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Abstract: Colorectal cancer (CRC) is a major public health burden and one of the leading causes
of cancer-related deaths worldwide. Screening programs facilitate early diagnosis and can help
to reduce poor outcomes. Serum metabolomics can extract vital molecular information that may
increase the sensitivity and specificity of colonoscopy in combination with histopathological exami-
nation. The present study identifies serum metabolite patterns of treatment-naïve patients, diagnosed
with either advanced adenoma (AA) or CRC in colonoscopy screenings, in the framework of the
SAKKOPI (Salzburg Colon Cancer Prevention Initiative) program. We used a targeted flow injection
analysis and liquid chromatography-tandem mass spectrometry metabolomics approach (FIA- and
LC-MS/MS) to characterise the serum metabolomes of an initial screening cohort and two valida-
tion cohorts (in total 66 CRC, 76 AA and 93 controls). The lipidome was significantly perturbed,
with a proportion of lipid species being downregulated in CRC patients, as compared to AA and
controls. The predominant alterations observed were in the levels of lyso-lipids, glycerophospho-
cholines and acylcarnitines, but additionally, variations in the quantity of hydroxylated sphingolipids
could be detected. Changed amino acid metabolism was restricted mainly to metabolites of the
arginine/dimethylarginine/NO synthase pathway. The identified metabolic divergences observed in
CRC set the foundation for mechanistic studies to characterise biochemical pathways that become
deregulated during progression through the adenoma to carcinoma sequence and highlight the key
importance of lipid metabolites. Biomarkers related to these pathways could improve the sensitivity
and specificity of diagnosis, as well as the monitoring of therapies.

Keywords: colorectal cancer; adenoma; metabolomics; lipid metabolism

1. Introduction

Colorectal cancer (CRC) is among the three most common forms of malignancy, ac-
cording to the WHO, and a leading cause of cancer-related deaths on a global level. Despite
prevention programs and advancements in therapy, CRC is still the second most common
cause of cancer death in Europe, accounting for 12.4% of deaths in 2020 [1,2]. Incidence
rates vary geographically, with higher rates in more developed regions and associated

J. Clin. Med. 2022, 11, 721. https://doi.org/10.3390/jcm11030721 https://www.mdpi.com/journal/jcm

https://doi.org/10.3390/jcm11030721
https://doi.org/10.3390/jcm11030721
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcm
https://www.mdpi.com
https://orcid.org/0000-0003-3089-1222
https://orcid.org/0000-0003-1532-5177
https://orcid.org/0000-0001-7838-4532
https://orcid.org/0000-0001-8266-5513
https://doi.org/10.3390/jcm11030721
https://www.mdpi.com/journal/jcm
https://www.mdpi.com/article/10.3390/jcm11030721?type=check_update&version=2


J. Clin. Med. 2022, 11, 721 2 of 21

with socioeconomic status [3]. Colonoscopy screening effectively reduces CRC-associated
mortality, as early stage lesions are removable in time [4].

This study included participants of the SAKKOPI (Salzburg Colon Cancer Prevention
Initiative) program [5], who underwent CRC colonoscopy, according to national screen-
ing recommendations. Serum metabolomes from participants with diagnosed advanced
adenoma (AA) or CRC, as well as from participants without AA or CRC were analysed,
providing the rare opportunity to describe the metabolic status in treatment-naïve individ-
uals. Such information is relevant to strengthen the understanding of disease-associated
molecular changes and the development of diagnostic markers.

Serum metabolite levels directly reflect the underlying biochemistry and state of
cells and tissues. Metabolite concentrations change in response to exogenous triggers
(environment, nutrition, lifestyle factors) but importantly, they also reflect endogenous
alterations, allowing an early detection of dysregulated and diseased processes. Moreover,
changed metabolite profiles may indicate the individual adaptation potential. Pathological
alterations and activated immune responses strongly affect the abundance of metabolites
in blood. Presumably, the changes in metabolic profiles in a systemic biofluid, such as
serum, predominantly reflect a host’s response to the cancer or adenoma, and cellular
metabolic changes in the colon may have minor influence. Thus, serum metabolomics can
reflect molecular phenotypes associated with healthy or diseased status, with an emphasis
on essential changes in immunometabolism that are relevant for disease outcome [6].
Apart from the phenotypic characterisation on a molecular level, metabolomics supports
biomarker discovery, essential for genuine personalised medicine.

CRCs mostly arise from epithelial cells and typically include an adenoma to carcinoma
sequence [7,8]. The process requires the acquisition of several mutations. Activation of
oncogenes and loss of tumour suppressor genes regulate downstream signalling pathways
and severe metabolic reprogramming. The crosstalk between oncogenic and metabolic path-
ways often depends on the protein kinases AKT and c-MYC, and regulates the expression
of metabolic enzymes.

Alterations in EGFR/MAPK, Notch, PI3K, TGF-β and Wnt/β-Catenin signalling
pathways are frequently involved [9]. As a result, CRC cells adapt glycolysis and the TCA
cycle, nucleotide biosynthesis, and the metabolism of lipids and amino acids [10]. These
metabolic adaptations occur in adenomas and more advanced malignancies and may even
be a prerequisite for the adenoma to carcinoma sequence progression [11,12].

In highly malignant cancers, the metabolic shift is a general finding, irrespective of the
origin. The so-called Warburg effect characterises the capability of rapidly growing tumour
cells to preserve high rates of glycolysis for adenosine triphosphate (ATP) generation,
regardless of oxygen accessibility [13]. On the other hand, recent findings suggest that
some cancers might synthesise substantial ATP amounts by oxidative phosphorylation [14].
This finding was termed as reversed Warburg effect, and CRC cells may partially depend on
the catabolic pathways of amino acids and lipids, including fatty acid oxidation (FAO) [15].

The deregulated metabolism of amino acids, lipids and aberrant mitochondrial bio-
genesis regulates growth and proliferation of cancer cells. Glutamine (Gln) is an important
nutrient in proliferating tumour cells involved in bioenergetics, defence against oxidative
stress and as a precursor for purines and pyrimidines [16]. CRC cells utilise Gln to re-
plenish the TCA cycle in vivo [17]. Gln-derived citrate also provides acetyl-coenzyme A
for lipid synthesis, connecting the metabolism of amino acids with lipids. Altered lipid
metabolism is a common finding in several cancers and affects lipid biosynthesis and
modification, as well as mitochondrial FAO in CRC cells [18–20]. Epidemiological studies,
including transcriptomic and genomic data, support the crucial role of lipid metabolism in
CRC [21,22].

Obesity is a risk factor for CRC and induces the upregulation of lipid metabolic en-
zymes, such as fatty acid synthase (FASN) and acetyl-coenzyme carboxylase (ACC). These
metabolic alterations contribute to CRC progression and metastasis, through activation
of oncogenic pathways [23–25]. As the metabolism of amino acids and lipids frequently
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changes in CRC cells, both pathways may provide targets for treatment and management
of CRC cases in the future.

The aim of the present study is to characterise serum metabolite profiles of treatment-
naïve patients diagnosed with advanced adenoma (AA) or colorectal carcinoma (CRC),
compared to controls. We therefore apply quantitative, targeted metabolic profiling of
acylcarnitines, amino acids, biogenic amines, glycerophospholipids, and sphingolipids.

2. Materials and Methods
2.1. Definition of Groups

Included subjects were participants of the Salzburg Colon Cancer Prevention Initia-
tive registry (SAKKOPI). All participants (n = 1382 consecutive Caucasians; 702 males
(40–76 years) and 680 females (31–88 years)) underwent colonoscopy according to the
national CRC screening recommendations at a single centre. The study was conducted
according to the guidelines of the Declaration of Helsinki, approved by the local ethics
committee (Ethikkommission of the federal state of Salzburg, no. 415-E/1262/2-2010), and
informed consent was obtained from all participants. Metabolic characterization included
an oral glucose tolerance test (OGTT) as well as measurement of fasting blood glucose
and insulin measurement to assess insulin resistance. T2DM was defined as either blood
glucose level of ≥200 mg/dL after 2 h following oral glucose tolerance test (OGTT), fasting
blood glucose (FBG) ≥ 125 mg/dL or HbA1c ≥ 6.5. Hypertension was defined as a blood
pressure (BP) ≥ 130/85 mmHg or previous prescription of any antihypertensive drug.

Colonoscopy screening data from 82 Caucasians were included in the explorative
training cohort and allocated to one of the three groups. Control (Control, n = 36), advanced
adenoma (AA, n = 28) with villous or tubulovillous features with a size ≥1 cm or high-grade
dysplasia, and colorectal cancer (CRC, n = 18) after a combined analysis of macroscopic and
histological results [5]. To confirm results from the training cohort, we used two validation
cohorts (validation CRC, Control, n = 29, CRC, n = 48; and validation AA, Control, n = 28,
AA, n = 48) within the SAKKOPI registry, consisting of posterior samples that were not
available during the initial training cohort study.

2.2. Sample Preparation and Metabolomic Measurements

Serum samples were analysed with the targeted and quantitative AbsoluteIDQ® p180
kit (Biocrates life science AG, Innsbruck, Austria) by mass spectrometry according to the
manufacturer’s guidelines. The assay allows the quantification of up to 188 metabolites
from five analytical groups: acylcarnitines, amino acids, biogenic amines, glycerophospho-
lipids and sphingolipids.

All samples were stored at −70 ◦C until measurements. Samples were thawed, vor-
texed and centrifuged at 4 ◦C for 10 min at 14,000× g. Next, 10 µL of the supernatants
were transferred onto the spots of the 96-well kit plate. The samples were dried at room
temperature under a gentle stream of nitrogen. After drying the filter spots, amino acid
derivatisation ensued with 5% phenyl isothiocyanate reagent (v/v, PITC). Filters were dried
again and metabolites as well as the internal standard were extracted by adding 5 mM
ammonium acetate in methanol. After centrifugation of the filter plate for 2 min at 500× g,
the flow-through extracts were diluted with either HPLC water or MS-running solvent. We
used an Agilent 1200 Series HPLC coupled to an API 4000 triple quadrupole mass spectrom-
eter (ABSciex, Darmstadt, Germany) controlled by the software Analyst 1.6. Calibrators,
quality controls and samples were analysed by an LC-MS/MS method in positive electro-
spray ionization mode (amino acids, biogenic amines) followed by FIA-MS/MS injections
(acylcarnitines, lipids, hexose) in positive and negative mode. Metabolites were quantified
by multiple reaction monitoring (MRM) detection in reference to stable isotope-labelled
and chemically homologous internal standards. We used the integral MetIDQ software
package for data assessment, evaluation and quantification of metabolite concentrations.



J. Clin. Med. 2022, 11, 721 4 of 21

2.3. Statistical Analyses

All statistical calculations were performed using SPSS Statistics (Version 24.0.0.1, IBM
SPSS Statistics for Windows, Released 2018, IBM Corporation, Armonk, NY, USA). Analyses
included 228 variables consisting of quantified metabolites as well as predefined ratios
and sums, e.g., sum of all glycerophosphocholine species (total PC) or the kynurenine to
tryptophan ratio (Kyn/Trp), respectively. We analysed differences between groups (Control,
AA, CRC) regarding parametric variables and conducted multivariate analysis of variance
(MANOVA) applying Benjamini–Hochberg or Tamhane (FDR) correction for multiple
testing. Non-parametric distributed variables were analysed using Kruskal–Wallis test.

Exploratory statistical analyses such as sparse partial least square discriminant anal-
ysis (sPLS–DA), heat maps, pattern analyses and receiver operating characteristic (ROC)
curve-based biomarker analyses were performed with the online statistical analysis tool
MetaboAnalyst 4.0 (www.metaboanalyst.ca, accessed on 10 June 2020). We skipped missing
value estimation, data normalization, data transformation or data scaling for this purpose.
For heat maps, options such as autoscale by features for standardisation, Euclidean dis-
tance measure and Ward clustering were chosen. For pattern analyses, Spearman’s rank
correlation coefficient as a distance measure was used.

Statistical analyses of the two validation cohorts included the same variables as in the
training cohort. Since only two groups were analysed within each validation cohort, means
of these groups were compared by either an unpaired t-test or a Mann–Whitney U test
depending on data distribution. A two-sided p-value of <0.05 and a z- or t-value ≥ 1.96
were considered to indicate statistical significance.

3. Results
3.1. Clinical Characteristics

To identify group differences in basic demographic and clinical features of the training
cohort, we performed descriptive statistics, ANOVA and corrected for multiple testing
(Table 1). All groups were similar in sex distribution and BMI, but the control group
was younger than both the adenoma and carcinoma group. Liver parameters aspartate
aminotransferase (AST), alanine aminotransferase (ALT) and γ-glutamyl transferase (GGT)
and concentrations of serum triglycerides were similar between all groups. Control subjects
had normal ultrasound examinations with a homogenous echogenicity compared to renal
parenchyma, while 29% of AA and 22% of CRC had unequivocal evidence of fatty liver.
In contrast to the AA and CRC group, controls had no diabetes and lower fasting glucose
(FG) values. HDL–C decreased from the controls to the adenoma and to the carcinoma
group. Features of the metabolic syndrome (MetS) differed significantly between the CRC
and the control group. CRP levels were different between all groups and increased from
control via adenoma to the carcinoma group. The observed group differences demand a
more extensive analysis to decipher underlying metabolic events.

Table 1. Baseline characteristics of the training cohort.

Control
(n = 36)

AA
(n = 28)

CRC
(n = 18)

Post Hoc p-Value

Control vs. AA Control vs. CRC AA vs. CRC

Age (years) 53 ± 8 60 ± 10 67 ± 12 <0.001 0.001 0.271

Gender (f/m) 18/18 14/14 7/11 1.000 0.444 0.465

BMI (kg/m2) 25.7 ± 2.8 26.6 ± 4.7 26.2 ± 3.6 0.892 0.956 1.000

Waist circumference (cm) 95 ± 12 97 ± 14 99 ± 14 0.645 0.286 0.582

Hip circumference (cm) 98 ± 11 103 ± 10 100 ± 10 0.723 0.940 0.541

Waist-to-hip-ratio 0.98 ± 0.19 0.95 ± 0.08 1.00 ± 0.16 0.903 0.407 0.373

Fatty liver 0 (0%) 8 (29%) 4 (22%) 0.001 0.004 0.636

GGT (U/L) 31.9 ± 27.7 48.7 ± 50.2 41.4 ± 64.0 0.093 0.934 0.251

www.metaboanalyst.ca


J. Clin. Med. 2022, 11, 721 5 of 21

Table 1. Cont.

Control
(n = 36)

AA
(n = 28)

CRC
(n = 18)

Post Hoc p-Value

Control vs. AA Control vs. CRC AA vs. CRC

AST (U/L) 21.5 ± 6.4 24.2 ± 17.4 18.9 ± 7.4 0.887 0.070 0.080

ALT (U/L) 21.7 ± 9.3 25.6 ± 24.2 22.2 ± 17.8 0.973 0.321 0.380

FI (µU/mL) 6.7 ± 3.0 7.7 ± 3.8 8.9 ± 6.9 0.461 0.446 0.788

FG (mg/dL) 92.9 ± 6.9 100.3 ± 13.2 109.9 ± 30.0 0.016 0.016 0.690

HOMA index 1.5 ± 0.7 2.0 ± 1.1 2.6 ± 2.8 0.157 0.069 0.574

Diabetes 0 (0%) 5 (18%) 4 (22%) 0.009 0.004 0.719

HbA1C (%) 5.4 ± 0.3 6.0 ± 1.7 5.7 ± 0.8 0.001 0.103 0.436

CRP (mg/L) 0.17 ± 0.17 0.34 ± 0.35 2.80 ± 6.05 0.021 <0.001 0.042

Ferritin (ng/mL) 112 ± 107 194 ± 284 89 ± 89 0.102 0.290 0.029

Hb (g/dL) 14.8 ± 1.1 14.7 ± 1.1 13.1 ± 2.5 0.994 0.155 0.215

TG (mg/L) 103.5 ± 52.7 118.3 ± 59.7 87.1 ± 40.0 0.182 0.569 0.110

HDL–C (mg/L) 60.4 ± 12.3 58.9 ± 12.1 45.7 ± 12.7 0.996 0.003 0.004

LDL–C (mg/L) 142.5 ± 33.8 141.7 ± 36.7 129.3 ± 37.5 1.000 0.957 0.939

Hypertension 15 (42%) 16 (57%) 7 (39%) 0.223 0.846 0.232

MetS 3 (8%) 3 (11%) 6 (33%) 0.748 0.021 0.062

GGT, γ–glutamyl transferase; AST, aspartate aminotransferase; ALT, alanine aminotransferase; FI, fasting insulin;
FG, fasting glucose; HOMA index, homeostasis model assessment for insulin resistance; CRP, C-reactive protein;
TG, triglyceride; HDL–C/LDL–C, high-density/low-density lipoprotein cholesterol; MetS, metabolic syndrome;
data are expressed as means ± standard deviation unless otherwise indicated; p-values are assessed by ANOVA
(Benjamini–Hochberg or Tamhane post hoc analysis) or Kruskal–Wallis test; p-values < 0.05 were considered to
indicate statistical significance and are marked in bold.

3.2. Metabolic Profiling

We used targeted metabolomics to identify the differences of acylcarnitines, amino
acids, biogenic amines, and lipids between the groups. The results for all single features
and derived variables (ratios and sums) are presented in Supplementary Table S1. Groups
mainly differed by lipids, including monoacyl-glycerophosphocholines (lysoPC), acylcar-
nitines (AC), diacyl-glycerophosphocholines (PC aa), alkyl-acyl-glycerophosphocholines
(PC ae) and derived parameters. We observed less pronounced differences in amino acids
and catabolites thereof between the groups (Table 2, Figure 1). The top 30 metabolites, ratios
and sums are presented by a hierarchical clustering heatmap for intuitive visualization in
Figure 2.

Many ACs were significantly more abundant in AA (12 of 27 ACs) and CRC patients
(14 of 27 ACs) compared to controls, whereas AA and CRC groups did not differ signif-
icantly (Figures 1A,B and 2, Table 2). In line with this finding, the CPT–I-ratio (ratio of
C16 and C18 long chain acylcarnitines to free carnitine) was significantly different between
all groups. The CPT–I-ratio is a suggested proxy measure of ß-oxidation. Therefore, our
results indicate increased ß-oxidation in the control, to adenoma, to CRC sequence.

Among the glycerophospholipid class, levels of several lysoPC species were low in the
CRC group, as compared to controls (Figure 1C,D). This was not true for arachidonic acid
containing lysoPC a C20:4 levels, which were similar in all three groups. In addition, many
ester-bound phosphatidylcholine species (diacyl-glycerophosphocholines, PC aa) were
least abundant in the CRC group. CRC patients also presented the lowest concentrations of
many (21 of 38 species) ether-bound plasmanylcholines (alkyl-acyl-glycerophosphocholines,
PC ae), which were significantly reduced compared to controls. In addition, levels of some
sphingolipids were decreased in CRC patients. Five of fifteen sphingomyelins were reduced
in the CRC group and included mostly hydroxylated forms.
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Table 2. Top 30 different metabolites between groups of the training cohort.

Class Metabolite Control
(n = 36)

AA
(n = 28)

CRC
(n = 18)

Post Hoc p-Value

Control vs. AA Control vs. CRC AA vs. CRC

PC aa

PC aa C32:2 3.22 ± 0.96 2.60 ± 1.03 1.83 ± 0.76 0.031 <0.001 0.028

PC aa C32:3 0.29 ± 0.07 0.26 ± 0.07 0.20 ± 0.06 0.229 <0.001 0.012

PC aa C34:3 11.08 ± 2.55 10.21 ± 3.29 7.54 ± 2.44 0.099 <0.001 0.006

PC aa C34:4 1.40 ± 0.39 1.21 ± 0.52 0.74 ± 0.31 0.226 <0.001 0.002

PC aa C36:3 87.51 ± 11.98 86.21 ± 16.29 70.58 ± 16.24 0.990 0.001 0.002

PC aa C36:6 0.59 ± 0.18 0.56 ± 0.27 0.31 ± 0.14 0.948 <0.001 <0.001

Total PC aa 1039 ± 118 1055 ± 197 870 ± 147 0.969 0.001 0.001

PC ae
PC ae C38:0 1.40 ± 0.32 1.41 ± 0.50 0.92 ± 0.34 0.665 <0.001 0.001

PC ae C40:1 1.22 ± 0.18 1.17 ± 0.34 0.87 ± 0.27 0.159 <0.001 0.003

PC aa, ae
PUFA PC 940 ± 98 949 ± 167 788 ± 141 0.991 0.001 0.001

Total PC 1157 ± 129 1167 ± 210 970 ± 163 0.994 0.001 0.001

LysoPC

LysoPC a C16:0 128 ± 22 112 ± 22 97 ± 25 0.032 0.027 0.845

LysoPC a C17:0 2.35 ± 0.48 1.85 ± 0.56 1.63 ± 0.60 0.001 0.007 0.980

LysoPC a C18:0 31 ± 6 26 ± 6 23 ± 8 0.012 0.024 0.939

LysoPC a C18:1 25 ± 5 21 ± 5 18 ± 6 0.034 0.033 0.876

LysoPC a C18:2 32 ± 9 27 ± 9 21 ± 9 0.041 0.001 0.167

LysoPC a C20:3 2.40 ± 0.61 2.06 ± 0.64 1.57 ± 0.5 0.129 0.019 0.476

LysoPC a C28:1 0.49 ± 0.10 0.43 ± 0.13 0.34 ± 0.10 0.233 0.003 0.090

Total lysoPC 233 ± 38 201 ± 38 172 ± 46 0.007 <0.001 0.056

SM SM (OH)/SM (non-OH) 0.16 ± 0.02 0.14 ± 0.02 0.14 ± 0.02 0.020 <0.001 0.358

AC

C2 6.49 ± 1.99 9.16 ± 3.50 8.86 ± 2.65 <0.001 0.001 0.982

C12:1 0.04 ± 0.056 0.08 ± 0.06 0.11 ± 0.07 0.004 0.001 0.215

C14:1 0.06 ± 0.02 0.09 ± 0.02 0.10 ± 0.04 0.002 0.007 0.920

C14:2 0.02 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 0.033 0.088 0.990

C18:1 0.11 ± 0.03 0.13 ± 0.03 0.16 ± 0.04 0.017 <0.001 0.110

C2/C0 0.17 ± 0.04 0.24 ± 0.08 0.25 ± 0.08 <0.001 <0.001 0.514

(C2 + C3)/C0 0.18 ± 0.04 0.25 ± 0.08 0.26 ± 0.08 <0.001 <0.001 0.543

CPT-I-ratio 0.0085 ± 0.002 0.0094 ± 0.002 0.012 ± 0.005 0.020 <0.001 0.034

Total AC/C0 0.21 ± 0.05 0.30 ± 0.09 0.32 ± 0.09 <0.001 <0.001 0.322

Amine Total DMA 0.83 ± 0.12 0.89 ± 0.15 1.01 ± 0.16 0.307 <0.001 0.007

AC, acylcarnitine; DMA, dimethylarginine; lysoPC, monoacyl-glycerophosphocholine; PC aa, diacyl-
glycerophosphocholine; PC ae, alkyl-acyl-glycerophosphocholine; PUFA, poly-unsaturated fatty acid; SM, sph-
ingomyelin; data are expressed in µM (except for ratios) as means ± standard deviation; p-values are assessed
by ANOVA (Benjamini–Hochberg or Tamhane post hoc analysis) or Kruskal–Wallis test; p-values < 0.05 were
considered to indicate statistical significance and are marked in bold.

The increase of ACs in the AA and CRC group and the concomitant reduction of
glycerophospholipids and sphingomyelins in CRC point to alterations in lipid metabolism.
Our results indicate altered biosynthesis, metabolism or degradation of hydroxylated
sphingomyelins by lysosomal and peroxisomal pathways during the adenoma to carci-
noma sequence.

We observed a lower number of statistically different analytes between the groups
concerning amino acids. Controls had higher glycine concentrations than AA patients and
histidine was significantly lower in CRC than in control subjects. CRC patients showed
a trend for decreased Gln levels compared to controls, but levels were similar as in AA
patients. The kynurenine to tryptophan ratio (Kyn/Trp, Figure 1E) was significantly higher
in CRC compared to controls, but similar to the AA group, while isolated kynurenine
(Kyn) and tryptophan (Trp) concentrations were similar in all groups. AA subjects had the
highest ornithine levels, which were statistically different only to the control group. CRC
patients had significantly decreased citrulline to arginine ratios (Cit/Arg), a marker for
nitric oxide synthase (NOS) activity. In contrast, the ornithine to arginine ratio (Orn/Arg),
indicative for arginase activity, was lowest in CRC patients. Total dimethylarginine (total
DMA, Figure 1F) concentrations were significantly higher in the CRC group, compared to
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both AA and control groups. Serum levels of the oxidative stress biomarker methionine
sulfoxide (MetSO) were lowest in the control group.

Overall, amino acid alterations were less pronounced than those of lipids among the
adenoma to carcinoma sequence. Modifications included Trp breakdown, NOS activity and
levels of total DMA. As total DMA increased from control to adenoma to carcinoma and
inhibits NO synthesis, our data may indicate the existence of possible biomarkers along
this pathway.
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Figure 1. Selected statistically significant parameters. (A) Ratio of acetylcarnitine to free carnitine and
(B) octadecenoylcarnitine; (C) sum of all lysoPC species and (D) the specific lysoPC a C18:2; (E) ratio
of kynurenine to tryptophan; (F) total dimethylarginine; data are expressed in µM (except for ratios);
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3.3. Clustering of Groups

Next, we used sparse partial least squares discriminant analysis (sPLS–DA), with
the top 30 features from ANOVA, to promote the identification of features relevant to the
adenoma to carcinoma sequence. The Kaiser–Meyer–Olkin measure was 0.725, indica-
tive for appropriate analysis, and Bartlett’s test of sphericity was significant (p < 0.001),
illustrating sufficient correlations between the items for further analysis. Values of the
Kaiser’s criteria and visual examination of the scree plot legitimated the analysis with
two fixed components, accounting for 41.5% on Component 1 and 18.4% on Component 2,
respectively. As such, 59.9% of total variance allowed distinguishing between the groups
(Figure 3A). The score values of the two components significantly separated the groups
(Figure 3B). The most important metabolites for Component 1 included lysoPCs, ACs with
derived parameters and PC aa C32:2. Metabolites from Component 2 mainly consisted of
PC aa and PC ae molecular species (Figure 3C). Thus, data reduction by sPLS–DA yielded
a moderate clustering of groups, but strongly indicated differences, mainly in the lipid
profiles of control, AA and CRC patients.
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lysoPC, monoacyl-glycerophosphocholine; PC aa, diacyl-glycerophosphocholine; PC ae, alkyl-acyl-
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adapted from MetaboAnalyst 4.0.

3.4. Correlation, Pattern Discovery and ROC Analyses

We analysed metabolites with pattern-specific concentration differences between the
groups. First, we focused on identifying metabolites with increased concentration along
the control to adenoma to carcinoma sequence (Figure 4A). The acetylcarnitine to free
carnitine ratio (C2/C0) showed a strong positive correlation (0.544). We observed moderate
correlation for other ACs and total DMA. All positive and negative correlation coefficients
are presented in Supplementary Tables S2–S4. The strongest negative correlation within
this sequence was observed for the glycerophospholipid PC aa C34:4 (−0.516). Other
negatively correlated metabolites included PCs and lysoPCs. Overall, our results indicate
modifications of lipid metabolism along the CRC adenoma to carcinoma sequence.
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Figure 3. Sparse partial least discriminant analysis (sPLS-DA) between Control (green), AA (blue)
and CRC (red) samples. (A) Score plot including Component 1 and Component 2, circles indicate
95% CI; (B) separation of Control, AA and CRC by the first and second component; (C) loading
plot of top 10 features used by Component 1 (left) and Component 2 (right); AC, acylcarnitine;
LysoPC, monoacyl-glycerophosphocholine; PC aa, diacyl-glycerophosphocholine; PC ae, alkyl-
acyl-glycerophosphocholine; PUFA, poly-unsaturated fatty acid; adapted from MetaboAnalyst 4.0;
** indicates p-values < 0.01, *** p-values < 0.001.
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Figure 4. Pattern analyses showing negative (left bar, light grey) and positive (right bar, dark grey)
correlation based on Spearman’s rank correlation coefficient. (A) Metabolites correlating within the
control to adenoma to carcinoma sequence; (B) metabolites correlating with the total amount of DMA;
(C) metabolites correlating with the Kynurenine to Tryptophan ratio; adapted from MetaboAnalyst 4.0.

Our previous results indicated a possible role of DMA in the adenoma to carcinoma
sequence. DMA metabolism connects to the nitric oxide (NO) pathway, and associates
with systemic immune activation. Therefore, we aimed to identify patterns associated with
the total amount of DMA (Figure 4B). Total DMA consists of two analogues, symmetric
dimethylarginine (SDMA) and asymmetric dimethylarginine (ADMA). Both metabolites
and derived parameters, as well as ACs, correlated positively. Features with negative corre-
lation were similar to those found in the analysis of the disease sequence and contained
lipids. The DMA results from above may indicate systemic immune activation. There-
fore, we assessed patterns associated with the Kyn/Trp ratio, a well-known parameter of
immune activation in CRC (Figure 4C) [26]. As expected, Kyn levels correlated strongly
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(0.717), whereas creatinine, derived DMA and some AC parameters were only moderately
correlated. Mainly unsaturated or mono-unsaturated lysoPCs and the total amount of
lyso-lipids were negatively correlated. The findings confirm altered lipid metabolism along
the control to adenoma to carcinoma sequence.

Next, we identified possible biomarkers discriminating between the metabolic groups,
and performed univariate receiver operating characteristic (ROC) analyses. The comparison
of the control and CRC group identified PC aa C34:4, with an area under the curve (AUC)
of 90.7%, as the best predictor (Figure 5A). The discriminating power between control and
AA subjects for the ratio of short chain ACs to free carnitine ((C2 + C3)/C0) reached an
AUC of 78.7% (Figure 5B). On the other hand, PC aa C36:5 discriminated AA and CRC
subjects, with an AUC of 83.1% (Figure 5C). Results of top 10 predictors for all possible
group comparisons are summarised in Supplementary Table S5. Therefore, univariate ROC
curve analysis revealed that lipids had the highest power for discrimination of groups.
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3.5. Validation Cohorts

To validate our findings, we analysed serum metabolite profiles in two separate valida-
tion cohorts (validation CRC and validation AA). We assessed differences in demographic
and laboratory characteristics between the training cohort and the validation cohorts
(Table 3).

Groups of both validation cohorts showed minor differences in terms of age, sex
distribution and parameter of lipid metabolism compared to the groups of the training
cohort. The percentage of subjects within all groups of both validation cohorts with fatty
liver was higher in the validation cohorts compared to the training cohort. The BMI and
GGT of the control group in the validation AA cohort was significantly higher than in
the training cohort. Levels of triglyceride and HDL–C differed between CRC subjects of
the training and validation cohorts. Despite some differences, the validation cohorts were
mainly similar in major characteristics.

We performed identical analytical mass spectrometric and statistical analyses, as for
the training cohort. Results of sPLS–DA are presented in Supplemental Figure S1. Results of
metabolic features are summarised in Supplementary Table S6 for both validation cohorts,
respectively.
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Table 3. Baseline characteristics of both validation cohorts.

Validation CRC (Val. CRC) Validation AA (Val. AA) p-Value Training Cohort vs.

Control (n = 29) CRC (n = 48) p-Value Control (n = 28) AA (n = 48) p-Value Control
Val. CRC

Control
Val. AA AA CRC

Age (years) 68 ± 7 69 ± 10 0.694 66 ± 5 66 ± 10 0.718 <0.001 <0.001 0.011 0.521

Gender (f/m) 26/3 17/31 <0.001 0/28 22/26 <0.001 0.001 <0.001 0.727 0.796

BMI (kg/m2) 26.3 ± 6.3 26.5 ± 3.7 0.845 28.3 ± 3.7 27.4 ± 3.9 0.357 0.833 0.005 0.193 0.416

Waist-to-hip-ratio 0.9 ± 0.01 1.0 ± 0.1 0.001 1.00 ± 0.08 1.0 ± 0.1 0.015 0.052 0.033 0.652 0.760

Fatty liver 10 (37%) 22 (46%) 0.189 17 (61%) 25 (52%) 0.468 <0.001 <0.001 0.048 0.039

GGT (U/L) 31.3 ± 29.4 38.3 ± 38.3 0.131 50.1 ± 49.4 46.5 ± 67.5 0.146 0.565 0.028 0.354 0.569

AST (U/L) 21.8 ± 6.0 22.7 ± 12.3 0.273 24.8 ± 11.0 22.8 10.4 0.223 0.493 0.233 0.395 0.086

ALT (U/L) 25.9 ± 15.9 22.2 ± 15.9 0.244 26.9 ± 12.8 26.8 ± 21.5 0.280 0.428 0.126 0.456 0.545

FI (µU/mL) 7.9 ± 4.7 8.5 ± 4.7 0.628 12.8 ± 7.1 8.8 ± 4.9 0.103 0.412 0.004 0.363 0.427

FG (mg/dL) 105.3 ± 16.2 104.6 ± 18.9 0.797 112.1 ± 23.6 106.1 ± 15.8 0.377 <0.001 <0.001 0.034 0.749

HOMA index 2.5 ± 1.6 2.3 ± 1.5 0.505 3.8 ± 2.5 2.4 ± 1.5 0.155 0.022 0.003 0.275 0.650

Diabetes 4 (14%) 9 (19%) 0.620 7 (25%) 4 (8%) 0.048 0.020 0.002 0.218 0.754

HbA1C (%) 5.7 ± 0.4 6.0 ± 0.9 0.307 5.9 ± 0.6 5.9 ± 0.6 0.824 <0.001 <0.001 0.321 0.180

CRP (mg/L) 0.64 ± 2.39 1.14 ± 1.86 <0.001 0.52 ± 0.92 0.46 ± 0.87 0.290 0.311 <0.001 0.741 0.432

Ferritin (ng/mL) 161 ± 115 110 ± 96 0.043 297 ± 236 224 ± 230 0.063 0.045 <0.001 0.162 0.492

Hb (g/dL) 14.5 ± 1.2 13.9 ± 2.2 0.553 15.2 ± 1.4 16.7 ± 14.5 0.024 0.319 0.057 0.970 0.152

TG (mg/L) 107.9 ± 44.2 121.6 ± 57.9 0.386 136.7 ± 58.7 125.7 ± 69.6 0.274 0.253 0.015 0.575 0.041

HDL-C (mg/L) 66.3 ± 18.6 57.5 ± 11.7 0.030 52.5 ± 12.7 64.0 ± 16.1 0.004 0.313 0.020 0.209 0.002

LDL-C (mg/L) 139.7 ± 36.1 134.4 ± 39.0 0.561 147.8 ± 43.3 145.7 ± 38.0 0.828 0.957 0.713 0.876 0.624

Hypertension 14 (50%) 31 (65%) 0.215 14 (50%) 23 (48%) 0.862 0.510 0.510 0.441 0.062

MetS 10 (36%) 15 (31%) 0.691 13 (46%) 14 (29%) 0.132 0.007 0.001 0.064 0.872

GGT, γ–glutamyl transferase; AST, aspartate aminotransferase; ALT, alanine aminotransferase; FI, fasting insulin; FG, fasting glucose; HOMA index, homeostasis model assessment for
insulin resistance; CRP, C-reactive protein; TG, triglyceride; HDL–C/LDL–C, high-density/low-density lipoprotein cholesterol; MetS, metabolic syndrome; data are expressed as means
± standard deviation unless otherwise indicated; p-values are assessed by ANOVA (Benjamini–Hochberg or Tamhane post hoc analysis) or Kruskal–Wallis test; p-values < 0.05 were
considered to indicate statistical significance and are marked in bold.
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In the validation AA cohort, controls differed from AA subjects, mainly in lipids,
amino acids and derived parameters. In contrast to our findings from the training cohort,
ACs remained mostly unchanged. Among amino acids, Cit/Arg ratio (indicator for NOS
activity) and the mainly proteinogenic amino acids aspartate, glycine and serine were
affected. Altered lipids tended to be higher in AA subjects compared to controls (Table 4,
Supplementary Table S6). The findings in amino acids were unique to the validation
cohort. Of note, absolute values of Kyn and Trp differed between all control subjects of
the study. As such, Trp concentrations were lower and Kyn concentrations were higher
in both validation cohorts compared to the training cohort. Neither DMA nor Trp, Kyn
or the Kyn/Trp ratio was significantly different when comparing AA or CRC with their
respective control groups.

Table 4. Top 10 metabolites of the AA and CRC validation cohorts.

Validation CRC

Class Metabolite Control
(n = 29)

CRC
(n = 48) p-Value

PC aa PC aa C32:3 0.44 ± 0.14 0.33 ± 0.09 <0.001

PC ae PC ae C36:2 14.60 ± 3.44 11.52 ± 3.51 <0.001

LysoPC

LysoPC a C17:0 3.01 ± 0.76 2.31 ± 0.77 <0.001

LysoPC a C24:0 0.22 ± 0.10 0.17 ± 0.10 <0.001

LysoPC a C28:0 0.80 ± 0.27 0.24 ± 0.33 0.002

LysoPC a C28:1 0.65 ± 0.27 0.48 ± 0.24 0.001

SM

SM (OH) C22:1 19.27 ± 4.18 16.12 ± 4.60 0.001

SM (OH) C22:2 19.10 ± 3.48 15.50 ± 4.85 0.001

SM (OH)/SM (non-OH) 0.17 ± 0.02 0.15 ± 0.03 <0.001

Total SM (OH) 54.86 ± 10.38 45.62 ± 12.96 <0.001

Validation AA

Class Metabolite Control
(n = 28)

AA
(n = 48) p-Value

PC aa PC aa C38:6 60.44 ± 18.06 76.49 ± 20.76 0.001

PC ae
PC ae C38:6 5.92 ± 1.53 7.19 ± 1.60 0.001

PC ae C40:6 4.23 ± 1.02 5.05 ± 1.00 0.001

SM

SM C18:1 12.19 ± 3.37 14.72 ± 3.04 0.001

SM C24:1 55.63 ± 12.91 64.34 ± 10.72 0.002

SM (OH) C22:2 13.51 ± 3.54 16.33 ± 3.51 0.001

SM (OH) C24:1 1.45 ± 0.35 1.71 ± 0.37 0.003

Total SM 308.06 ± 61.13 347.89 ± 49.01 0.003

Total SM (OH) 40.08 ± 10.05 47.17 ± 9.52 0.003

AA Cit/Arg 0.22 ± 0.06 0.27 ± 0.07 0.001
AA, amino acid; LysoPC, monoacyl-glycerophosphocholine; PC aa, diacyl-glycerophosphocholine; PC ae, alky-
acyl-glycerophosphocholine; SM, sphingomyelin; data are expressed in µM (except for ratios) as means ± standard
deviation; p-values are assessed by t-test or Mann–Whitney U test; p-values < 0.05 were considered to indicate
statistical significance and are marked in bold.

For the validation CRC cohort, 67 metabolites and derived parameters were signifi-
cantly different between control and CRC subjects. In line with results from the training
cohort, we found less pronounced differences in amino acid metabolism. Glycine (p = 0.028)
and histidine (p = 0.034) decreased and isoleucine (p = 0.003) increased in the CRC group.
The reduction of glycine and elevation of isoleucine did not reach statistical significance in
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the training cohort. On the other hand, our histidine findings confirm the training cohort
results. Alterations of lipid metabolism were more evident, and many lipids were present
at a lower concentration in the CRC group (Table 4, Supplementary Table S6). On the
other hand, some ACs were more abundant in the CRC group. Both findings confirm
our results from the training cohort. Furthermore, lyso-lipids with very long chain fatty
acids (≥22 carbon atoms) and some lysoPCs with long chain fatty acids (lysoPC a C17:x
and lysoPC a C18:x) were among the significantly reduced metabolites. CRC patients
had significantly lower levels of PC species (PC ae C36:2 and PC aa C32:3) and reduced
hydroxy sphingomyelins. This finding confirms and strengthens our initial results from
the training cohort and points to the possible role of sphingolipid hydroxylation in the AA
to CRC sequence.

We then analysed the overlap between the training and validation cohorts. We used
the top 20 analytes that drive separation in the sPLS–DA training set model to test the
validation groups (Supplementary Figure S1). PLS–DA indicated a robust model for the
CRC validation cohort, as derived from permutation testing (n = 1000; p < 0.01). PLS–DA
and permutation testing for the AA validation cohort only reached borderline significance
(n = 1000; p = 0.07), indicative for a less robust model. The results for two validated metabo-
lites of the training cohort and both validation cohorts are presented in Supplementary
Figure S2. For AA and control subjects, only a moderate overlap between results of the
training cohort and the validation AA cohort was observed. Three confirmed metabo-
lites (glycine, the MetSO/Met ratio and SM C18:1) indicate that the majority of regulated
metabolites differed to a greater extent than in CRC patients (Figure 6A). Our results may
also point to more than subtle underlying differences in the control groups or the effects
of repeated freeze–thaw cycles on the validation cohort samples. The overlap of results
between the training and validation CRC group was much stronger. Comparison revealed
43 overlapping metabolite features (Figure 6B). Despite the intrinsic heterogeneity in CRC
and diverse sample quality, many findings from the training cohort were validated. We con-
firmed mainly altered lyso-lipids, PC species and ACs between control and CRC subjects.
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Table 4. Top 10 metabolites of the AA and CRC validation cohorts. 

  Validation CRC 

Class Metabolite Control 
(n = 29) 

CRC 
(n = 48) 

p-Value 

PC aa PC aa C32:3 0.44 ± 0.14 0.33 ± 0.09 <0.001 
PC ae PC ae C36:2 14.60 ± 3.44 11.52 ± 3.51 <0.001 

LysoPC 

LysoPC a C17:0 3.01 ± 0.76 2.31 ± 0.77 <0.001 
LysoPC a C24:0 0.22 ± 0.10 0.17 ± 0.10 <0.001 
LysoPC a C28:0 0.80 ± 0.27 0.24 ± 0.33 0.002 
LysoPC a C28:1 0.65 ± 0.27 0.48 ± 0.24 0.001 

SM 

SM (OH) C22:1 19.27 ± 4.18 16.12 ± 4.60 0.001 
SM (OH) C22:2 19.10 ± 3.48 15.50 ± 4.85 0.001 
SM (OH)/SM (non-OH) 0.17 ± 0.02 0.15 ± 0.03 <0.001 
Total SM (OH) 54.86 ± 10.38 45.62 ± 12.96 <0.001 

  Validation AA 

Class Metabolite 
Control 
(n = 28) 

AA 
(n = 48) p-Value 

PC aa PC aa C38:6 60.44 ± 18.06 76.49 ± 20.76 0.001 

PC ae 
PC ae C38:6 5.92 ± 1.53 7.19 ± 1.60 0.001 
PC ae C40:6 4.23 ± 1.02 5.05 ± 1.00 0.001 

SM 

SM C18:1 12.19 ± 3.37 14.72 ± 3.04 0.001 
SM C24:1 55.63 ± 12.91 64.34 ± 10.72 0.002 
SM (OH) C22:2 13.51 ± 3.54 16.33 ± 3.51 0.001 
SM (OH) C24:1 1.45 ± 0.35 1.71 ± 0.37 0.003 
Total SM 308.06 ± 61.13 347.89 ± 49.01 0.003 

Figure 6. Venn diagrams indicating overlap between significantly different features. (A) Overlap
between the training cohort and validation CRC; (B) overlap between the training cohort and
validation AA.

4. Discussion

Alterations of serum metabolic profiles reflect the host response to pathological
changes, thus, strengthening the effects of cellular metabolic changes in the colon. Serum
metabolome changes can identify the very early stages of disease, e.g., with occult metasta-
sis, and support risk stratification, e.g., by detecting residual metastasis [27,28]. Moreover,
the site of the disease may have an impact [27].

A special feature of the present study is that the serum metabolome profiles of a
treatment-naïve, random sampling, cross-sectional cohort was available. Patients were
diagnosed through the screening program with AA or CRC.
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Baseline characteristics provide a hint towards increased inflammation in the control
to adenoma to carcinoma sequence. This is reflected by increasing CRP concentrations,
probably triggered by metabolic reprogramming. In line with this, the accumulation of MetS
features indicates metabolic alterations being more prevalent in the carcinoma compared
to the adenoma group. The role of lipid metabolism along the adenoma to carcinoma
sequence is apparent. It includes declining HDL-C concentrations and a higher prevalence
of fatty liver, increasing from controls to adenoma to carcinoma patients. Findings of the
targeted metabolomics approach further confirm these observations, as metabolism of
lipids, specifically acylcarnitines (ACs), glycerophosphocholines (PC aa, PC ae), and to a
lesser extent, amino acids and catabolites, differed between the groups.

Levels of ACs increased in the AA and CRC groups. Furthermore, the elevated
CPT-I-ratio (a proxy measure of ß-oxidation) increased along the adenoma to carcinoma
sequence. Increased β-oxidation is a hallmark of chemo- and radiotherapy resistant tumour
cells [29]. Our findings may provide preliminary evidence for a reversed Warburg effect in
treatment-naïve CRC. In postoperative material, CRC regions had higher rates of oxidative
phosphorylation compared to surrounding and healthy colon tissue cells [15]. It was
speculated that human CRC is less of a hypoxic tumour, with higher respiration rates.
Furthermore, CRC cells have the ability to modulate the energy metabolism of neighbouring
cells [15]. The proto-oncogene MYC is the proposed master regulator of colorectal tumour
metabolism, including a reversed Warburg effect [12]. The protein kinase c-MYC regulates
the expression of many enzymes of lipid and amino acid metabolism. Reprogramming
and enhancement of lipid metabolism in tumorigenesis is common within certain cancer
entities and often includes de novo lipogenesis and uptake from systemic circulation [30].

Alterations in the metabolism of glycerophospholipids are known to contribute to
oncogenesis, as well as tumour progression [31], and this this became evident in the
SAKKOPI cohort, too. Total lysoPC, as well as some specific lysoPCs, were significantly
lower in the AA and CRC group compared to control subjects. Identical lipids were found
by another study, as Zhao et al. reported significantly reduced plasma levels of total lysoPC,
lysoPC C18:1 and lysoPC C18:2 in CRC [32]. Other CRC plasma lipidomics results con-
firmed our findings, but also emphasised that even lipid species belonging to the same
lipid class may follow different trends in an experimental setting [20]. Reduced levels of
lysoPCs may originate from decreased formation and/or increased remodelling activi-
ties. Remodelling by liver secreted lecithin:cholesterol acyltransferase (LCAT) transfers
fatty acids from PCs to cholesterol-forming lysoPCs. LCAT is repeatedly described as a
prognostic biomarker for the detection of HCC and for epithelial ovarian cancer [33–37].

Food intake affects the metabolism of subjects as well as of their gut microbiomes.
Serum lysoPC a C17:0 levels were significantly reduced in CRC patients in the presented
study. The lipid contains one chain of margaric acid, which is mainly derived from butter,
milk and ruminant fat. Interestingly, lysoPC C17:0 was reported to discriminate patients
with hepatocellular carcinoma (HCC) from controls [38]. Different serum lysoPC 17:0 levels
were also observed in CRC patients and cirrhotic controls [39]. Unfortunately, no data
concerning food intake were available.

Lipid modifications, such as desaturation, elongation or hydroxylation, determine
the fate of cancer cells [40]. LysoPCs with poly-unsaturated fatty acids (lysoPC a C18:2
and lysoPC a C20:4) were reduced in the CRC patients of our study. The observation may
mirror the high demand of proliferating cancer cells for PUFAs and uptake from systemic
circulation, for re-acylation and further use as cell membrane components. In line with this,
decreased levels in n-3 and n-6 serum PUFAs in CRC were reported earlier [41]. In contrast,
the intra-tumour concentrations of PUFAs in CRC patients were higher.

We also observed the changed metabolism of sphingolipids in our study. These
complex and structurally different lipid species are involved in many cellular functions,
such as membrane components or the regulation of apoptosis and inflammation [42–44]. We
detected decreased serum levels of distinct SM species in CRC, while AA subjects showed
slightly increased or unchanged levels compared to control subjects. The altered ratio of
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hydroxylated to non-hydroxylated sphingomyelins in AA and CRC patients may point to a
possible role of sphingolipid hydroxylation in CRC. The general reduction of SMs in CRC
could originate from the altered expression and activity of enzymes (i.e., sphingomelinases,
SMase) regulating their metabolism. SMase activity in the colonic mucosa of mice also
responds to different types of diet [45]. Additional information on altered alkaline SMase
protein expression within different histological stages of colorectal adenomas underscores
the crucial role of sphingolipids [46]. If such local changes in enzymatic activity have an
impact on the metabolic serum profile solely, this needs further clarification.

Alterations in lipid metabolism may also affect immune cells in CRC. The accumula-
tion of lipids in macrophages creates dysfunctional and pro-inflammatory states in many
diseases [47–49]. The immune suppressive phenotype of tumour-associated macrophages
in CRC may also respond to changes in lipid metabolism [50].

The changed metabolism of circulating immune cells may be a major contributor to al-
tered lipid patterns in serum. There are several biochemical links between the metabolism of
lipids and other metabolites, e.g., amino acids and derivatives. For example, up-regulation
of the Trp catabolizing enzyme indoleamine 2,3-dioxygenase 1 (IDO-1) in circulating im-
mune cells was reported for several cancer entities, including colorectal, lung and breast
cancer, leading to increased serum concentrations of Kyn [51,52]. Murine CD4+ T cells,
exposed to Kyn, undergo increased β-oxidation and deplete fatty acids [53]. Kyn and
downstream products contribute to the metabolic reprogramming of immune cells via aryl
hydrocarbon receptor (AhR) signalling, inhibit glycolysis and increase lipid oxidation [54].
The major driver of inflammation-associated IDO-1 activity is IFN-γ [55]. Metabolites in
the Kyn pathway can suppress T cell proliferation, drive T cell apoptosis and induction
of regulatory T cells. Serum Kyn/Trp ratios in CRC patients were significantly higher
compared to control patients [26]. These findings are in accordance with our training cohort
results, with increased serum Kyn/Trp ratios in the CRC group compared to controls, while
levels between control and AA subjects were similar. Local Trp catabolism in the tumour
creates a tumour-specific microenvironment for immune escape [56]. Expression of IDO-1
in CRC correlated with reduced infiltration by CD3+ T cells and increased rates of hepatic
metastases [57]. Colon cancer cells also increase their uptake of the essential amino acid
Trp by Myc dependent upregulation of transporters [58].

Chronic inflammation is a risk factor for CRC, as observed in patients with long-
standing inflammatory bowel disease, a precancerous condition [59–61]. Induced by
inflammatory cytokines IFN-γ or TNF-α, epithelial cells in the colon become major IDO-
1 expressing cells, causing DNA damage by oxidative stress and the innate immune
system [62–64]. Recently, IDO-1 expressing Paneth cells in the stem cell niche of intestinal
crypts and tumours were described, which promoted immune escape of CRC [65]. IDO-1
expression therefore links inflammation with lipid and amino acid metabolism.

Apart from alterations in Trp metabolism, other differences in amino acid metabolism
were minor. Reduced Gln levels were reported in CRC earlier [66]. Interestingly, Gln
levels were not different between the groups and only tended to be lower in AA and
CRC. Myc also regulates the uptake and degradation of Gln [67]. The reprogramming to
Gln catabolism provides citrate and acetyl-coenzyme A, for further lipid synthesis, and
intermediates to preserve TCA cycle activity, as well as macromolecular precursors [16].

One explanation for our Gln findings may be associated with the fact that our data
also revealed a possible shift of arginine metabolism towards total DMA (i.e., sum of
ADMA and SDMA) formation, at the expense of NO metabolism. The Cit/Arg ratio (a
proxy for arginase activity) was decreased in CRC compared to controls and points to low
NOS activity. This may contribute to decreased metabolism of Gln, polyamine and pro-
line [68]. Increased ADMA and SDMA levels also occur in haematological malignancies [69].
Dimethylamines are methylated degradation products of proteins [70]. The increase in total
DMA levels in the CRC group in this dataset is in accordance with Li et al., who reported
higher ADMA serum levels in CRC patients [71]. SDMA is removed by renal excretion,
thus ADMA is the major contributor for endogenous DMA and is formed via arginine
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methylation by arginine N-methyltransferase (PRMT). ADMA is an endogenous inhibitor
of NOS and the L-Arg/NO pathway is altered in CRC [70,72]. NO has concentration-
dependent diverse pro- and anti-tumour effects in cancers. Endogenous NO levels may
promote colon neoplasms, as NO affects many CRC signalling pathways associated with
inflammation, cancer initiation and metastasis [73]. The decrease in Cit/Arg ratios in our
CRC group may indicate a dysregulation of NOS, followed by a lower recycling rate of Cit
to argininosuccinate by ASS1 (argininosuccinate synthase 1) and ASL (argininosuccinate
lyase), back to Arg [74].

Metabolic alterations along the Arg/ADMA pathway may provide useful biomarkers
for CRC tumour progression in future studies. Interestingly, Arg is the most consumed
amino acid in the inner necrotic core of tumour mass [75]. There is also some evidence
that elevated ADMA levels influence the depth of tumour invasion and poor clinical
outcomes in gastric cancer samples [76]. Of note, there is crosstalk between ADMA and
lipid metabolism. ADMA treatment of macrophages impaired lipid metabolism and
increased NADPH oxidase (NOX) activity and ROS production. Furthermore, ADMA
upregulated the expression of pro-inflammatory mediators in macrophages [77,78]. In vivo
administration of ADMA worsened aortic inflammation, impaired cholesterol metabolism
and promoted atherosclerosis in apoE−/− mice. In line with this, ADMA was suggested to
contribute to the regulation of macrophage lipid metabolism, during their transformation
to foam cells [79].

Limitations of the Study

Some common technical drawbacks need consideration. In general, investigations on
the serum metabolome rarely provide clear information on the origin of the metabolites
and may not exactly reflect the carcinogenic development. Furthermore, the used targeted
kit encounters the problem of potential isobaric and isomeric lipid species, as well as the
intrinsic limitation of analyte selection.

In addition, this work suffers from potential study-specific limitations. Participants
were enrolled in a screening program. Therefore, the variable and early sampling time point
could contribute to the weak differences observed for established markers and account
for the moderate overlap of cohorts. As an advantage, the samples were taken before any
treatment for AA or CRC was set in place. Unfortunately, we do not have comprehensive
data on pre-screening medication, food intake or staging information of the participants
for the study. Certain medications can affect the blood levels of distinct metabolites,
as observed for ADMA and SDMA in patients [80]. Notably, the control population
of the training cohort was somewhat younger. Age-related changes of physiological
metabolite concentrations are known for some metabolites, e.g., for Trp breakdown along
the kynurenine axis, which increases with age, most likely due to low level inflammatory
processes [81]. The comparison of absolute concentrations of Kyn and Trp (a more stable
metabolite) between all control subjects demonstrated differences between our cohorts.
Control subjects of both validation cohorts (validation CRC and validation AA) had reduced
Trp but higher Kyn levels compared to the training cohort. The somehow distorted Kyn
and Trp serum levels indicate a higher between-cohort variation.

Though a subgroup analysis would be interesting, to better understand the impact
of routine laboratory parameter differences or age, Control, AA and CRC groups of the
different cohorts were too small for a conclusive subgroup analysis. In this work, cohorts are
defined by time of participation in the study and sample availability. Participating subjects
represent a random cross-section and reflect real life random sampling. No preselection
intrinsically causes higher sample heterogeneity but may lead to more stable markers.

Another limitation of our study is the lack of a truly independent population for
validation. Therefore, samples of the validation cohorts consisted of posterior samples from
the SAKKOPI registry that were not available to us during the enrolment of the initial study.
As mentioned above, several freeze–thaw cycles cannot be fully excluded for the validation
cohorts, while the samples of the training cohort were thawed only once for this metabolic
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study. Results from analytes with reduced stability during the preanalytical phase are
more likely impaired. Ex vivo plasma concentrations showed a considerable plasma Arg
decrease in short-term stored samples at room temperature compared to storage on ice,
while plasma Trp concentrations were stable at both conditions [82]. Knowledge about
the analytical stability of lipid metabolites is much more limited; however, elevated levels
of fatty acids or glycerol metabolites are potential consequences of thawed samples [83].
Results from our study directly point to sample heterogeneity in terms of quality. Levels
of the oxidative stress biomarker MetSO were significantly higher in all samples of the
validation cohorts.

Despite all limitations, this study provides the unique opportunity to discover yet
unknown patterns, such as lipid profile characteristics, which might be otherwise masked
by ongoing treatments. Hence, untargeted methods for future studies and/or validation,
with well-defined large cohorts, are still necessary to understand the different metabolic
alterations in the adenoma to carcinoma sequence in CRC.

5. Conclusions

CRC accounts for many cancer-related deaths due to late detection and suboptimal
risk stratification. Alterations in oncogene and tumour suppressor gene expression, as well
as host responses, induce pronounced metabolic reprogramming. Changes of the serum
metabolome may be indicative for the CRC adenoma to carcinoma sequence and triggered
immune responses.

This study investigated sera from a treatment-naïve random sampling cross-sectional
cohort. Lipid patterns, and to a lesser extent amino acids, were identified to significantly
differ between Control, AA and CRC. A number of lysoPC and ester-bound phosphatidyl-
choline species, as well as ether-bound plasmanylcholines and sphingolipid species were
lower in CRC compared to Control. Further changes concerned the Arg/ADMA axis and
ADMA/NOS interaction, as well as sphingolipid hydroxylation. The role of alterations
in the metabolism of glycerophospholipids and acylcarnitines, the preliminary evidence
for increased β-oxidation and hints for a potential reversed Warburg effect in CRC await
further clarification.

In summary, mainly serum lipid and, to a lesser extent, amino acid profiles changed
significantly with the progression of the adenoma to CRC sequence. The roles of lipids in
the pathogenesis of CRC merit further investigation, as lipid patterns bear a great potential
as clinically useful markers for personalised medicine. The combination of established
and novel metabolites may define new standards and strategies in the early diagnosis and
treatment of CRC, which may foster the generation of novel therapeutic regimens that
improve outcomes, in addition or as alternatives to conventional therapy.
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