
And then, it minimizes the combination of the two functions.
The first-order proximity function is much the same as that of
the GF model (Ahmed et al., 2013). However, the LINE differs in
that there are two joint probability distributions for each vertices
pair, one using the embedding and the other using the adjacency
matrix. GAE (Tang et al., 2016) input an adjacency matrix that
relies on graph convolutional network encoder to obtain the
higher-order dependencies of nodes. They have proved that
the use of variational autoencoders can promote performance.
Structural Deep Network Embedding (SDNE) (Wang et al.,
2016) adopts auto-encoders to embedding graph nodes and
acquire highly non-linear dependencies. In this model, there are
two portions including supervised and unsupervised. For the
first supervised portion, it imposes punishment when similar
vertices are projected too far away from each other in the vector
space. For the latter, it is equivalent to an auto-encoder and
aims to find a representation for each node that can regenerate
its neighbor.

We adopt a biomedical graphs analytic method that which
has both excellent performance and enhanced interpretability.
We are proposed to leverage the prior knowledge acquired from
auxiliary graphs to enhance the performance of the target graphs.
In addition to local topological structures, the auxiliary graphs
and target graphs may share class-dependent node features. For
this purpose, we proposed SeBioGraph, a new semi-supervised
deep learning method for the biomedical graphs via knowledge
transfer. Base on semi-supervised metric few-shot learning, the
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TABLE 1 | A summary of 12 representative graph methods and existing work using them for a biomedical graph task.

Model Node classification tasks Link prediction tasks

Medical

term type

classification

Protein function

prediction

Drug-disease

association

prediction

Drug-drug

interaction

prediction

Protein-protein

interaction

prediction

Chemical-protein

interaction

prediction

Matrix factorization

Singular Value

Decomposition (De

Lathauwer et al., 2000)

N Y (Cho et al., 2016) Y (Dai et al., 2015) N Y (You et al., 2017) N

Locally Linear Embedding

(Roweis and Saul, 2000)

N N N N N Y (Pliakos et al., 2019)

Laplacian (Belkin and

Niyogi, 2003)

N Y (Fan et al., 2018) Y (Zhang et al., 2018b) Y (Zhang et al., 2018a) Y (Zhu L. et al., 2013) N

GF (Ahmed et al., 2013) N N Y (Yang et al., 2014;

Zhang et al., 2018b)

Y (Zhang et al., 2018a) N N

GraRep (Cao et al., 2015) N N N N N N

HOPE (Ou et al., 2016) N N N N N N

Random walk

DeepWalk (Perozzi et al.,

2014)

N Y (Cho et al., 2016;

Kulmanov et al., 2018)

N N N N

node2vec (Grover and

Leskovec, 2016)

N Y (Grover and

Leskovec, 2016; Zitnik

and Leskovec, 2017)

N N N N

struc2vec (Ribeiro et al.,

2017)

N N N N N N

Neural network

LINE (Tang et al., 2015) N N N N N N

GAE (Tang et al., 2016) N N N Y (Ma et al., 2018;

Zitnik et al., 2018)

N N

SDNE (Wang et al., 2016) N Y (Gligorijevic et al.,

2018)

N N Y (Wang et al., 2017) N

SeBioGraph intends to learn a transferable metric space, which
predicts the label of each node through the class of the closest
prototype to the node. It aims to optimize this mapping so
that geometric relationships in the metric space reflect the
structure of the original biomedical graphs. The metric space is
to combine two parts: the embedded node and the prototype of
each class.

The construction of SeBioGraph consists of the following
steps. At first, a graph encoder, which is mainly Graph Neural
Networks (GNNs) (Kipf and Welling, 2016), is utilized to
learn the information of every node. Accordingly, multiple
node features (e.g., disease feature, drug chemical substructure
features, and target protein feature) are mapped into a common
subspace. In this subspace, it maintains the immutability
of the original indication labels of nodes. Then, to obtain
biomedical graphs’ global information sufficiently, we construct a
relational framework for all identical category samples. Through
the embedding function of these two types of encrypted
structured knowledge, the problem of lack of labeled nodes is
compensated. After that, we design hierarchical biomedical graph
representations gate to emphasize the analogous biomedical
graphs having close metric spaces. Finally, in order to enhance
the quality of node representation and robustness of training, we
design an auxiliary graph constraint.

To sum up, our contributions can be outlined as follows:

• To the best of our awareness, it is the pioneering work
to successfully perform the sustainable knowledge
transfer to improve semi-supervised deep learning for
the biomedical graphs;
• We propose a novel SeBioGraph to address the issue, which
can simultaneously transfer all-graph-level and part-node-
level structures across different graphs;
• SeBioGraph outperforms baseline models in two benchmark
datasets in node classification tasks and five biomedical
link prediction tasks, showing its potential to serve as an
effective general-purpose representation learning algorithm
for biomedical graph data.

METHODOLOGY

In this part, we introduce our proposed method SeBioGraph
detailed. An illustration of the framework is shown in Figure 1.
Here, we describe four parts of the proposed structure: set and
biomedical graph input representations, prototype-based graph
neural networks, hierarchical biomedical graph representation
gate, and auxiliary biomedical graph.
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FIGURE 1 | The overall framework of SeBioGraph.

Set and Biomedical Graph Input
Representations
The input biomedical graph neural networks G = (A,N) contain
a collection of links and nodes, where is A ∈ {0, 1}m×m the
adjacent matrix, and N = {n1, ..., nm} ∈ Rm×h is the node feature
matrix. We set a batch of graphs {G1, ...,GNt } sampled from a
probability distribution ε .

Each node has two different functions in a biomedical graph:
first is local interactions with different classes of neighbors;
second is the same classes of neighbors. For example, (a)
the structure between drug-disease nodes describing their co-
association, as well as the structure between chemical-protein
nodes describing their co-interaction, (b) the local interactions
between protein nodes, chemical nodes, disease nodes, and drug
nodes. So we will use Si to denote a support-nodes set and Qi to
denote a query-nodes set, where:
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∑
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Where mSi is a small set of labeled, and yi,j ∈ {1, ...K} is the
corresponding label.

In graph Gi, the effectiveness on Qi is evaluated by the loss

function Li for every nodej, as shown in Equation (3). where
∣

∣

∣
Sk
′

i

∣

∣

∣

is the number of samples in Si. of class k, and Qk
i denotes the

sample set in Qi of class k. We then predict its relevant label by

jointing its embedding fθ (A, n
qi
i,j) :R

h → Rh
′
with representation

(fθ (A, n
si
i,j), y

si
i,j) in support nodes set Si through the similarity d.

Prototype-Based Graph Neural Networks
For each node in graph, the relation structure of the samples set
belonging to class is extracted firstly. It is constructed based on
similarity metrics (e.g., the inverse topological distance between
nodes and the number of k-hop common neighbors). We denote
the graph neural networks structured prototype as:

WheremSki is the number of nodes in Ski ,PGNNα(D
k
i , fθ (S

k
i )) is the

representation matrix in j− th node.
The globally shared parameter α of the PGNN is defined as a

gate function gi (more detail in section Results and Discussion) is
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defined as:

αi = gi
◦α = σ

(

Wghi + bg
)

◦α (5)

Where ◦ represents element-wise multiplication, Wg is a
learnable weight parameter, and bg is a learnable bias parameter.

Hierarchical Biomedical Graph
Representation Gate
In order to show the different topologies specific to the
graph, we following the popular method of hierarchical graph
modeling (Ying et al., 2018). Compare the PGNN with
globally shared parameters α , and the hierarchical biomedical
graph representation gate combines two-level detail. There are
biomedical graph node assignment and representation fusion.

Biomedical Graph Node Assignment
In this step, each low-level node kd (ind − thlevel) is assigned
to high-level node kd+1community. The biomedical graph node
assignment value is calculated by applying a softmax function,
which is defined as follows:

pk
d→kd+1

i =
exp

(

AGNN
(

Ad
i ,N

d
i

) [

kd, kd+1
])

K+1
∑

kd+1=1

exp
(

AGNN
(

Ad
i ,N

d
i

)

[

kd, kd+1
]

)

(6)

where AGNN is the assigned value of the biomedical graph node,
which is from the node kd in the bottom layer d to the node kd+1

in the high layer d + 1, the AGNN(Ad
i ,N

d
i )

[

kd, kd+1
]

∈ R1. So

we could be getting the biomedical graph node assignmentmatrix

PK
d→Kd+1

i ∈ RK
d×Kd+1

. It includes each level of biomedical graph

node assignment value pk
d→kd+1

i .

Representation Fusion
For level d + 1, the adjacent matrix Ad+1

i and the node feature

matrix Nd+1
i are defined as follows:

Ad+1
i =

(

Pd→d+1
i

)T
Ad
i P

d→d+1
i (7)

Nd+1
i =

(

Pd→d+1
i

)T
FGNN

(
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i ,N

d
i

)

(8)

where FGNN is the fusion GNN. Then, the feature representation

hd+1i can be obtained through jointing the information of all
nodes, which is defined as follows:

hd+1i = MaxPoolingK
d+1

kd+1=1

(

(

Pd→d+1
i

)T
FGNN

(

Ad
i ,N

d
i

) [

kd+1
]

)

(9)

So we could be getting the biomedical graph structure
representation set {h1i ,...,h

D
i } from varied levels. After that,

the overall biomedical graph structure representation hi
is represented by the aggregator AGG of each level. We

use attention aggregators to represent different levels of
contributions to the whole representation, which is defined as:

hi = AttAGG
({

h1i , . . . , h
D
i

})

=

D
∑

d=1

qTi h
d
i

D
∑

d′=1

qTi h
d′
i

hdi (10)

Where qi is a learnable query vector.
The biomedical graph representation gate gi maps the specific

graph representation hi to the identical space of parameter αi

as follow:

gi = T (hi) = σ
(

Wghi + bg
)

(11)

Thus, Equation (5) would be updated.

Auxiliary Biomedical Graph
Graph semi-supervised deep learning aims to learn a well-
generalized embedding function from previous graphs. This
function can be used to a new graph with a small support set.
At the same time, we need to design a new constraint loss
function to optimize the training robustness and the quality of
node embedding.

Ld (Ai,Ni) =

∥

∥

∥
Ai − GNNdec (Ai,Hi)GNN

T
dec (Ai,Hi)

∥

∥

∥

2

F
(12)

Where ‖·‖ F represents the Frobenius norm.
In the end, the optimization problem of SeBioGraph is defined

as follows:

Min8← 8− γ∇8

Nt
∑

i=1

Li (Ai,Ni)+ βLd (Ai,Ni) (13)

where 8 represents all learnable parameters.

EXPERIMENTS

Tasks and Dataset
In this section, we evaluate the quality of SeBioGraph for two-
class biomedical graph tasks in eight datasets. The first-class
tasks are node classification, i.e., protein-protein interaction
with functional annotations and semantic type classification of
medical term. The second-class tasks are link prediction, i.e.,
chemical-disease interaction prediction, drug-drug interaction
prediction, chemical-protein interaction prediction.

Node Classification Tasks
The task of node classification is a very important first step
of graph analysis. For a partly labeled graph, this task is
to predict the class of unlabeled nodes. In 2018, Gligorijevic
proposed to obtain the representation of proteins via developing
deepNF models (Gligorijevic et al., 2018). In the same year,
Lim adopts a method based on regularized Laplacian kernel,
which can learn the low-dimensional graph feature of proteins
(Fan et al., 2018). To evaluate the impact of semi-supervised
deep learning biomedical graphs, we use classification tasks
based on a single unlabeled node. Here, SeBioGraph focused on
the following two kinds of node classification tasks benchmark
experimental datasets.
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Medical Term Semantic Type Classification
We utilize a set of medical terms that can be obtained publicly
and their co-occurrence statistics datasets (Clin Term COOC)
(Finlayson et al., 2014). For two terms, we compute its co-
occurrence frequencies based on 1-day. Besides, we only save
those edges whose PPMI is greater than two. The Clin Term
COOC datasets contain 48,651 nodes.

Protein-Protein Interaction (PPI) With

Functional Annotations
There are two PPI graphs datasets containing functional
annotations, which are node2vec and MashUp. The first one is
Node2vec (Grover and Leskovec, 2016), and it contains the 3,890
proteins node. The second one is MashUp (Cho et al., 2016),
which contains six individual PPI graphs. It contains 16,143
proteins node and 300,181 protein-protein interactions.

Link Prediction Tasks
In the biomedical field, the discovery of new links (a.k.a.
association, interactions) is an important task. For a series of
biomedical entities and links, the purpose of this task is to
predict some other hidden interactions of entities. Most previous
methods focus on establishing biological feature engineering,
such as graph topological similarities (Hamilton et al., 2017) and
chemical substructures (Liang et al., 2017). After that, the semi-
supervised graph inference model or supervised deep learning
methods are utilized to predict potential interactions. In order to
compare the performance of our model with the previous model
more comprehensively. To compare performance with previous
models, SeBioGraph focused on the following five kinds of link
prediction tasks benchmark experimental datasets.

Chemical-Disease Association (CDA) Prediction
The Comparative Toxicogenomics Database (CTD) (Davis et al.,
2019) is a public biomedical graph based on literature, which
manually labeled associations between gene products, chemicals,
diseases, and so on. We filtered the association biomedical graph
between 12,765 chemical-disease nodes in the CTD graph.

Drug-Disease Association (DDA) Prediction
The DDA prediction database is NDF-RT (National Drug File
Reference Terminology) (Bodenreider, 2004) produced by the
U.S. Department of Veterans Affairs. The drug characteristics are
including related diseases, physiologic effects, and ingredients.
We filtered the association biomedical graph between 13,545
drug-disease nodes in the NDF-RT graph.

Drug-Drug Interaction (DDI) Prediction
The DDI prediction database is DrugBank (Wishart et al., 2018),
which contains detailed data about drugs including mechanisms,
interactions and drug targets.

Protein-Protein Interaction (PPI) Prediction
The PPI prediction database is STRING (Szklarczyk et al.,
2015), which includes indirect (functional) and direct (physical)
associations. We filtered the association biomedical graph
between 15,131 protein-protein nodes in the STRING graph.

Chemical-Protein Interaction (CPI) Prediction
The CPI prediction database is STITCH (Kuhn et al., 2007),
which includes the interaction information of more than 68,000
different chemicals and 2,200 drugs. It links them to 1.5
million genes across 373 genomes. We filtered the association
biomedical graph between 4,138,421 chemical-protein nodes in
the STITCH graph.

Experiments on the Parameter Settings
In these experiments, we use an open Python package of OpenNE
to train the node representation in the SeBioGraph. For the link
prediction tasks, our model is split the 80% for the training set
and 20% for the testing set. In this work, we follow the traditional
semi-supervised deep learning settings (Finn et al., 2017; Snell
et al., 2017). The is a two-layer graph convolutional structure.
In each layer, there are 32 neurons. For PGNN, AGNN, and
FGNN, we adopt a one-layer graph convolutional structure as
the substitute for GNN. Other weights are randomly initialized
from a zero-mean Gaussian distribution. We tuned all the
hyperparameters for our model 5-fold cross-validation for the
optimization of the hyperparameters and report as final results.

Results and Discussion
Node Classification Tasks
Table 2 illustrates the result of various biomedical graph analytic
methods on protein function prediction and medical term
semantic type classification task. We use two F1 weighted criteria
including Micro-F1 and Macro-F1 to evaluate the performance
of different approaches. For the Macro-F1, it computes metrics
for every label type, and then acquires their un-weighted mean.
For the Micro-F1, it computes metrics globally by counting
all samples.

We divided the traditional methods into four groups: matrix
factorization, random walk, graph neural networks, and our
model. First, the matrix factorization methods used many
features to the classifier, such as SVD, LLE, LE, GF, GraRep, and
HOPE. According to the result, they achieved a Micro-F1 score
of 42.4 ± 0.6% (GraRep) and a Macro-F1 score of 18.6 ± 0.7%.
This shows that modeling the first-order proximity directly could
be sufficient for basic classification nodes. The random walk
model can catch more different functions for nodes in different
subgraphs. The Node2vec performs better since it mostly pays
attention to modeling the structural identity of each node. But
the biomedical graph may not exist a clear structural role. Its
accuracy is limited. The other model of graph neural network
methods are an effective way for the node classification task.
There are GNN-based models such as LINE (Tang et al., 2015),
GAE (Tang et al., 2016), and SDNE (Wang et al., 2016). However,
the graph neural networkmethodsmay have several flaws. On the
one hand, it may be inaccurate. On the other hand, the parsing
time will be exponentially increased by data. The last model
is our model for SeBioGraph, which shows the advantage of
prior knowledge obtained from the learned graphs. Experimental
results show that our SeBioGraph reach an improvement of
1.2% on the Macro-F1 score and 3.8% on the Micro-F1 score.
Obviously, it exceeds the second-best Node2vec.
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TABLE 2 | Comparison between SeBioGraph and other node classification methods on three biomedical graph datasets.

Method Clin Term COOC Node2vec PPI MashUp PPI

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

Matrix factorization

SVD (De Lathauwer et al., 2000) 42.0 ± 0.5% 18.6 ± 0.7% 22.8 ± 1.1% 17.9 ± 1.1% 34.7 ± 1.4% 29.7 ± 1.4%

LLE (Roweis and Saul, 2000) 32.5 ± 0.7% 13.9 ± 0.4% 18.1 ± 0.9% 13.8 ± 1.2% 19.4 ± 1.3% 37.5 ± 1.2%

LE (Belkin and Niyogi, 2003) 31.3 ± 0.5% 7.3 ± 0.2% 10.1 ± 0.8% 7.0 ± 0.7% 13.2 ± 0.9% 10.7 ± 0.8%

GF (Ahmed et al., 2013) 35.2 ± 0.7% 14.3 ± 0.9% 16.8 ± 1.1% 12.1 ± 1.1% 29.0 ± 1.5% 23.7 ± 1.6%

GraRep (Cao et al., 2015) 42.4 ± 0.6% 17.7 ± 0.5% 23.8 ± 1.0% 19.3 ± 1.3% 33.4 ± 1.1% 28.3 ± 1.1%

HOPE (Cao et al., 2015) 39.5 ± 0.5% 16.3 ± 0.6% 20.8 ± 1.1% 15.2 ± 1.1% 32.2 ± 1.3% 26.6 ± 1.3%

Random walk

DeepWalk (Perozzi et al., 2014) 47.2 ± 0.5% 22.7 ± 0.7% 24.3 ± 0.1% 19.4 ± 1.1% 35.7 ± 1.1% 31.1 ± 1.2%

Node2vec (Grover and

Leskovec, 2016)

47.9 ± 0.5% 23.1 ± 1.0% 24.3 ± 0.9% 19.0 ± 1.1% 36.7 ± 1.2% 31.3 ± 1.3%

Struc2vec (Ribeiro et al., 2017) 25.3 ± 0.6% 3.8 ± 0.1% 9.4 ± 0.6% 6.1 ± 0.4% 12.0 ± 1.0% 8.7 ± 0.8%

Graph Neural networks

LINE (Tang et al., 2015) 45.3 ± 0.6% 20.5 ± 0.8% 23.6 ± 1.1% 17.6 ± 1.2% 35.2 ± 1.7% 29.6 ± 1.7%

GAE (Tang et al., 2016) 29.5 ± 1.2% 7.1 ± 0.7% 23.7 ± 1.4% 18.6 ± 1.4% 35.8 ± 1.3% 30.7 ± 1.4%

SDNE (Wang et al., 2016) 27.1 ± 1.6% 4.2 ± 0.7% 9.8 ± 1.0% 4.7 ± 0.7% 17.8 ± 1.3% 10.9 ± 1.2%

Our model

SeBioGraph 51.7 ± 0.9% 24.3 ± 1.0% 23.6 ± 1.1% 21.7 ± 1.0% 42.4 ± 1.4% 35.4 ± 0.9%

- Auxiliary 46.5 ± 1.1% 19.2 ± 0.7% 21.9 ± 0.9% 19.9 ± 1.0% 36.8 ± 1.2% 31.5 ± 0.9%

The meaning of bold is the best F1 precision.

TABLE 3 | Comparison of accuracy value between SeBioGraph and other link prediction methods on five biomedical graph datasets.

Method CTD CDA NDF-RT DDA DrugBank DDI STRING PPI STITCH CPI

Matrix factorization

SVD (De Lathauwer et al., 2000) 93.6 ± 0.2% 77.9 ± 0.3% 91.9 ± 0.1% 86.7 ± 0.1% 31.7 ± 0.4%

LLE (Roweis and Saul, 2000) 86.5 ± 0.3% 89.7 ± 0.4% 89.1 ± 0.2% 79.8 ± 1.0% 29.4 ± 0.3%

LE (Belkin and Niyogi, 2003) 85.6 ± 0.4% 93.0 ± 0.3% 79.6 ± 0.2% 63.9 ± 2.1% 23.2 ± 0.5%

GF (Ahmed et al., 2013) 88.4 ± 0.4% 72.0 ± 0.6% 88.2 ± 0.3% 81.7 ± 0.5% 32.1 ± 0.3%

GraRep (Cao et al., 2015) 96.0 ± 0.1% 96.3 ± 0.1% 92.5 ± 0.1% 89.4 ± 0.1% 41.4 ± 0.4%

HOPE (Ou et al., 2016) 95.1 ± 0.1% 94.9 ± 0.1% 92.3 ± 0.1% 83.9 ± 0.1% 42.7 ± 0.2%

Random walk

DeepWalk (Perozzi et al., 2014) 92.9 ± 0.2% 78.3 ± 0.4% 92.1 ± 0.1% 88.4 ± 0.1% 26.4 ± 0.3%

Node2vec (Grover and

Leskovec, 2016)

91.1 ± 0.2% 81.9 ± 0.5% 90.2 ± 0.1% 82.8 ± 0.3% 37.7 ± 0.6%

Struc2vec (Ribeiro et al., 2017) 96.5 ± 0.1% 95.8 ± 0.1% 90.4 ± 0.1% 90.9 ± 0.1% 44.0 ± 0.1%

Graph Neural networks

LINE (Tang et al., 2015) 96.5 ± 0.1% 96.2 ± 0.2% 90.5 ± 0.2% 85.9 ± 0.3% 36.2 ± 0.4%

GAE (Tang et al., 2016) 93.7 ± 0.1% 81.3 ± 0.7% 91.7 ± 0.1% 90.0 ± 0.1% 35.8 ± 0.1%

SDNE (Wang et al., 2016) 93.5 ± 1.0% 94.4 ± 0.4% 91.1 ± 0.6% 88.4 ± 0.8% 37.8 ± 0.8%

Our model

SeBioGraph 97.2 ± 0.5% 96.4 ± 0.6% 93.1 ± 0.3% 89.9 ± 0.6% 48.8 ± 0.7%

- Auxiliary 93.8 ± 0.5% 87.1 ± 0.5% 88.9 ± 0.3% 85.6 ± 0.4% 39.1 ± 0.5%

To demonstrate the effect of each portion in SeBioGraph,
the ablation experiments are implemented. By observing the
results, we find that the auxiliary biomedical graphmechanism in
SeBioGraph significantly outperforms Node2vec. Evidently, the
auxiliary biomedical graph module plays an indispensable role

in the experiment. Experimental results show that our model
achieved a Micro-F1 score of 51.7 ± 0.9%, which performs
better than other approaches. The auxiliary biomedical graph
module enhances the performance by 5.2% than the model not
applied it.
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Link Prediction Tasks
For link prediction tasks, we comparison accuracy values on
the five biomedical graph datasets: CTD CDA, NDF-RTDDA,
DrugBank DDI, STRING PPI, and STITCH CPI. We report the
averaged accuracy with 95% confidence intervals on the 10-shot
classification inTable 3. It manifests the accuracy value generated
for early prediction using graph neural networks, random walk
and matrix factorization methods. The results attest that our
SeBioGraph achieves a high accuracy value of 97.2± 0.5%, which
excels all competing for state-of-the-art approaches.

Generally, compared to traditionalmethods [e.g., LLE (Roweis
and Saul, 2000), LE (Belkin and Niyogi, 2003), and GF (Ahmed
et al., 2013)], the existing proposed approaches have greatly
enhanced the performance of link prediction. Especially in the
STITCH CPI dataset with large-scale aggregation and edges,
our methods are more effective. These results demonstrate that
our methods can improve prediction performance in various
biological link prediction tasks. Based on these results, we made
the following observations: First, we can see that SeBioGraph
significantly enhances the final result, which shows that
transferring knowledge from learned graphs is effective. Second,
our SeBioGraph achieves the best on all five datasets, indicating
the robustness of prototype-based graph neural networks,
auxiliary biomedical graph and hierarchical biomedical graph
representation gate. In addition, as a metric distance-based
semi-supervisedmethod, SeBioGraph outperforms other existing
methods and on the other hand, it achieves better performance
than non-supervised methods and supervised methods.

CONCLUSION

In this paper, we propose a novel framework called
SeBioGraph. Our method strengthens the effectiveness of
semi-supervised node classification and link prediction
on a new target biomedical graph through conducting
knowledge transfer which is learned from auxiliary
graphs. Built upon the semi-supervised deep learning,
SeBioGraph joints graph-level and local node-level
global knowledge to learn a transferable metric space
characterized. The experimental results show our proposed
model is effective for two-class biomedical graph tasks in
eight datasets.
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