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Abstract

Initial axial patterning of the neural tube into forebrain, midbrain, and hindbrain primordia occurs during gastrulation. After this
patterning phase, further diversification within the brain is thought to proceed largely independently in the different primordia.
However, mechanisms that maintain the demarcation of brain subdivisions at later stages are poorly understood. In the alar plate of
the caudal forebrain there are two principal units, the thalamus and the pretectum, each of which is a developmental compartment.
Here we show that proper neuronal differentiation of the thalamus requires Lhx2 and Lhx9 function. In Lhx2/Lhx9-deficient
zebrafish embryos the differentiation process is blocked and the dorsally adjacent Wnt positive epithalamus expands into the
thalamus. This leads to an upregulation of Wnt signaling in the caudal forebrain. Lack of Lhx2/Lhx9 function as well as increased Wnt
signaling alter the expression of the thalamus specific cell adhesion factor pcdh10b and lead subsequently to a striking anterior-
posterior disorganization of the caudal forebrain. We therefore suggest that after initial neural tube patterning, neurogenesis within
a brain compartment influences the integrity of the neuronal progenitor pool and border formation of a neuromeric compartment.
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Introduction

Segmentation is a fundamental step during vertebrate brain

development. It involves patterning of the cranial neural tube into

distinct and segregated transverse units aligned serially along the

longitudinal axis [1]. The most important prerequisite for

segmentation are borders between the successive neuromeres to

allow individual regionalization, growth, and acquisition of distinct

functional identity. This process may be hindered in an embryonic

brain by the fact that it rapidly increases in size and complexity.

Molecular mechanisms underlying segmentation have been

studied during development of the relatively simple hindbrain

region [2,3]. Expression patterns of many regulatory genes also

suggest a neuromeric organization of the embryonic forebrain

[4,5]. Recent studies support a segmental forebrain bauplan with

three prosomeres (P1–P3) (reviewed in [1]). Based on morphology

and gene expression the alar plate of the diencephalon is divided

into the prethalamus (P3), thalamus (P2), and pretectum (P1). The

epithalamus including epiphysis and habenular nuclei are part of

P2. The border between prethalamus and thalamus is defined by

compartment borders with the interposed narrow region known as

the zona limitans intrathalamica (ZLI). Extracellular cell adhesion

proteins such as Tenascin within the ZLI have been suggested to

mediate lineage restriction between the ZLI and the anteriorly

adjacent prethalamus and posteriorly adjacent thalamus [6–8].

Similarly, the diencephalic-mesencephalic border (DMB), at the posterior

limit of the pretectum, has been identified as a compartment

boundary where, in addition to Tenascin, an Eph-ephrin

dependent mechanism has been suggested to maintain cell

segregation [6,9,10]. Recent fate mapping studies suggest that

the border between the thalamus and the pretectum may also be

lineage restricted [11]. However, little is known about a possible

mechanism leading to cell lineage restriction between these

compartments. The embryonic thalamus (P2) becomes subdivided

into two molecularly distinct domains: the rostral thalamus (rTh)

marked by expression of the proneural gene Ascl1 and the caudal

thalamus (cTh), which expresses Neurog1 [12–14]. In tetrapods,

the rTh contributes to the majority of the GABAergic neurons in

the thalamus including ventral lateral geniculate (vLGN) and

intergeniculate leaflet (IGL), whereas the caudal thalamus gives

rise to predominately glutamatergic nuclei projecting to the

pallium [15–17].

LIM homeobox (Lhx) genes regulate developmental processes

at multiple levels including tissue patterning, cell fate specifica-

tion, and growth [18]. These selector genes act as highly similar

and highly conserved paralogs. They show a restricted expression

pattern in the developing caudal forebrain in frog and mouse;

Lhx1/Lhx5 mark the rTh and the pretectum, whereas expression
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of the Apterous group of Lhx2/Lhx9 is confined to the cTh [19–

22]. In the mouse, Lhx2 function is required for the acquisition of

neuronal identity in different regions such as the telencephalon

and nasal placode [23,24]. In the cortex, Lhx2 is required to limit

the adjacent cortical hem, which expresses BMP as well as

canonical Wnts. Both signaling pathways orchestrate hippocam-

pal development [25,26]. This suggests that Lhx2-mediated

neurogenesis is involved in maintaining the integrity of cortex. In

the diencephalon, the Lhx2/Lhx9 positive cTh is also enriched in

Wnt signaling pathway components in monkeys [27]. Corre-

spondingly, this region is located next to sources of canonical Wnt

ligands at the mid-diencephalic organizer (MDO), the signal-generat-

ing population in the ZLI, and at the diencephalic roof plate

[8,28]. Although the arrangement of these two Wnt positive

organizers and the Lhx2/Lhx9 expression pattern in the adjacent

Wnt receiving tissue is similar to that in the cortex, our

knowledge on their function during diencephalon development

is still lacking. During early patterning, Wnt signaling was

suggested to have an influence on induction of the thalamus [29–

31], but the function of Wnts during regionalization remains

unclear.

After initial anterior-posterior patterning of the neural tube

during gastrulation, it is believed that brain segments develop

largely independently. Here we show that Lhx2 and Lhx9 are

redundantly required to drive neurogenesis in the zebrafish

thalamus. Furthermore, we show that neuronal differentiation

mediated by Lhx2/Lhx9 has an impact on maintenance of the

thalamus boundaries. Lhx2/Lhx9 restrict the expression of the cell

adhesion factor Pcdh10b to the thalamus and therefore sustain the

thalamus as a true developmental compartment. Thus, Lhx2/

Lhx9 is required for proper development of the thalamus, the core

relay station in the brain, and for the integrity of the entire caudal

forebrain.

Results

In zebrafish, the Apterous group of LIM genes contains three

members: lhx2a, lhx2b, and lhx9 [32]. Lhx2a is expressed only in

the early-born olfactory relay neurons [33], whereas Lhx2b

resembles the expression pattern of Lhx2 as described in other

model organisms. To facilitate species comparison, Lhx2b is named

as Lhx2 throughout the article.

Fine Mapping of the Temporal and Spatial Expression of
Lhx2 and Lhx9 in the Caudal Diencephalon

To explore neuronal differentiation in the thalamus, we

examined the expression dynamics of lhx2 and lhx9 at early stages

of caudal forebrain development (Figures 1 and S1). We detect

expression of lhx9 in the diencephalon first at 30 hpf (primordial

stage 15; Figure 1a, asterisk), while at 42 hpf (high-pec stage), the

lhx9 expression domain broadens and an overlapping domain of

lhx2 expression becomes apparent (Figure 1b). At 48 hpf (long-pec

stage), lhx2 and lhx9 are co-expressed in the thalamus (Figure 1c,

asterisk). This expression is maintained at later stages (Figure S1).

A cross-section validates the overlap of Lhx2 and Lhx9 positive

cells, predominantly laterally in thalamic neuroepithilium

(Figure 1c9).

At 48 hpf, lhx9 expression is in proximity to, but with a distinct

separation from, the Shh-positive MDO and basal plate

(Figure 1d,d9). In order to determine the fate of cells in this shh

and lhx9 negative domain, we cloned the zebrafish homolog of the hey-

like transcription factor (helt). Helt has been described as a specific

marker of the prospective GABA interneurons of the rostral

thalamus (rTh), pretectum, and midbrain [34,35] and is required

for the formation of these interneurons in the mouse mesenceph-

alon [36]. The expression domain of helt abuts the rostral, ventral,

and caudal extent of the lhx9 expression domain (Figure 1e,e9).

Complementary to the helt expression, we find an overlap with

glutamatergic neurons marked by vglut2.2 at 3 dpf (Figure S1).

This suggests that lhx9 marks the caudal thalamus (cTh) and is

absent in the GABAergic rTh and pretectum in zebrafish. The

ßHLH factor neurogenin1 is strongly expressed in an intermediate

layer of the neuroepithelium of the cTh, most likely the

subventricular zone (Figure 1f,f9). Expression of neurog1 abuts the

expression of lhx9 in the cTh. The medial part of the lhx9

expression domain overlaps with the expression of the differen-

tiation marker id2a (Figure 1g,g9). The expression domain of the

thalamus-specific post-mitotic neuronal marker lef1 [16,37]

overlaps entirely with lhx9 (Figure 1h,h9). The dorsal limit of the

Lhx9 domain is adjacent to that of Wnt3a, a marker of the central

epithalamus (Figure 1i,i9). Nevertheless, the lhx9 expression

domain overlaps with the expression of the Wnt target axin2 in

the diencephalic alar plate (Figure S1), suggesting that Wnt

expression at the epithalamus/MDO might be required to activate

the Wnt signaling cascade in the thalamic territory.

Thus, we can define Lhx2/Lhx9 as a marker for post-mitotic

neurons of the thalamic mantle zone in zebrafish at 48 hpf.

Incomplete Development of Thalamic Neurons in Lhx2
and Lhx9-Deficient Embryos

At 48 hpf key markers for neurogenesis in the zebrafish brain

are expressed in a pattern representing best comparability with

amniote brains [38]. Therefore, we chose this stage for the

following analyses. To address the function of Lhx2 and Lhx9 in

the developing caudal thalamus, we used an antisense Morpho-

lino-based knock-down strategy (Figure S2). Neither lhx22/2

zebrafish mutant embryos (beltv24) [39] (n = 13) nor single

morphant embryos for either lhx2 or lhx9 (n = 29) are visibly

Author Summary

The thalamus is the interface between the body and the
brain. It connects sensory organs with higher brain areas
and modulates processes such as sleep, alertness, and
consciousness. Our knowledge about the embryonic
development of this central relay station is still fragment-
ed. Here, we show that the transcription factors Lhx2 and
Lhx9 are essential for the development of the relay
thalamus. Zebrafish embryos lacking Lhx2/Lhx9 have
stalled neurogenesis - neuronal progenitor cells accumu-
late but do not complete their differentiation into thalamic
neurons. In addition, we find that the neighboring Wnt-
expressing epithalamus expands into the space containing
mis-specified thalamus in these embryos. We identified a
thalamus-specific cell adhesion modulator, Pcdh10b,
which is controlled by canonical Wnt signaling. Altered
Wnt-dependent Pcdh10b function in Lhx2/Lhx9-deficient
embryos leads to intermingling of the thalamus and
adjacent brain compartments and consequently regional-
ization within the caudal forebrain is lost. Organization of
the developing CNS into molecularly distinct but transient
segments and the implications for regional differentiation
are well established for the developing hindbrain. We
conclude that this applies to caudal forebrain too: Lhx2
and Lhx9 emerge as crucial factors driving neurogenesis
and maintaining the regional integrity of the caudal
forebrain. These are two prerequisites for the formation
of this important relay station in the brain.

Function of Lhx2 and Lhx9 in the Caudal Forebrain
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distinguishable from uninjected wild type embryos (Figure S2)

similar to the situation in the Lhx2 knock-out mouse. However,

lhx2/lhx9 double morphant embryos showed significant disruption

of thalamic structure (Figure 2). This is consistent with their

overlapping expression domains in the diencephalon (Figure 1)

and suggests a functional redundancy within the Apterous group

during caudal thalamus development. Therefore, we focused on

an approach to reduce both Lhx2 and Lhx9 messages simulta-

neously by generating double morphant embryos. In addition, we

analyzed the lhx9 knock-down morphant in the zebrafish lhx2

Figure 1. Dynamic expression pattern of lhx2 and lhx9 during regionalization of the caudal forebrain. A double in situ hybridization
approach for thalamic development. Embryos were mounted laterally (a, b, c, etc.) or sectioned and the left hemisphere is shown (c9, d9, e9, etc.).
Plane of section is indicated in the previous picture with black arrowheads. Asterisks mark the position of the thalamus. Marker genes and stages are
indicated (a, b), all other embryos (c–i9) are 48 hpf. lhx2 expression is stained in red and lhx9 is stained in blue. lhx9 expression is revealed in the
thalamus at 30 hpf (a). At 42 hpf, lhx9 expression increases and lhx2 expression is detectable ventro-posteriorly within the lhx9 domain (b). At 48 hpf,
lhx2 and lhx9 overlap in the Th (c) and cross-section analysis reveals an overlap of both markers within the mantle zone of the thalamus (c9). The shh-
positive mid-diencephalic organizer (MDO) is located anterior to the lhx9 positive thalamus (d), and a cryo-section reveals a gap between both
expression domains (d9). Helt expression in the rostral thalamus (rTh) and pretectum (PTec) abuts the lhx9 expression (e, e9). neurog1 marks the
thalamic territory (f) and cross-section in (f9) shows that neurog1 marks the subventricular zone (SVZ; white bar) and does not overlap with the
expression domain of lhx9 in the mantle zone. The thalamus expression domain of lhx9 overlaps with the pattern of id2a in the medial part of the
mantle zone (g, g9, black bar). lef1 as a marker of post-mitotic thalamic neurons shows co-expression with lhx9 in the MZ (i, i9; black bar). Notably, lhx9
expression is seen also in the epiphysis (Ep). The thalamic lhx9 expression domain abuts the wnt3a expression domain in the epithalamus (ETh, g, g9).
ETh, epithalamus; HyTh, hypothalamus; Mtz; marginal tecal zone; pTu, posterior tuberculum; Tec, tectum; Tel, telencephalon.
doi:10.1371/journal.pbio.1001218.g001
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mutant background. To define the step in thalamic neuronal

differentiation that is dependent on Lhx2/Lhx9 function, we

analyzed the expression of the following set of thalamus-specific

markers: the neurogenic marker deltaA [40], the ßHLH factor

neurog1, marking early thalamic progenitors [41], a regulator of

neuronal differentiation id2a, and a marker for mature thalamic

neurons lef1 [16,42], the caudal thalamus-specific homeobox gene

gbx2 [43,44], and the pan-neuronal marker elav-like 3 (formerly Hu

antigen C) [45]. These markers can be allocated to three layers in

a neuroepithelium in zebrafish: the ventricular proliferation zone

(VZ) is positive for deltaA, the intermediate or subventricular zone

(SVZ) zone is marked by neurog1, and the post-mitotic mantle zone

(MZ) by elavl3 [38].

At 48 hpf, we observe a lateral expansion of the deltaA positive

ventricular zone in lhx2/lhx9 morphant embryos (36/54;

Figure 2a–b9). Likewise, the expression of the proneural factor

neurog1 (n = 18) in the subventricular zone expands laterally

(Figure 2c–d9). Consequently, the expression of the post-mitotic

thalamic neuronal markers id2a (19/31) and lef1 (13/20) is

significantly reduced (Figure 2e–h). Interestingly, the Shh-

dependent homeobox transcription factor gbx2 (n = 25) as well as

the Wnt mediator tcf7l2 show no alteration in compound

morphant embryos (Figures 2i,j9, S3). The pan-neuronal marker

elavl3 is decreased in the mantle zone (3/5; Figure 2k,l). This

suggests that DeltaA and Neurog1 positive thalamic progenitors

need Lhx2/Lhx9 function to proceed with neuronal differentiation

(Figure 2m,n).

To validate our knock-down strategy and to restrict our analysis

temporally and spatially to the thalamus after 24 hpf, we adapted

the electroporation technique to the zebrafish system. We were

thereby able to deliver DNA unilaterally into the neural tube by

pulsed electric stimulation at 24 hpf (Figure 3a) and analyze the

thalamus at 48 hpf (Figure 3b). Electroporation of EGFP DNA

leads to neither molecular nor morphological alteration of the

forebrain/midbrain area (Figure 3c,d; n = 15). Based on previous

experiments, we asked if Lhx2 function is sufficient for the

induction of post-mitotic thalamic neurons in the Lhx2/Lhx9-

double-deficient embryos. Therefore, we re-introduced Lhx2

function unilaterally in the thalamus of Lhx2/lhx9 morphant

embryos at 24 hpf corresponding to the endogenous onset of Lhx2

expression (Figure 1). At 48 hpf, the loss of id2a (7/19), lef1 (3/15),

and Elavl3:GFP (8/15) expression within the thalamus of lhx2/lhx9

morphant embryos was restored in the electroporated hemisphere

at 48 hpf (Figure 3f,h,j). It seems that the laterally expanded

epithalamus of morphant embryos can be restored in the

electroporated hemisphere (arrowheads).

Therefore, we conclude that Lhx2/Lhx9 function is crucial for

neurogenesis in the caudal thalamus. Furthermore, Lhx2 alone

can compensate for the loss of Lhx2 and Lhx9, suggesting a

redundant function between these paralogs during thalamic

neurogenesis. Finally, local electroporation is a valid tool to

validate the specificity of a knock-down approach in zebrafish.

Thalamic Neurogenesis Is Required to Limit the MDO and
Epithalamus

In the next set of experiments we analyzed the consequence of

Lhx2/Lhx9 deficiency on adjacent tissues: the mid-diencephalic

organizer (MDO) and the embryonic epithalamus (ETh). We find

that in morphant embryos the expression domain of lmx1b.1, a

marker for the MDO and the Eth, expands ventro-posteriorly into

the thalamus at 36 hpf (31/36; Figure 4a–b9). Similarly, the

expression domains of wnt3a (89/141) and wnt1 (8/11) also expand

(Figures 4c–d9, S3). A cross-section reveals that the wnt3a

expression is induced ectopically lateral to the habenula,

presumably in the thalamic territory (Figure 4d9, arrow) although

the forming habenula remains wnt3a negative [46]. To test

Figure 2. Differentiation of thalamic neurons is stalled in lhx2/lhx9 morphant embryos. Analysis of embryos for neuronal differentiation in
double morphant embryos at 48 hpf, lateral view (a, b, c, etc.), and cross-section of left hemispheres (a9, b9, c9 etc.) of the same embryo are shown.
The expression domain of the neuronal precursor deltaA at the ventricular zone (VZ) is vigorously expanded in double morphant embryos (a–b9).
Expression of the progenitor marker neurog1 marking the subventricular zone (SVZ, white bars) is also broadened in lhx2/lhx9 morphant embryos
compared to control embryos (c–d9). However, the thalamus-specific terminal differentiation markers, id2a and lef1, are down-regulated in the mantle
zone of the cTh (MZ, black bars) of Lhx2/Lhx9-deficient embryos (e–h9). The postmitotic marker gbx2 shows no alteration in the compound morphant
embryos (i–j9). The number of cells expressing the pan-postmitotic neuronal marker elavl3 is strongly decreased in the double morphant embryos
shown by a confocal microscope section of an transgenic Elavl3:GFP transgenic embryos (k, l). The deltaA and neurog1 positive precursor pool in the
ventricular/subventricular zone (blue and green domain) expands on the expense of the post-mitotic thalamic neurons (red domain) in the mantle
zone in lhx2/lhx9 morphant embryos (m, n). ETh, epithalamus; HyTh, hypothalamus; MDO, mid-diencephalic organizer; MZ, mantle zone; pTu,
posterior tuberculum; VZ, ventricular zone.
doi:10.1371/journal.pbio.1001218.g002
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whether the expanded Wnt expression affects thalamic develop-

ment, we first monitored Wnt activity in the diencephalon. Here,

we analyzed the expression pattern of the pan-canonical Wnt

target gene axin2 at 24 hpf, 48 hpf, and at 72 hpf. As expected, we

were not able to detect expansion of axin2 expression prior to onset

of Lhx2/Lhx9 expression in the thalamus (Figure S3). From 48hpf,

axin2 expression is progressively increased in the thalamus of

Lhx2/Lhx9-deficient embryos (35/53; Figures 4e–f9, S3). We

confirmed these results using a Wnt reporter zebrafish line

76TCFsiam:GFP, which expresses GFP under the control of

seven repetitive TCF-responsive elements driving a minimal

promoter. The GFP expression is detectable around known

canonical Wnt sources in the diencephalon—that is, the MDO/

ETh area (Figure 4g,h). Lhx2/Lhx9 morphant embryos show

expanded GFP expression in the thalamus (23/35; Figure 4g9,h9).

In summary, we find that the knock-down of Lhx2/Lhx9 in

zebrafish embryos results in an expansion of the epithalamic

expression domain of Wnt ligands. This leads to an enhancement

of Wnt signaling in the diencephalon, predominantly in the

subjacent thalamus.

Protocadherin10b Is a Thalamus-Specific Wnt Target
To address the consequences of the loss of Lhx2/Lhx9 and the

subsequent upregulation of Wnt signaling on the integrity of the

caudal diencephalon, we analyzed the expression pattern of

regionally expressed cell adhesion factors in the caudal forebrain.

We find that the expression of the cell adhesion molecule,

protcadherin10b (pcdh10b), starts in the cTh during late somitogenesis

(Figure S4). At 48 hpf, pcdh10b is predominantly expressed in the

progenitor layer, non-overlapping with the post-mitotic lhx2/lhx9

positive neurons (Figure 5a,a9). The expression domain of pcdh10b

abuts dorsally the expression domain of the epithalamus including

the wnt3a expression domain (Figure 5b,b9) and posteriorly with

the domain of the pretectal marker gsx1 (Figure 5c,c9). Thus,

pcdh10b marks specifically caudal thalamic progenitors at 48 hpf.

To investigate the functional interaction between Lhx2/Lhx9

and Pcdh10b, we electroporated lhx2 DNA unilaterally into the

caudal diencephalon. Overexpression of Lhx2 proved to be

sufficient to inhibit pcdh10b expression in the ventricular zone of

the thalamus (16/36; Figure 5c,c9). Furthermore, the thalamic

expression domain of pcdh10b in lhx2/lhx9-deficient embryos

expands into the mantle zone of the cTh (17/23, Figures 5d9,e9,

S4). This suggests a repressor function of Lhx2 on pcdh10b

expression. Interestingly, and beyond a direct repressor effect in

situ, pcdh10b also expanded posteriorly into the normally Lhx2/

Lhx9 negative pretectum (Figure 5d,e).

How do we explain this non-autonomous expansion of pcdh10b

following knock-down of Lhx2/Lhx9? We wondered whether this

could be linked to increased Wnt signaling in the diencephalon of

Lhx2/Lhx9-depleted embryos. Therefore, we altered canonical

Wnt signaling by treating embryos with small molecule effectors of

the Wnt signaling pathway such as the activator, BIO (a GSK3ß

Figure 3. Lhx2 promotes thalamic neurogenesis. At 24 hpf, DNA
(indicated in red) was injected into the brain ventricle followed by
electroporation approach (a). To validate the specificity and efficiency,
we targeted one hemisphere of the thalamus territory with EGFP DNA
at 24 hpf. We find a co-localization with the thalamus-specific marker
barhl2:mCherry at 48 hpf (b). Analysis of cross-sections reveal that
electroporation of EGFP DNA does not alter the expression of lef1 in wt
embryos (c). Furthermore, we find strong down-regulation of lef1 in

lhx2/lhx9 morphant embryos, which is not altered by EGFP DNA
electroporation (d). After electroporation of lhx2 DNA, we observe an
unaltered expression of id2a, lef1, and Elavl3-GFP expression within the
endogenous expression site in the electroporated hemispheres (e, g, i).
Electroporated side was identified by an ISH against lhx2 mRNA in red.
However, electroporation of lhx2 DNA at 24 hpf can restore the
expression of id2a, lef1, and Elavl3-GFP in Lhx2/Lhx9-deficient embryos
(f, g, j; asterisk). Notably, electroporation of Lhx2 can ectopically induce
id2a expression in the basal plate—that is, in the pTu (f). pTu, posterior
tuberculum; RP, roof plate, Tec, tectum; Tel, telencephalon.
doi:10.1371/journal.pbio.1001218.g003
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inhibitor) [47]. To mimic the situation in lhx2/lhx9 morphant

embryos, and to avoid gross malformation due to altered

patterning during gastrulation, we started ectopic activation of

Wnt signaling at 16 hpf and treated the embryos up to 48 hpf. In

treated embryos we see ectopic induction of axin2 expression at 48

hpf (Figure S4), an expansion of pcdh10b expression into the

pretectum (30/36; Figure 5f,f9) similar to the outcome from Lhx2/

Lhx9 depletion. In BIO treated embryos, the expression pattern of

the principal signal of the MDO, shh, and the patterning marker

pax6a are unaltered excluding pleomorphic effects of the treatment

(Figure S4).

Following these results, we analyzed the expression of pcdh10b in

embryos carrying a mutation in the Wnt pathway inhibitor Axin1

[48]. Although axin1 mutants lack most of the telencephalon and

the eyes (Figure S4), we find an enlarged expression domain of

pcdh10b in the cTh at 48 hpf (Figure 5g,g9). Accordingly, we

treated embryos with the Wnt signaling antagonist IWR-1 (a

tankyrase inhibitor, Figure S4) [49] from 16 hpf to 48 hpf.

Inhibition of Wnt signaling exhibits a decrease of pcdh10b

expression (55/58; Figure 5h,h9). To validate these results, we

used a heatshock inducible transgenic fish line to overexpress the

canonical Wnt antagonist Dickkopf1, Dkk1 (Figure S4) [50,51] at

10 hpf. Indeed, we find a similar decrease of pcdh10b expression

(Figure 5i,i9). This effect is seen before, but not after, endogenous

pcdh10b induction, suggesting that Wnt signaling is required for

induction of pcdh10b but not for its maintenance (Figure S4).

To dissect the regulatory contribution of Lhx2/Lhx9 and Wnt

signaling to pcdh10b expression, we reduced Wnt3a function in

Lhx2/Lhx9-deficient embryos (Figure 5j,j9). Interestingly, here we

do not find the posterior expansion of the pcdh10b expression

domain into the pretectum (40/84; Figure 5i). However, we still

observe the expansion of pcdh10b into the neuronal layer (40/84;

Figure 5i9).

In summary, these data suggest that Wnt signaling, most likely

by Wnt3a, induces expression of pcdh10b in the caudal thalamus

and Lhx2/Lhx9 are able to limit pcdh10b expression to the

progenitor zone (Figure 5k). Furthermore, ectopic upregulation of

Wnt signaling is able to induce pcdh10b expression also in the

ventricular zone of the pretectum.

Protocadherin10b Mediates Lineage Restriction and
Diencephalic Compartition

To study the consequences of altered Pcdh10b levels in the

developing caudal forebrain, we analyzed the maintenance of the

border zone between thalamus and pretectum in Lhx2/Lhx9

morphant embryos and Pcdh10b-deficient embryos (Figure 6 and

Figure S5). We used five different sequential approaches from the

onset of neuronal differentiation at 42 hpf to the formation of a

mature thalamus at 4 dpf.

Firstly, we analyzed thalamus-specific GFP expression in the

Gbx2:GFP transgenic zebrafish line (Figure 6a–c9) [52]. In

embryos deficient for Lhx2/Lhx9, we observe that GFP-positive

cells in the ventricular zone of the pretectum become detached

from the Gbx2:GFP positive thalamus (8/14; Figure 6b,b9, white

arrow), suggesting the loss of lineage restriction at the thalamus/

prectectum boundary and the spread of thalamic cells into the

pretectum. Assuming this to be the case, we next asked if different

levels of pcdh10b are required to maintain lineage restriction at this

border. Therefore, we interfered with Pcdh10b function by using a

Morpholino antisense approach for Pcdh10b [53]. In pcdh10b

morphant embryos we find Gbx2:GFP positive cells ectopically in

the pretectal progenitor layer (18/25; Figure 6c,c9, white arrows).

Figure 4. Knock-down of Lhx2/Lhx9 leads to an expansion of the Wnt positive epithalamus. A lateral view (a, b, c, etc.) and a cross-
section (a9, b9, c9, etc.) of the left hemisphere of the same embryo at 48 hpf are displayed. Thalamus is marked by asterisks. Section plane of the cross-
section is indicated by black arrowheads. In control MO injected embryos, lmx1b.1 expression domain marks the MDO and the dorsal RP (a, a9). Knock-
down of Lhx2/Lhx9 leads to an expansion of both areas into the thalamic territory (b, b9). wnt3a marks the epiphysis but not the habenula territory (c,
c9). In Lhx2/Lhx9-deficient embryos, wnt3a expression is ectopically activated in the dorsal part of the thalamus (d, d9). Subsequently the expression
of Wnt target genes such as axin2 (e, e9) as well as the Wnt reporter line 76TCF-Xla Siam:GFP ia4 (g, g9) shows an expanded expression domain in
compound morphant embryos (f, f9 and h, h9). Ep, epiphysis; Hb, habenula; pTu, posterior tuberculum.
doi:10.1371/journal.pbio.1001218.g004
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Secondly, we examined the separation of thalamic and pretectal

domains by the regional expression of the transcription factors lhx9

and gsx1 (Figure 6d–f9). Knock-down of Lhx2/Lhx9 (11/16) or

Pcdh10b (46/73) leads to significant intermingling of lhx9 positive

thalamic cells and gsx1 positive pretectal cells (Figure 6e–f9, white

arrows).

Thirdly, considering the relay thalamus being mainly glutama-

tergic whereas the central pretectum remains mainly GABAergic,

we looked at the localization of the ßHLH factors Tal1 and

Neurog1. Tal1 marks the inhibitory neurons of the rTh and

pretectum, whereas glutamatergic progenitors express Neurog1

[13]. To achieve single-cell resolution, we analyzed the offspring of a

Tal1-GFP transgenic line crossed to a Neurog1-RFP transgenic line.

We find the specification of ectopic Tal1 positive neurons in the

territory of the caudal thalamus in Lhx2/Lhx9 double morphant

embryos as well as in Pcdh10b-deficient embryos (Figure 6h–i9).

Figure 5. Expression and regulation of protocadherin10b in the thalamus. Lateral views and corresponding cross-sections of the left
hemisphere of the same embryo at 48 hpf are displayed. Exceptions are a horizontal section in (c9) and dorsal view in (d). Asterisks mark the thalamic
territory. pcdh10b expression abuts the expression domain of lhx9 in the mantle zone (MZ, black bar; a, a9). The roof plate marker, wnt3a, is adjacently
expressed to the pcdh10b expression in the thalamus (b, b9). Expression of pcdh10b in the thalamus abuts posteriorly the expression domain of gsx1
and therefore respects the border to the pretecum (c) shown in a dorsal view (c9). Overexpression of lhx2 DNA via electroporation leads to a unilateral
downregulation of pcdh10b expression (dorsal view, d; d9). Control embryos show pcdh10b expression in the cTh (d, d9). In lhx2 mutant embryo
knocked-down for lhx9, pcdh10b expression expands into the pretectum (e), and the ventricular expression expands into the MZ (e9, white bar).
Treatment of embryos with the Wnt signaling agonist BIO from 16 hpf to 48 hpf leads to an expansion of pchd10b expression into the pretectum (f,
white arrow), however the expanded VZ is not detectable (f9, white bar). Although the gross morphology is altered, pcdh10b expression shows similar
broadening in axin1 mutant embryos (g, g9). Consequently, blocking of Wnt signaling by IWR-1 treatment from 16 hpf to 48 hpf leads to a severe
downregulation of pcdh10b (h, h9). Embryos with ubiquitous expression of the Wnt inhibitor Dkk1 after heat shock activation at 10 hpf leads to a
downregulation of pcdh10 expression at 48 hpf (i, i9). Knock-down of Wnt3a in the Lhx2/Lhx9-double-deficient embryos leads to a rescue of the
expansion into the pretectum (j), however the lateral expansion of the VZ is still detectable (j9). Canonical Wnt signaling—that is, Wnt3a—is required
for induction of pcdh10b expression in the thalamic ventricular zone, whereas Lhx2/Lhx9 inhibits pcdh10b expression in the mantle zone of the cTh
(k).
doi:10.1371/journal.pbio.1001218.g005
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Fourthly, we analyzed the expression of Gad1, a marker of

inhibitory GABAergic neurons by fluorescent ISH at 3 dpf

(Figure 6j). In both Lhx2/Lhx9-deficient embryos (4/8) and

pcdh10b morphant embryos (6/10) gad1 positive cells are mis-

located within the glutamatergic caudal thalamic domain

(Figure 6k–l9; white arrows, Figure S5).

Fifthly, we studied the anatomy of the caudal forebrain by

analyzing areas of clustered cell nuclei at 4 dpf. In wild type

embryos, we observe demarcations between prethalamus and

thalamus (the ZLI), between the thalamus and the pretectum, and

between the pretectum and the midbrain (the diencephlic-mesencephlic

border; DMB) (Figure 6m). The observed anatomical compartition

Figure 6. Protocadherin10b is required to maintain integrity of thalamus. Dorsal views of the left hemisphere of embryo at 42 hpf (a–c), 48
hpf (d–i), and 3 dpf (j–l) are displayed. To visualize orientation of the figures, small sketches accompany the experiments showing the thalamus (Th) in
dark grey and the rostral thalamus (rTh)/pretectum (PTec) in light grey. At 4 dpf, the anatomy of the caudal forebrain is visualized by a confocal
microscopy analysis of ubiquitous nuclei staining by Sytox green (m–o). At 42 hpf, gbx2:GFP expression marks the thalamus as well as the position of
the diencephalic-mesencephalic border (DMB) by the position of the posterior commissure (PC). Knock-down of Lhx2/Lhx9 leads to the appearance
of gbx2:GFP positive cells posterior to endogenous expression domain (b, white arrow). In embryos knocked down for Pcdh10b, thalamic gbx2:GFP
cells appear similarly to (b) in the pretectum (c, white arrows). Analysis of lhx2/lhx9 morphant embryos and pcdh10b morphant embryos by a double
ISH approach for lhx9/gsx1 (d–f). lhx9 marks the thalamus and gsx1 the pretectum seen in a dorsal view (d). In Lhx2/Lhx9 morphant embryos, the
expression pattern of lhx9 and gsx1 intermingles (e, white arrow) similar to the phenotype observed in pcdh10b morphant embryos (f; white arrows).
Confocal sectioning of lhx2/lhx9 double morphant embryos in vivo reveals mixing between Tal1:GFP positive and the neurog1:RFP positive cells in
the cTh (g–h9, white arrows). A similar intermingling phenotype is detectable in pcdh10b morphant embryos at 48 hpf (i, i9). At 3 dpf, the rTh is
marked by gad1 by a fluorescent ISH (j, j9). After knock-down of Lhx2/Lhx9, gad1 positive cells can be found in the territory of the cTh (k, white
arrows); furthermore, in Pcdh10b-deficient embryos, gad1 positive can also be found in the cTh (l, l9). Lateral views of the caudal forebrain show three
cell nuclei loose border zones: the border between prethalamus and thalamus, the ZLI (white dashed lines), the one between the thalamus and the
pretectum (red arrows), and the one between pretectum and midbrain DMB (white dashed lines). The border zone between the thalamus and the
pretectum is not detectable in lhx2/lhx9 morphant embryos (n). Similarly, this demarcation is also missing in pcdh10b morphant embryos (o), whereas
the ZLI and the DMB are not affected. Tec, tectum; Teg, tegmentum.
doi:10.1371/journal.pbio.1001218.g006
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correlates with the described genetic profile of these territories

(Figure S5). In lhx2/lhx9 morphant embryos, the demarcation

between the thalamus and pretectum is not detectable, although

the ZLI and the DMB are unaltered (Figure 6n). In pcdh10b

morphant embryos, we are not able to identify the boundary

between pretectum and thalamus (Figure 6o), while the ZLI and

DMB are still visible. We hypothesize that similar adhesive

properties in the thalamus and in the pretectum lead to a loss of

separation of these brain parts. Thus, we conclude that a Pcdh10b

positive thalamus and a Pcdh10b negative pretectum are required

to establish a border between these compartments.

Discussion

Development of Thalamic Relay Neurons
The molecular mechanisms that control the orderly series of

developmental steps leading to mature thalamic neurons are

poorly understood. Although numerous transcription factors are

specifically expressed in the thalamus [14], only a few have been

functionally characterized such as Gbx2, Neurog2, and Her6.

Gbx2 knock-out mice show disrupted differentiation of the

thalamus by the absence of thalamus-specific post-mitotic

neuronal markers Id4 and Lef1, and subsequently lack cortical

innervation by thalamic axons [44]. Although Neurog2-knock-out

mice show a similarly severe failure in neuronal connectivity to the

cortex, the expression of Lhx2, Id2, and Gbx2 is unchanged in these

mice, suggesting that in the absence of Neurog2 thalamic neurons

are not re-specified at the molecular level [54]. In contrast, Her6

regulates the thalamic neurotransmitter phenotype by repressing

neurog1 function and subsequently the glutamatergic lineage. By

contrast, Her6 function is a prerequisite for Ascl1a-positive

interneuron development in the GABAergic rostral thalamus [13].

Here, we investigate the function of conserved Lhx2 and Lhx9

expression during thalamic development. Lim-HD genes form

paralogs such as Lhx1 and Lhx5, and Lhx2 and Lhx9 [18]. These

pairs have been implicated in various aspects of forebrain

development. Lhx1/Lhx5 influence Wnt activity by promoting

the expression of the Wnt inhibitors sFRPs. This local Lhx-

mediated Wnt inhibition is required in the extra embryonic tissue

for proper head formation [55] and establishment of the

prethalamus [31]. The Apterous group, Lhx2 and Lhx9, is

required for multiple steps during neuronal development. Lhx2 is

required in mouse for maintenance of cortical identity and to

confine the cortical hem, allowing proper hippocampus formation

in the adjacent pallium [26,56]. However, Lhx2 function during

diencephalic development is still under debate. Although the

Apterous genes are already present in the nervous system of the

cephalochordate Amphioxus—that is, AmphiLhx2/9 [57]—and

co-expression of Lhx2 and Lhx9 has been documented in the

diencephalon of vertebrates, such as zebrafish (here), Xenopus

[20,22], and mouse [21], their function in the thalamus has

remained unclear. Recent studies of Lhx2 mutant mice showed no

alteration during thalamic neuronal regionalization [58]. Further-

more, the function of Lhx9 has not been described, but the

expression pattern suggests a role during forebrain development

and possibly in parcellation of the thalamus [21].

Here, we show that single knock-down of Lhx2 or Lhx9 has no

diencephalic phenotype with the markers analyzed (Figure S2),

comparable to the Lhx2 knock-out mouse, but that simultaneous

knock-down of both Lhx2 and Lhx9 leads to stalling of thalamic

neurogenesis at the late progenitor stage (Figure 2). Furthermore,

the activation of Lhx2 alone is sufficient to compensate for the loss

of both Lhx2 and Lhx9 (Figure 3). Our results suggest that Lhx2 is

functionally redundant to Lhx9 to ensure proper thalamic

development. In contrast to other vertebrates, zebrafish embryos

show co-expression of Lhx2 and Lhx9 in the telencephalon until

48 hpf (Figure 1), which could again suggest redundancy [32].

Indeed the pallium is less affected in the lhx22/2 mutant fish

compared to loss of the neocortex in Lhx22/2 mutant mice

[39,59]. Furthermore, in the Lhx9 negative nasal placode, the

knock-out of Lhx2 has been shown to lead to a similar neuronal

arrest [24,60].

In the thalamus, Lhx2/Lhx9 may regulate genes that are

essential to complete neuronal development, such that neurons do

not reach the terminal neuronal stage. In Lhx2/Lhx9 morphant

embryos, we find that the expression of deltaA, neurog1, as well as

pcdh10b is increased. During neuronal development in fish,

Neurog1 has been shown to activate delta genes directly by

binding several E-box motives in the delta promoter region [40].

This suggests that in Lhx2/Lhx9 morphant embryos, neuronal

progenitor development is arrested at the level of deltaA/neurog1

expression. Consistently, terminal thalamic neuronal markers such

as Id2a and Lef1 are absent in Lhx2/Lhx9 morphant embryos.

Interestingly, both of these markers have been shown to be

activated by Wnt signaling [61,62]. Although local Wnt activity is

upregulated locally in the lhx2/lhx9 morphant embryos, these

target genes are not transcribed, suggesting that Lhx2/Lhx9

thalamic neuronal differentiation is coupled to a second compe-

tence phase for Wnt signaling. Also, the late and restricted onset of

Lhx2/Lhx9 expression in the thalamus and their requirement for

Id2a and Lef1 expression may explain the thalamic neuronal

specificity of the Wnt target lef1. Thus, we propose that Lhx2/

Lhx9 are essential determinants for cells to reach the late stage of

thalamic neuronal development.

In the spinal cord, Lim HD factors together with ßHLH factors

have been shown to be required for cell cycle exit [63]. The Lim

containing factor Isl-1 and Lhx3 together with the ßHLH factors

Neurog2 and NeuroM act in a combinatorial manner to directly

trigger motor neuron differentiation. In the thalamus, we find a

similar process: Lhx2/Lhx9 inhibit the expression of progenitor

markers such as pcdh10b and activate the expression of postmitotic

differentiation markers such as id2a, lef1, and elavl3. Interestingly,

proper differentiation of thalamic neurons is required to restrict

the MDO and dorsal roof plate (Figure 7), a finding that reflects the

conversion of neocortex in Lhx2 knock-out mice. Here, the Gdf7

positive cortical hem expands at the expense of the neocortex [23].

This supports the hypothesis that proper neuronal differentiation is

required to maintain brain compartments and their borders.

Wnt Signaling, Pcdh10, and Cell Adhesion
In the mid-diencephalon, the central source of patterning cues is

the MDO. Here, three different signaling pathways merge: Shh,

Fgf, and Wnt [64]. Shh signaling has been shown to induce

proneural genes such as Ascl1 in the rostral thalamus and Neurog1

in the caudal thalamus (cTh) [12,13,65] and a set of transcription

factors assigning specific properties to the developing thalamic cells

[14,21,66–68]. Furthermore, Fgf signaling influences the develop-

ment of the rTh [69] and parts of cTh, the motor learning area

[70]. Interestingly, although the mid-diencephalon expresses a set

of canonical and non-canonical Wnt ligands and receptors

[27,28], the function of Wnt signaling is not clear. Wnt signaling

seems to be required for mediating thalamic identity in chick

embryonic explants [29] and mutation of the Wnt co-receptor

Lrp6 leads to a severe reduction of thalamic tissue in mice [30].

Here, we show that Wnt signaling from the MDO and the roof

plate influence compartition of the caudal diencephalon. The

canonical Wnt signaling pathway plays a pivotal role in mediating

adhesiveness and the key effector of the Wnt pathway, b-catenin,
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was initially discovered for its role in cell adhesion [71,72]: it

promotes adhesiveness by binding to the transmembrane, Ca2+-

dependent homotypic adhesion molecule cadherin, and links

cadherin to the intracellular actin cytoskeleton. Although several

classes of molecules are involved in morphogenetic events,

cadherins appear to be the major group of adhesion molecules

mediating formation of boundaries in the developing CNS [73].

After a phase of ubiquitous expression, cadherins display a very

distinct expression pattern in the neural tube [74]. In the

developing diencephalon, classical cadherins, such as Chd2,

Chd6b, and Chd7, mark presumptive nuclear gray matter

structures within developmental compartments [75]. Still, these

studies so far are not able to explain the different compartition in

the caudal forebrain.

Here, we describe the expression pattern of the non-clustered

protocadherin, pcdh10b, in the developing diencephalon and show

that it marks the ventricular zone of the thalamus at mid-

somitogenesis (Figure S5). During somitogenesis, pcdh10b modu-

lates cell adhesion and regulates movement of the paraxial

mesoderm and somite segmentation [53]. We find that the border

of pcdh10b expression co-localizes with the border between

thalamus and pretectum during diencephalic regionalization

(Figure 5). Furthermore, we could link Pcdh10b expression to

canonical Wnt signaling. In chick, some hallmarks of lineage

restriction for the border between thalamus and pretectum have

been observed previously; for example, vimentin and chondroitin

sulfate proteglycans are strongly enriched at this border. Similar to

the anatomical observation in fish (Figure 6j–l), the chick neural

tube shows a morphological ridge where interkinetic movement is

disrupted [6]. However, there are conflicting data from direct

analyses of cell lineages in the caudal chick forebrain regarding cell

compartment borders between thalamus and pretectum [6,76].

This may be explained by the different stages of analysis. In other

vertebrate models, Pcdh10 expression has been reported only at

later stages in development, in chicken HH28, and in mouse E15

[77,78], arguing against a comparable role in these model

organisms. However, Pcdh10 together with Pcdh8, 12, 17, 18,

and 19 belong to a structurally related subfamily, the

non-clustered d2 protocadherins, and several members indeed

show an expression pattern during somitogenesis in mouse [79].

Although we have not carried out direct lineage restriction

experiments by tracing small cell clones at the border, we suggest

that the thalamic area intermingles with the pretectum when both

areas express similar levels of this adhesion molecule (Figure 7).

Our data are supported by the fact that pcdh10b knock-down or

overexpression also lead to a similar phenotype in somite

development [53]. Similarly in Gbx2 knock-out mice, thalamus

cells start to intermingle with pretectum cells [11]. Interestingly,

these authors observe a non-cell autonomous function for this

transcription factor and claim a restriction mechanism mediated

by an unknown cell adhesion factor. We suggest that, as for Lhx2/

Lhx9, Gbx2 is required for the acquisition of proper neuronal

identity and the lack of Gbx2 may lead to a similar sequence of

events—that is, expansion of the Wnt-positive roof plate and

alteration in pcdh10b expression. This hypothesis should be tested

in the Gbx2 knock-out mouse. Notably, as pcdh10b is also

expressed in hindbrain rhombomeres [80] its function should be

determined during differentiation in this well-studied segmented

part of the neural tube; should compartment formation in the

caudal forebrain and hindbrain turn out to involve similar

molecular effectors, we may reach a unifying mechanism for

compartition of the neuraxis—whether it be in the generation of

single units (thalamus, pretectum) or iterated modules (rhombo-

meres).

Thus, we suggest that Lhx2/Lhx9 is required for neurogenesis

within the thalamus and is important to maintain longitudinal axis

patterning of the CNS also at later stages. Alteration of

neurogenesis in a brain part affects the development of the

neighboring parts and thus leads to loss of the integrity over

compartment boundaries.

Materials and Methods

Maintenance of Fish
Breeding zebrafish (Danio rerio) were maintained at 28uC on a

14 h light/10 h dark cycle [81]. To prevent pigment formation,

embryos were raised in 0.2 mM 1-phenyl-2-thiourea (PTU,

Sigma) after 24 hpf. The data we present in this study were

acquired from analysis of wild-type zebrafish of KCL (KWT) and

of the ITG (AB2O2) as well as the transgenic zebrafish lines;

tal1:GFP [82], hs-dkk1:GFP [51], elavl3:GFP [83], GA079:RFP [84],

shh:RFP, neurog1:RFP [41], gbx2:GFP [52], and the belladonna

zebrafish mutant line with a loss of lhx2 [39] and masterblind

mutant line carrying a mutation in axin1 [48]. In bel/lhx2 mutants,

a 22 bp deletion in the third exon causes a frame-shift and

therefore a stop codon after the second LIM domain. Embryos

were staged [85] and ages are listed as hours post fertilization (hpf).

Functional Analysis
Transient knock-down of gene expression was performed as

described in [13]. We used the following Morpholino-antisense

oligomeres (MO, Gene Tools) at a concentration of 0.5 mM: lhx2

MO (59-GCT TTT CTC CTA CCG TCT CTG TTT C-39), lhx9

MO (59-AGG TGT TCT GAC CTG CTG GAG CCG T-39),

wnt3a MO [86], and pcdh10b MO [53]. The injection of MO

oligomers was performed into the yolk cell close to blastomeres at

one-cell or two-cell stage. For electroporation, embryos were

Figure 7. Function of Lhx2/Lhx9 during thalamic neurogenesis
and regionalization of the caudal forebrain. The schematic
drawing shows a 3-D view of the left hemisphere of the caudal
diencephalon and body axis. In Lhx2/Lhx9-deficient embryos, the
ventricular and subventricular zone of the thalamus (blue) expands
laterally into the mantle zone (red). Furthermore, the Wnt positive
epithalamus (green) expands ventrally into the misspecified MZ.
Subsequently, upregulation of Wnt signaling in the mid-diencephalon
may lead to intermingling of thalamus and pretectum by altered
localization of Pcdh10b (yellow/blue stripes).
doi:10.1371/journal.pbio.1001218.g007
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manually dechorionated and mounted laterally in 1.5% low

melting-point agarose at 24 hpf. We locally injected 0.5 mg/ml

GAP43-GFP DNA solution or 1 mg/ml pCS2+lhx2 DNA [32]

solution in the III brain ventricle. The positive charged anode was

positioned on top of the diencephalon, whereas the negative

cathode was positioned underneath the diencephalon (Figure 3).

For electroporation, we used a platinum/iridium wire with a

0.102 mm diameter (WPI Inc.). During the electroporation

procedure the embryo was kept in 16Ringer as conductive fluid.

We used the stimulator CUY21 (Nepa Gene Ltd.) with the

following stimulation parameters: 24 V voltage square wave pulse,

4 ms pulse length, 2 ms pulse interval, delivered three times.

Settings are based on the published electroporation approaches in

[87].

To manipulate Wnt signaling in vivo, we used BIO [47]

((29Z,39E)-6-Bromo-indirubin-39-oxime, TOCRIS Bioscience or

IWR-1 [49]; SIGMA) as pharmacological agonist and antagonist

of the Wnt signaling pathway. For Wnt signaling analyses,

embryos were dechorionated at 16 hpf (15–17-somite stage) and

incubated with 4 mM of BIO in 1% DMSO, 40 mM IWR-1 in

0.2% DMSO, or with 1% DMSO only.

Staining Procedures
Prior to staining, embryos were fixed in 4% paraformaldehyde/

PBS at 4uC overnight for further analysis.

Whole-mount mRNA in situ hybridizations (ISH) were

performed as described in [88]. Antisense probes were generated

from RT-PCR products for the following probes with primer pairs

(forward/reverse): lhx2b, 59-AGT GCG TCT CAC GGA AAT

CT-39/59-GCA TCC ATG ATC GGT CTT CT-39; lhx9, 59-

CGT TGG AGA AAG TGG ACT GG-39/59-TGG TGA AGA

ATT CCG ATC AA-39; sema3d, 59-GCT GCA GAA ATC TCC

TCG TC-39/59-ATT TTG CAC AAG TGG GCA TT-39; helt,

59-CCA AAA AGC TCG CCT TTA ATC-39/59-AAC ATA

TTA AGA CGT ATT TAC AGA GCA-39; lmx1b.1, 59-GAC

AAC AGC CGG GAT AAA AA-39/59-CCA TCC GAT TGG

ACA TTA CC-39.

The expression pattern and/or antisene RNA probes have been

described for shha (formerly known as shh; [89]), gsx1 [90], pax6a [91],

gbx2 [92], axin2 [46], lef1 [93], wnt3a [94], dla [95], id2a [96],

lmx1b.1 [97], pcdh10b [53], gad1 (gad67) [17], and vglut2.2 [98].

Post-ISH, embryos were re-fixed in 4% paraformaldehyde/PBS

at 4uC overnight and transferred to 15% sucrose/PBS and kept for

8 h at 4uC. For embedding, embryos were transferred to a mould

filled with 15% sucrose/7.5% gelatine/PBS at 42uC for 10 min.

The moulds were kept overnight at 4uC, frozen in liquid nitrogen

on the following day, and stored at 280uC until required. Frozen

blocks were sectioned coronal with 16 mm thickness on the

cryostat.

To reveal neurons that have initiated axogenesis, we used a

monoclonal antibody against acetylated tubulin (Sigma, T-6793)

in a concentration of 1:20 as described in [88].

For visualizing cell nuclei, embryos were fixed in 4%

paraformaldehyde/PBS at room temperature for 2 h and

transferred in 16 PBS. Fixed brains were hemisected and

incubated in 25 mM SYTOX nucleic acid stain (Invitrogen)

overnight. After washing in 16PBS brains were mounted laterally

for confocal imaging analysis.

Image Acquisition
Prior to imaging, embryos were deyolked, dissected, and

mounted in 70% (v/v) glycerol/PBS on slides with cover slips.

Images were taken on Olympus SZX16 microscope equipped with

a DP71 digital camera by using the imaging software Cell A. For

confocal analysis, embryos were embedded for live imaging in

1.5% low-melting-point agarose (Sigma-Aldrich) dissolved in 16
Ringer’s solution containing 0.016% tricaine at 48 hpf. Confocal

image stacks were obtained using the Leica TCS SP5 X confocal

laser-scanning microscope. We collected a series of optical planes

(z-stacks) to reconstruct the imaged area. Rendering the volume in

three dimensions provided a view of the image stack at different

angles. The step size for the z-stack was usually 1–2 mm and was

chosen upon calculation of the theoretical z-resolution of the 406
objective. Images were further processed using Imaris 4.1.3

(Bitplane AG).

Supporting Information

Figure S1 Expression pattern of lhx2 and lhx9 during thalamus

development. A double in situ hybridization approach was used

for analysis. All embryos were mounted laterally with stages

indicated, except (d9) is a dorsal view and (g9) is a cross-section of

the left hemisphere. lhx9 reveals an onset of expression in the

thalamus (Th) at 22 hpf (a, asterisk), limited anteriorly by shh, a

marker of the MDO and posteriorly by gsx1, a marker of the

pretectum (PTec). At 28 hpf, lhx2 shows an onset of expression in

the thalamus (b, asterisk). Within the thalamus, at 28 hpf helt marks

the rostral thalamus (rTh) and the pretectum (c), however the lhx9

expression domain shows no overlap with the helt domain. The

epithalamus is marked by the Wnt ligand, wnt3a, and the

expression of the Wnt reporter 76TCF-siam:GFP (d). The dorsal

view reveals lateral a stronger expression of gfp-mRNA in

comparison to the wnt3a pattern (d9). At 48 hpf, lhx2 and lhx9

show specific expression patterns in the telencephalon (Tel),

thalamus (asterisk), and ventral to the tectum (Tec), indicated by

the overlapping expression domain of pax6a, marking the alar plate

of the forebrain during development (e, f). axin2 expression in the

thalamus co-localizes with the lhx9 expression. (g, g9). vglut2.2, a

marker of glutamatergic neurons in the relay thalamus (cTh), shows an

overlapping expression domain with lhx9 (h). Both genes, lhx2 and

lhx9, mark the thalamus at 3 dpf (i). ETh, epithalamus; HyTh,

hypothalamus; MDO, mid-diencephalic-organizer; PTec, pretec-

tum; RP, roof plate; rTh, rostral thalamus; Tec, tectum ; Tel,

telencephalon.

(TIF)

Figure S2 Efficient knock-down of lhx2 and lhx9 during

forebrain development. To validate the efficiency of the lhx2 and

lhx9 splice-site Morpholino-antisense oligomere approach, we

isolated cDNA from injected and non-injected embryos at 48 hpf.

A PCR approach, with primers flanking exon1 and exon2 of lhx2,

demonstrates a suppression of the splicing event of intron1 (1.5 kb)

in five individual embryos injected with lhx2 MO (emb1–5)

compared to a control embryo (con, 221 bp) (a). A similar effect is

demonstrated in injected lhx9 MO embryos 1–4 (emb1–4; b),

which display a non-splicing event of intron1 (993 bp), compared

to control embryos (con, 231 bp) (b). An antibody against

acetylated tubulin shows midline crossing axons anterior (AC,

anterior commissure) and posterior (POC, post-optic commissure)

in the telencephalon (c). In lhx2/lhx9 double morphant embryos,

both commissures do not cross the midline (arrow, d). Single in situ

hybridizations of embryos at 48 hpf are displayed by a lateral view

(e–l). Knock-down of Lhx2 and Lhx9 leads to a decrease of sema3d

expression in postoptic commissure (POC, arrow; e, f). The

morphant analysis of single knock-down, either lhx2 or lhx9, shows

that lef1 expression is unaltered in the thalamus (h, j), compared to

the control embryos (g, i, k). In the lhx2 mutant embryos, lef1

expression in the thalamus shows a weak alteration (l). HyTh,
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hypothalamus; MDO, mid-diencephalic-organizer; pTu, posterior

tuberculum; RP, roof plate; Tec, tectum; Tel, telencephalon.

(TIF)

Figure S3 lhx2/lhx9 morphant embryos show defect in thalamic

neuron differentiation. A single in situ hybridization approach was

used for analysis and all embryos were mounted laterally except in

(I9, j9) showing cross-section of left hemispheres. Stages are

indicated. In Lhx2/Lhx9-deficient embryos, lef1 expression in the

thalamus (asterisk) is unaltered at 24 hpf but down-regulated at 3

dpf (a–d). Similarly, the Wnt target gene axin2 shows no alteration

in Lhx2/Lhx9-deficient embryos at 20 hpf (e, f), however at 3 dfp

an up-regulation can be detected in the mid-diencephalon (g, h).

In control MO embryos, wnt1 is expressed at 48 hpf in the roof

plate (RP) and lhx2/lhx9 morphant embryos display an expansion

of the wnt1 expression domain into the thalamic territory (i–j9). In

contrast tcf7l2 shows no alteration in the expression pattern at the

same stage in the caudal forebrain. HyTh, hypothalamus; pTu,

posterior tuberculum; RP, roof plate; Tec, tectum; Tel, telen-

cephalon.

(TIF)

Figure S4 The thalamic expression of protocadherin10b and its

regulation. All embryos are analyzed by a single in situ

hybridization approach and mounted laterally, with stages

indicated, except (c9) shows a cross-section and the left hemisphere

is displayed. In the thalamus (asterisk) pcdh10b reveals an onset of

expression in segmentation phase (18 hpf), which increases during

development (a, b). Knock-down of Lhx2/Lhx9 leads to an

expansion of pcdh10b expression into the pretectum (pTec, c), as

well as of the ventricular zone (VZ, white bar, c9). Black

arrowheads indicate the plane of a cross-section. To validate the

efficiency of pharmacological treatment with the Wnt signaling

agonist BIO or antagonist IWR-1, we also analyzed under the

same conditions the Wnt target gene axin2. Treatment with the

Wnt signaling agonist BIO demonstrates an up-regulation of axin2,

displayed lateral (d, e). Axin2 expression is upregulated in axin1

mutant embryo masterblind (mbl, f). The treatment of embryos with

the Wnt signaling antagonist IWR-1 leads to a loss of axin2 in the

diencephalon (g, h). We find a similar reduction of axin2 expression

in embryos expressing Dkk1 post-heat-shock at 16 h (i). Treatment

of embryos with the Wnt agonist BIO has no effect in the

expression of shh or pax6a in the forebrain (j–m). In contrast,

embryos treated with the antagonist IWR-1 after endogenous

pcdh10b induction between 24 hpf and 48 hpf show no change in

pcdh10b expression pattern. HyTh, hypothalamus; pTec, pretec-

tum; pTu, posterior tuberculum; RP, roof plate; Tec, tectum; Tel,

telencephalon.

(TIF)

Figure S5 Mapping of the diencephalon in larval stage via

SYTOX nuclei staining. Analyses at 48 hpf, lateral view (a, b, c)

and dorsal sections of left hemispheres (d–f9) are shown. Lhx9

marks the thalamus (a) and gsx1 the pretectum (a). In lhx2/lhx9

and pcdh10b morphant embryos, the expression domains overlap.

A similar intermingling of expression domains is visible in embryos

stained for vglut2.2 and gad1 (d–f9). Embryos have been analyzed at

4 dpf by a confocal microscopy analysis of ubiquitous nuclei

staining by Sytox (g–j0). The analyzed section of the lateral view

except dorsal view (h9) is indicated by a schematic drawing (insert).

A sytox staining in green reveals structures of the forebrain and

midbrain (g). To confirm the position of the thalamus, we analyzed

the shh:RFP transgenic line, marking the MDO anterior to the

thalamus (Th, b, b9). The position of the thalamus and pretectum

(PTec) was mapped in the neurog1:RFP transgenic line (i–i0). To

distinguish between the caudal thalamus (cTh) and pretectum, we

also analyzed the tal1:GFP transgenic line. It labels GABAergic

neurons of the rostral thalamus (rTh) and pretectum and therefore

identifies the cell nuclei loose border zone between thalamus and

pretectum (j–j0). ETh, epithalamus; HyTh, hypothalamus; MDO,

mid-diencephalic-organizer; PC, posterior commissure; PG, preg-

lomerular complex; PTec, pretectum; PTh, prethalamus; pTu,

posterior tuberculum; RP, roof plate; rTh, rostral thalamus; Tec,

tectum; Tel, telencephalon; Th, thalamus.

(TIF)
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