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Deciphering information of RNA sequences reveals their diverse roles in living organisms, includ-
ing gene regulation and protein synthesis. Aberrations in RNA sequence such as dysregulation and 
mutations can drive a diverse spectrum of diseases including cancers, genetic disorders, and neu-
rodegenerative conditions. Furthermore, researchers are harnessing RNA’s therapeutic potential 
for transforming traditional treatment paradigms into personalized therapies through the devel-
opment of RNA-based drugs and gene therapies. To gain insights of biological functions and to 
detect diseases at early stages and develop potent therapeutics, researchers are performing di-
verse types RNA sequence analysis tasks. RNA sequence analysis through conventional wet-lab 
methods is expensive, time-consuming and error prone. To enable large-scale RNA sequence anal-
ysis, empowerment of wet-lab experimental methods with Artificial Intelligence (AI) applications 
necessitates scientists to have a comprehensive knowledge of both DNA and AI fields. While molec-
ular biologists encounter challenges in understanding AI methods, computer scientists often lack 
basic foundations of RNA sequence analysis tasks. Considering the absence of a comprehensive 
literature that bridges this research gap and promotes the development of AI-driven RNA sequence 
analysis applications, the contributions of this manuscript are manifold: It equips AI researchers 
with biological foundations of 47 distinct RNA sequence analysis tasks. It sets a stage for devel-
opment of benchmark datasets related to 47 distinct RNA sequence analysis tasks by facilitating 
cruxes of 64 different biological databases. It presents word embeddings and language models ap-
plications across 47 distinct RNA sequence analysis tasks. It streamlines the development of new 
predictors by providing a comprehensive survey of 58 word embeddings and 70 language models 
based predictive pipelines performance values as well as top performing traditional sequence en-
coding based predictors and their performances across 47 RNA sequence analysis tasks.
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1. Introduction

Cutting-edge sequencing technologies, such as next-generation sequencing and the innovative third-generation sequencing, have 
revolutionized the exploration of genetic sequences in a cost-efficient manner [1]. These methods have generated vast amounts of 
DNA, RNA, and protein sequence data [1]. In particular, RNA sequence data is being utilized to uncover hidden information such as 
distinct roles of RNAs in living organisms (e.g. protein synthesis and gene regulation) and their associations with various diseases, 
including cancers, genetic disorders, and neurodegenerative conditions [2]. To gain deep insights of RNA sequences information, 
researchers are utilizing the potential of wet-lab experimental approaches for performing diverse types of RNA sequence analysis tasks 
[3]. However, wet-lab experiments based RNA sequence analysis is time consuming, and expensive. Following inherent limitations 
of conventional wet-lab experimental approaches, researchers are harnessing the potential of Artificial Intelligence (AI) methods to 
develop AI-driven RNA sequence analysis applications [3].

Most of the AI-driven RNA sequence analysis applications fall under the hood of regression, clustering, and classification 
paradigms. Clustering paradigm objective is to make groups of RNA sequences with similar characteristics [3,1]. Regression paradigm 
focuses on the prediction of continuous numerical values based on RNA-seq data [3,1]. For instance, researchers might utilize re-
gression to predict how a specific gene’s expression level might change under varying environmental conditions [3,1]. Classification 
paradigm involves assigning RNA sequences to pre-defined categories [3,1]. A unified workflow for all three distinct types paradigms 
based AI-driven RNA sequence analysis predictive pipelines are illustrated in Fig. 1. A closer look on Fig. 1 reveals that AI-driven 
RNA sequence analysis predictive pipelines working paradigm can be segregated into four different stages.

The first stage focuses on the collection and curation of high-quality benchmark datasets. This stage either employs datasets 
developed by existing studies or creates new datasets. The creation of new datasets involves obtaining RNA sequences and their 
associated information from public databases or acquiring data through wet-lab experiments. The second stage is known as repre-
sentation learning, it employs diverse methods to capture the informative distribution of nucleotides in RNA sequences and encode 
this information into statistical vectors. This transformation is essential because AI methods inherently rely on statistical vectors. The 
third stage utilizes statistical vectors of RNA sequences alongside machine learning or deep learning algorithms to make predictions. 
The objective of the fourth stage is to evaluate the performance of predictive pipelines that utilize representation learning and ma-
chine/deep learning methods. Among all 4 stages, representation learning stage is the most critical as quality statistical vectors allow 
even simple machine learning algorithms to perform well, while poor vectors hinder the performance of sophisticated algorithms. 
There is a marathon to develop potent sequence encoders for generating informative statistical vectors [4]. Up to date, hundreds of 
representation learning methods have been developed that can be categorized into three groups: domain-specific methods, neural 
word embedding methods, and language models [4]. Domain-specific methods utilize pre-computed physical and chemical values of 
nucleotides or occurrence frequencies of nucleotides to generate statistical vectors of RNA sequences [5,4,6]. Although, these meth-
ods manage to capture intrinsic characteristics of biological sequences like nucleotides compositional or distributional information. 
However, these methods fail to fully capture complex nucleotides relationships and semantic similarities between nucleotides [5,4].

Compared to domain-specific methods, neural word embedding techniques offer multiple advantages. These methods capture and 
encode distribution and semantic relationships of nucleotides or groups of nucleotides (k-mers) as dense vectors in a continuous vector 
space [7,8]. They also support transfer learning, as word embeddings are generated in an unsupervised manner. Transfer learning is a 
technique where a deep learning model first learns to solve one task really well (identification of disease genes) and then applies that 
knowledge to solve a different but related task (like identification of disease pathways) more efficiently. The model “transfers” its 
existing understanding of important features, like identifying abnormal genetic patterns, to the new task. Transfer learning strategy 
empowers machine and deep learning algorithms to perform better even on small datasets. On the other hand, language models learn 
representations of nucleotides or k-mers by predicting masked nucleotides based on their surrounding context [9–11]. Unlike word 
embedding methods which generate static k-mer vectors [7,8], language models consider different contexts of nucleotides or k-mers 
by capturing complex relationships through masked word prediction [9–11]. Similar to word embeddings, language models enhance 
performance of machine and deep learning-based RNA sequence analysis pipelines with the strength of transfer learning.

Despite the numerous benefits of word embedding approaches and language models, most AI-driven RNA sequence analysis 
applications still rely on domain-specific methods that transform raw sequences into statistical vectors. Moreover, development of 
AI-driven RNA-sequence analysis applications requires expertise in both RNA biology and artificial intelligence. Unfortunately, a 
significant knowledge gap often exists between AI researchers and biologists. AI researchers usually lack in deep understanding of 
biological applications, while biologists lack in fundamental AI concepts. A significant gap between both fields hinder development 
of powerful AI-driven sequence analysis applications. For example, Natural Language Processing field has witnessed development of 
powerful applications which have integrated multi-task learning strategies, but such advancements have not been mirrored in the 
realm of RNA sequence analysis. This is partly because AI experts often lack a comprehensive understanding of various RNA analysis 
tasks necessary for developing effective multitask learning strategies based applications.

To address this need and to accelerate the development of robust predictive pipelines for RNA sequence analysis tasks, several 
review articles have been published. However, these reviews typically concentrate on individual tasks rather than providing a com-
prehensive overview. Recognizing the importance of bridging the gap between biologists and AI experts, this review paper offers 
several key contributions:

• Biologists can utilize this review article to gain insights of AI potential for RNA sequence analysis tasks, while AI researchers can 
gain a deeper understanding of specific challenges and opportunities within RNA sequence analysis field.
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Fig. 1. Predictive pipeline of RNA Sequence Analysis Tasks. 

• It empowers AI researchers by imparting biological insights of 47 distinct RNA sequence analysis tasks and aligns these tasks 
with 3 distinct AI paradigms namely classification, regression and clustering.

• It lays the foundation for the development of new datasets by offering a comprehensive overview of 64 RNA sequence analysis 
databases.

• To ensure a fair performance comparison between existing and new AI predictors, it provides details of 310 benchmark datasets 
related to 47 unique RNA sequence analysis tasks.

• Within AI predictive pipelines, it elucidates the application of 16 different word embedding methods and 8 language models 
across 47 RNA sequence analysis tasks.

• It streamlines novel predictors development by facilitating a detailed summary of current state-of-the-art predictors, their per-
formances across 47 unique RNA sequence analysis tasks, and their availability to scientific community. This detailed summary 
sets a valuable stage for researchers aiming to develop and evaluate new predictors for distinct types of RNA sequence analysis 
tasks.
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Fig. 2. Research Methodology. 

2. Research methodology

This section provides high level overview of research methodology that is used to find word embeddings and language models 
based articles for RNA sequence analysis applications. To ensure thoroughness and reliability of selected articles, this methodology 
follows two stage process: 1) Article identification, 2) Article screening and filtering.

2.1. Article searching

In Fig. 2, article identification module contains three cells for different kinds of keywords namely RNA sequence analysis tasks, 
word embedding methods, and Language models. To formulate search queries, keywords within same cell are combined using OR ∨
operator while keywords from different cells are combined using AND ∧ operator. For instance few sample queries include; mRNA 
identification using FastText word embedding, enhancer RNA identification using BERT language model, etc. These search queries are 
executed on academic search engines such as Google Scholar,1 ACM Digital Library,2 IEEEXplore,3 Elsevier,4 Wiley Online Library,5

Springer6 and ScienceDirect.7 Furthermore, snowballing is employed to identify more research articles by examining reference list 
of extracted papers.

1 https://scholar.google.com/.
2 https://dl.acm.org/.
3 https://ieeexplore.ieee.org/.
4 https://www.elsevier.com/.
5 https://www.wiley.com/en-us.
6 https://www.springer.com/gp.
7 https://www.sciencedirect.com/.
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Fig. 3. Precise Classification of Unique RNA Sequence Analysis Tasks in 10 Major Biological Goals. 

2.2. Article screening and filtering

Second stage consists of two step process to select the most relevant articles. In the first step, titles and abstracts of 257 articles 
were reviewed by domain experts resulting in identification of 80 word embedding and 91 language models based relevant articles. In 
second step, a full-text assessment of these articles was conducted leading to selection of 58 word embedding and 70 articles language 
models related articles.

3. Biological foundations of RNA sequence analysis goals and tasks

This section offers a high-level overview of RNA sequence analysis world. Scientists are performing around 47 notable sequence 
analysis tasks to gain a deeper understanding of RNA’s diverse biological roles within living organisms, their associations with 
various diseases, and potentials for therapeutic development. To facilitate a more organized comprehension of these tasks, we have 
categorized them into 10 distinct goals, presented in Fig. 3. RNA is emerging as a key player in understanding cellular functions 
and providing versatile targets for novel therapeutics. To gain unprecedented insights into the intricacies of RNA regulation at the 
molecular level, researchers need to decode RNA’s complexities, characterize the composition and structure of RNA, and uncover 
their functions. Also, they need to decipher the complex regulatory networks that govern their activity and determine their relevance 
and alterations in disease. The heart of such comprehensive analysis is the goal of RNA classification which focuses on identifying 
different types of RNAs on the basis of their molecular characteristics and biological roles [12]. Few notable types are miRNAs, tRNAs, 
lncRNAs, circular RNAs, enhancer RNAs and promoter RNAs [13,14]. RNA classification landscape is advancing the discovery of new 
RNAs and expanding scientists understanding of RNA’s regulatory potential in living organisms [15]. The immense diversity in the 
roles and cellular activities of unique RNAs emerges from a complex interplay of molecular characteristics. This complex interplay 
includes distinct localization patterns [16–19], structural characteristics, interactions patterns [20–23], and functional properties. 
RNA structure and subcellular localization exhibit a bidirectional relationship as structural elements can direct cellular localization 
through specific recognition motifs, while the local cellular environment can also influence RNA folding and stability. These structural 
and spatial arrangements facilitate specific interaction networks with proteins, chromatin, and other RNA molecules which dictate 
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RNAs functions [24]. Understanding these interconnected relationships is crucial for deciphering RNA function and developing RNA-
based therapeutic strategies.

Furthermore, RNA modifications [25] represent another layer of complexity in biological systems, where chemical alterations 
to nucleotides significantly influence molecular stability, function, and regulatory potential. These modifications, including N6-
methyladenosine (m6A), ac4C-Acetyl Cytidine, and various 2’-O-methyl modifications, work in concert with RNA special character-
istics like prediction of degradation rates of mRNA molecules [26] and prediction of coverage or read counts of RNA-seq experiments 
[27] to create sophisticated recognition platforms for cellular factors and activate or inhibit certain cellular processes. The prediction 
and understanding of these modifications are essential for comprehending RNA processing, nuclear export, translation, and cellular 
differentiation. Furthermore, RNA target prediction [28,29] has emerged as a crucial aspect which focuses specifically on interac-
tions between regulatory RNAs and their targets. This includes miRNA interactions with mRNAs and coding transcript sequences, 
siRNA interactions with genes, and non-coding RNA associations with diseases. These targeting relationships play vital roles in gene 
regulation, disease pathogenesis, and therapeutic development. RNA site prediction [30,31] complements this analysis as it focuses 
on crucial regulatory elements such as splice sites and alternative splicing patterns, which are fundamental to gain understanding 
of post-transcriptional regulation. Additionally, comprehensive gene analysis [32] encompasses various aspects including spatial 
gene expression patterns, gene regulatory networks, and taxonomic classification of microbial species based on RNA sequences. The 
emergence of single-cell RNA analysis [33,34] has further revolutionized scientists understanding by enabling the examination of 
RNA expression patterns, cellular heterogeneity, and regulatory networks at unprecedented resolution. Such analyses are decoding 
multi-omics data to provide insights into cellular diversity and molecular mechanisms at the individual cell level.

For detailed exploration of RNA biology fundamentals, specific aspects of each goal, and AI utility trends in RNA biology, readers 
are directed to comprehensive reviews [3,35–40]. The subsequent sections will delve into the nature of RNA sequence analysis tasks, 
and AI approaches developed for these tasks to address 10 major goals effectively.

4. Examining RNA sequence analysis tasks through the lens of computer scientists

Given the surge in biological data and the emergence of AI technologies, researchers are increasingly applying AI methodologies 
across various domains of molecular biology. The development of large-scale AI applications necessitates a comprehensive under-
standing of a wide array of sequence analysis tasks. However, a significant gap exists between the expertise of computer scientists 
and molecular biologists. While molecular biologists grasp the necessity, biological significance, and pharmaceutical value of di-
verse sequence analysis tasks, they often lack insight into selecting the most suitable machine learning or deep learning models to 
complement or substitute experimental work. Conversely, computer scientists are adept at identifying which AI predictive pipelines 
may yield optimal results with specific data types, yet they struggle to comprehend the nature of biological sequence analysis tasks. 
For example, RNA sequence analysis tasks such as RNA function prediction and cell-specific gene regulatory network prediction are 
challenging to grasp straightaway. Nevertheless, a detailed literature review which describes the basics of such tasks can significantly 
bridge this gap. For example, RNA function prediction seems like a multi-class classification task but it is actually a multi-label 
classification task. Similarly, cell specific gene regulatory network prediction seems like a clustering task but it is actually a binary 
classification task. With this foundation knowledge, computer scientists can more effectively design predictive pipelines tailored to 
binary, multi-class, multi-label classification, regression, and clustering tasks. To empower diverse AI researchers and practitioners, 
we have performed methodical categorization of 47 RNA sequence analysis tasks in Fig. 4 on the basis of their nature. A first look 
at Fig. 4 indicates that RNA sequence analysis tasks can be broadly classified into 3 primary kinds: regression, classification, and 
clustering, where classification can be further segregated into 3 secondary kinds: binary, classification, multi-class classification, as 
well as multi-label classification. Let’s dive into mathematical formulation of unique types of RNA sequence analysis tasks.

For binary classification, main objective for researchers is to forecast the result of a binary variable (0 or 1). When provided with 
a dataset containing features 𝑋 ∈ ℝ𝑛𝑥𝑑 , binary labels 𝑦 ∈ 0,1, and a training dataset (𝑥1, 𝑦1), (𝑥2, 𝑦2),…, according to equation (1), 
the aim is to acquire a decision function 𝑓 ∶𝑋 → 𝑌 that assigns inputs to binary outcomes 0,1 using the hypothesis function ℎ(𝑥)
derived from the training data.

𝑓 (𝑥) =

{
1 𝑖𝑓ℎ(𝑥) ⩾ 0.5
0 otherwise

(1)

In the multi-class classification, the objective for researchers is to forecast the outcome from a set of more than two classes. 
Specifically, when presented with a dataset containing features 𝑋 ∈ℝ𝑛𝑥𝑑 , labels 𝑦 ∈ 1,2,…,𝐾 where 𝐾 represents the total number 
of classes, and a training dataset (𝑥1, 𝑦1), (𝑥2, 𝑦2),…, (𝑥𝑛, 𝑦𝑛) where 𝑥𝑖 ∈𝑋 and 𝑦𝑖 ∈ 𝑌 , according to equation (2), the aim is to develop 
a decision function 𝑓 ∶𝑋→ 𝑌 that assigns inputs to one of the available classes.

𝑓 (𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘ℎ𝑘(𝑥) (2)

The hypothesis function ℎ𝑘(𝑥) represents the learned hypothesis for class 𝑘 derived from the training data. Conversely, in multi-
label classification, each input has the potential to be associated with several classes at the same time. When provided with a 
dataset comprising features 𝑋 ∈ ℝ𝑛𝑥𝑑 , labels 𝑦 ∈ 1,2,…,𝐾 where 𝐾 denotes the total number of classes, and a training dataset 
(𝑥1, 𝑦1, 𝑦2, ..), (𝑥2, 𝑦1, 𝑦4,…),…, (𝑥𝑛, 𝑦5, 𝑦𝑛,….) where 𝑥𝑖 ∈𝑋 and 𝑦𝑖 ∈ 𝑌 , according to equation (3), the objective is to develop a deci-
sion function 𝑓 ∶𝑋→ 0,1𝐾 that simultaneously assigns inputs to multiple classes utilizing the hypothesis function ℎ𝑘(𝑥) for class 𝑘
obtained from the training data.
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Fig. 4. Methodical Classification of 47 RNA Sequence Analysis Tasks on the Basis of Their Nature from The Lens of Computer Scientists. 

𝑓 (𝑥) = (ℎ1(𝑥), ℎ2(𝑥), ..., ℎ𝐾 (𝑥)) (3)

Moreover, in regression, researchers aim to forecast a continuous outcome variable. When provided with a dataset containing 
features 𝑋 ∈ ℝ𝑛𝑥𝑑 , labels 𝑦 ∈ ℝ, and a training dataset (𝑥1, 𝑦1), (𝑥2, 𝑦2),…, (𝑥𝑛, 𝑦𝑛) where 𝑥𝑖 ∈𝑋 and 𝑦𝑖 ∈ 𝑌 , according to equation 
(4), the objective is to develop a function 𝑓 ∶𝑋→ℝ that predicts continuous outputs by utilizing the hypothesis function ℎ(𝑥) mainly 
learned from training data.

𝑓 (𝑥) = ℎ(𝑥) (4)

In clustering, the aim is to categorize similar data points into corresponding clusters. When presented with a dataset comprising 
data points 𝑋 = 𝑥1, 𝑥2,…, 𝑥𝑛, where each 𝑥𝑖 ∈ ℝ𝑑 , the goal is to establish a partition of the data into clusters 𝐶 = 𝐶1,𝐶2,…,𝐶𝐾 . 
According to equation (5), this partitioning is executed based on a distance metric 𝑑(𝑥,𝜇𝑐 ) that measures the distance between a data 
point 𝑥 and the centroid 𝜇𝑐 of cluster 𝑐.

𝑓 (𝑥) = argmin𝑐𝑑(𝑥,𝜇𝑐) (5)

5. RNA sequence analysis databases

This section highlights critical role of public databases in facilitating the development of AI-driven RNA-sequence analysis ap-
plications. Biological databases house a wealth of RNA information that serves as the foundation for development of benchmark 
datasets. A comprehensive understanding about contents of RNA molecule related databases may enable researchers to perform large 
scale AI-driven RNA sequence analysis. Deep understanding of public databases can empower researchers to develop different RNA 
sequence analysis tasks and distinct species related benchmark datasets. Distinct species datasets of a RNA sequence analysis task is 
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important for conducting cross-species experiments using AI pipelines. This comparative analysis is essential for gaining a broader 
understanding of biological processes at a more fundamental level.

The ever-expanding nature of public databases facilitates researchers by providing access to increasingly larger data. As new 
sequences are added, researchers can use expanded data to benchmark the performance of existing AI-driven RNA sequence analysis 
pipelines. This benchmarking process offers valuable insights into how well current predictors perform with large data and helps 
researchers in identifying potential areas for improvement and development of more robust AI applications. Moreover, researchers 
can utilize these databases to acquire large volumes of RNA sequence data. This data can then be used to train word embedding 
methods and large language models in an unsupervised manner. The pre-trained models can be utilized to develop diverse types of 
RNA sequence analysis applications. Specifically, this section provides an extensive overview of databases that have been used to 
create benchmark datasets for 47 distinct RNA sequence analysis tasks. A comprehensive review of 172 research articles focused on 
AI-driven RNA sequence analysis tasks reveals that a total of 90 distinct databases have been utilized to develop 47 different RNA 
sequence analysis tasks related benchmark datasets.

From 90 databases, 64 databases are publicly accessible, while the remaining 26 are either inaccessible or no longer exist. To 
aid research community, Table 1 provides a detailed summary of accessible databases in terms of their release year, types of inher-
ent RNA data, species and organisms details, raw sequence statistics, and supported data formats. A thorough analysis of Table 1
reveals that out of 64 accessible databases, 6 databases encompass data related to three different types of molecules namely DNA, 
RNA, and Proteins. Similarly, 2 databases contain data related to Proteins and RNA molecules. Among all accessible databases, 56
databases have dedicated information related to only RNA molecule. Specifically, miRNA sequences are available in 15 different 
databases namely m6A-Atlas v2 [41], MNDR3.0 [42], CircBank [43], RMBase2.0 [44], miRmine [45], dbDEMC [46], miRCancer 
[47], Encori [48], miR2Disease [49], HMDD [50], TarBase [51], NPInter V4.0 [52], miRBase [53], ENCODE3 [54], FANTOM5 [55]. 
Furthermore, long non-coding RNA molecule related diverse types of information is available in 11 databases including m6A-Atlas 
v2 [41], MNDR3.0 [42], cantataDB 2.0 [56], LncRNADisease v2.0 [57], NONCODEV5 [58], LNCipedia [59], lncRNADisease [57], 
Encori [48], PLncDB 2.0, NPInter V4.0 [52], and FANTOM5 [55]. Additionally, 11 databases namely Circad [60], MNDR3.0 [42], 
CSCD [61], LncRNADisease v2.0 [57], CircRNADisease [62], CircBank [43], circRNADb [63], lncRNADisease [57], CircBase [64], 
NPInter V4.0 [52], and FANTOM5 [55] databases provide circular RNA sequences. Similarly, 6 databases (m6A-Atlas v2 [41], Encori 
[48], CTD [65], MNDR3.0 [42], NPInter V4.0 [52], FANTOM5 [55]) offer mRNA and snoRNA sequences. Also, 6 databases including 
NPInter V4.0 [52], FANTOM5 [55], MNDR3.0 [42], GtRNAdb [66], piRBase [67], and ENCODE3 [54] contain information about 
four distinct RNA molecules namely snRNA, tRNA, piRNA, and siRNA.

Since word embedding methods and large language models are trained on large raw sequences data in an unsupervised manner to 
generate better representations, these databases can be utilized to efficiently train these language models. To assist researchers and 
practitioners, we categorized these databases based on the volume of raw sequences into three categories: 1) low sequence facilitators, 
2) medium sequence facilitators, and 3) high sequence facilitators. Specifically, 38 low sequences facilitator databases provide 100,000 
RNA sequences each and these database include SPENCER [68], m6A-Atlas v2 [41], RNALocate v2.0 [69], Lnc2Cancer v3.0 [70], 
GENCODE Release 43 [71], circR2Cancer [72], Circad [60], EVLncRNAs 2.0 [73], PanglaoDB [74], GENCODE.v28 [75], GENCODE 
v18 [76], LncRNADisease v2.0 [57], CircRNADisease [62], RNALocate [69], miRmine [45], CircInteractome [77], ATtRACT [78], 
HMDAD [79], dbDEMC [46], circRNADb [63], NDB [80], lncRNADisease [57], miRCancer [47], Encori [48], CircBase [64], GENCODE 
v.17 [81], RNAcentral [82], miR2Disease [49], HMDD [50], TarBase [51], Gencode [83], NCBI [84], miRBase [53], ENCODE3 [54], 
ENCODE [85], ENSEMBL [86], OMIM [87]. A total of 11 public databases fall into the “medium sequence facilitators” category and 
each database contain approximately 1 million sequences. Medium sequences facilitator databases are MNDR3.0 [42], cantataDB 2.0 
[56], EuRBPDB [88], CSCD [61], CircBank [43], NONCODEV5 [58], lncRNA2Target [89], LNCipedia [59], EPDnew [90], HGMD 
[91], GtRNAdb [66]. Whereas, a total of 18 high sequence facilitator databases are piRBase [67], RefSeq [92], lncRNASNP2 [93], 
bpRNA [94], RMBase2.0 [44], RMBase [95], DisGeNET [96], RefSeq (version 60) [97], PLncDB 2.0 [98], ClinVar [99], dbGap [100], 
NPInter V4.0 [52], Rfam [101], CTD [65], GEO [102], KEGG [103], EMBL-EBI [104], FANTOM5 [55], and doRiNA [105]. These 
databases predominantly house RNA sequences from a diverse array of species, including humans, mice, plants, bacteria, and fungi.

An extensive analysis of different databases reveals that about 9 databases, such as SPENCER [68], CSCD [61], GENCODE.v28 [75], 
miRmine [45], CircInteractome [77], circRNADb [63], NDB [80], LNCipedia [59], and GENCODE.v17 [81], focus on Homo sapiens 
RNA sequences, miR2Disease [49], and HGMD [91]. Whereas, OMIM [87] databases provide both homo sapiens and animal RNA 
sequences. Additionally, 6 databases namely GENCODE Release 43 [71], PanglaoDB [74], Gencode [83], NCBI [84], and ENCODE 
[85] facilitate Homo sapiens, animals and mus musculus RNA sequence. On the other hand, Circad [60] offers RNA sequences of 
Homo sapiens, Mus musculus, and Rattus rattus. Sequences from other organisms, such as eukaryotes, invertebrates, fungi, and 
various microorganisms, are also well-represented in this database. Databases can be categorized into three distinct groups based 
on the variety of species they accommodate; 1) Broad coverage databases, 2) Moderate coverage databases, 3) Limited coverage 
databases. A total of 33 limited coverage databases facilitate RNA sequences of upto 20 different species including SPENCER [68], 
GENCODE Release 43 [71], Circad [60], PanglaoDB [74], CSCD [61], GENCODE.v28 [75], LncRNADisease v2.0 [57], CircBank [43], 
RMBase2.0 [44], miRmine [45], CircInteractome [77], NONCODEV5 [58], circRNADb [63], DisGeNET [96], NDB [80], LNCipedia 
[59], doRiNA [105], lncRNADisease [57], CircBase [64], EPDnew [90], ClinVar [99], GENCODE.v17 [81], miR2Disease [49], HGMD 
[91], Gencode [83], NCBI [84], NPInter V4.0 [52], ENCODE3 [54], ENCODE [85], ENSEMBL [86], KEGG [103], OMIM [87], and 
CircRNADisease [62].

A total of 9 moderate coverage databases encompass data related to 80 species. Moderate coverage databases are GEO [102], Encori 
[48], TarBase [51], ATract [78], cantataDB 2.0 [56], m6A-Atlas v2 [41], piRBase [67], RMBase [95], RNALocate [69]. Whereas, a 
total of 22 broad coverage databases contain data of more than 80 different species. These databases are PLncDB 2.0 [98], RNALocate 
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v2.0 [69], MNDR3.0 [42], EVLncRNAs 2.0 [73], EuRBPDB [88], GtRNAdb [66], RefSeq (version 90) [106], GENCODE.vM18 [76], 
lncRNASNP2 [93], bpRNA [94], HMDAD [79], dbDEMC [46], RefSeq (version 60) [97], miRCancer [47], EMBL-EBI [104], RNAcentral 
[82], HMDD [50], dbGap [100], miRBase [53], Rfam [101], CTD [65], and FANTOM5 [55]. For example, pirbase [67] offers RNA 
sequences of 44 species, EuRBPDB [88] houses sequences of 162 species, EVLncRNAs 2.0 [73] has RNA sequence data of 124 species, 
RNALocate [69] contains RNA sequences of 104 species, m6A-Atlas v2 [41] houses RNA sequences of 42 species, and MNDR [42] 
has RNA sequence data of 117 species.

Furthermore, a deep analysis of Table 1 reveals that in total 30 distinct data formats have been used to store data in 64 distinct 
databases. These data formats include TXT, FASTA, VCF, XLSX, BED, JSON, PDF, TSV, CSV, GTF, GFF, XML, BAM, BigWig, MySQL, 
KDML, DAT, FPS, BB, and IDX, etc., TXT and FASTA formats are universally accepted by almost all RNA sequence analysis programs. 
Each entry in these formats contains at least two lines: header includes accession number, species name, or identification details, while 
subsequent lines contain nucleotide sequences. CSV and TSV are text-based formats in which values in rows are separated by commas 
or tabs, respectively. In both formats, first row specifies headers that define column names (“Sequence ID”, “Sequence Name”, “Type”, 
“Function”), and subsequent rows represent data. VCF format also specifies headers in first row and is specifically used to store genetic 
variation data including single nucleotide polymorphisms (SNPs), insertions, deletions, and structural variants. Additionally, XLSX 
formats represent complex datasets containing information computed with various formulas across multiple columns, whereas EMBL 
format includes structured sections for sequence data, feature annotations, organism information, references, and other details. An 
extensive analysis of Table 1 reveals that most widely used data formats in RNA sequence analysis are FASTA, TXT, CSV, XLSX, and 
EMBL.

From 64 publicly available databases, RNA categorization and identification tasks related data is available in 13 different databases 
namely SPENCER [68], cantataDB 2.0 [56], piRBase [67], EVLncRNAs 2.0 [73], CSCD [61], RefSeq (version 90) [106], LNCipedia 
[59], RefSeq (version 60) [97], GtRNAdb [66], Rfam [101], circRNADb [63], EPDnew [90], PLncDB 2.0 [98]. Similarly, different 
RNA interaction and binding sites tasks including RNA-protein binding sites prediction, coding RNA–protein interaction prediction, 
and RNA-protein binding affinity prediction related data is available in 10 databases namely CircBank [43], ClinVar [99], GENCODE 
Release 43 [71], ENCODE3 [54], EuRBPDB [88], CircInteractome [77], ATtRACT [78], ENCODE [85], NDB [80], doRiNA [105]. In 
addition, RNA-disease association prediction task related data is available in 12 databases namely miR2Disease [49], HMDD [50], 
HMDAD [79], dbDEMC [46], Circad [60], MNDR3.0 [42], lncRNADisease [57], NPInter V4.0 [52], CTD [65], miRCancer [47], 
LncRNADisease v2.0 [57], and CircRNADisease [62]. RNA modification prediction tasks related data is available in RMBase [95], 
m6Atlas [41], and RMBase2.0 [44]. Furthermore, GENCODE [83] provides RNA sequences for RNA categorization, identification 
and interaction tasks. RNA sequences data related to sub-cellular localization prediction, gene analysis, RNA single cell analysis, RNA 
special characteristics analysis, RNA categorization, association and interaction tasks are available in remaining databases namely 
NCBI [84], dbGap [100], RNAcentral [82], OMIM [87], ENSEMBL [86], GEO [102], TarBase [51], HGMD [91], RNALocate [69], 
PanglaoDB [74], KEGG [103], EMBL-EBI [104], FANTOM5 [55].

6. RNA sequence analysis benchmark datasets

This section offers a comprehensive overview of public and in-house datasets employed to develop AI applications for 47 different 
RNA sequence analysis tasks. Publicly available datasets are accessible to broader research community and are commonly used to 
develop AI-based predictive pipelines. These datasets enhance accessibility, reusability, and encourages collaboration and knowledge 
sharing within scientific community. In contrast, in-house datasets are developed within specific labs or institutions. These datasets 
often contain sensitive data tailored to specific research goals. Their proprietary nature limits broader access, reproducibility, and 
applicability of findings.

A comprehensive review of 172 research articles reveals that a total of 310 unique datasets have been utilized in the development 
of AI-driven applications for 47 distinct RNA sequence analysis tasks. These datasets have either been created by the authors or 
sourced from existing studies. Among these 310 benchmark datasets, 236 are publicly available datasets, whereas, 74 are in-house 
datasets. Table 2 facilitates the distribution of these datasets and their use in the validation of AI-driven predictive models using three 
representation learning approaches: word embeddings, large language models, and domain specific methods.

Distribution of public and in-house datasets for 47 RNA sequence analysis tasks is clearly explained using parentheses. For each 
task, first number represents count of public datasets, and second indicates count of in-house datasets utilized for that particular task. 
Thereby, distribution of datasets for 47 different tasks is as follows: RNA Cluster Analysis (2, 0), mRNA Identification (7, 0), Small 
Non-coding RNA Classification (3, 1), Circular RNA Identification (3, 0), Long Non-coding RNA Identification (9, 5), Pre-micro RNA 
Identification (0, 2), CRISPR/Cas9 single guide RNA Identification (9, 0), Enhancer Identification (1, 0), Promoter Identification (2, 
0), RNA-Gene Association Prediction (0, 2), RNA-Disease Association Prediction (57, 17), Protein-RNA Interaction Prediction (13, 4), 
Protein-RNA Binding Sites Prediction (20, 3), Protein-RNA binding affinity prediction (1, 0), non-coding RNA Interaction Prediction 
(6, 2), RNA Sub-cellular Localization Prediction (1, 2), ac4C-Acetyl Cytidine Modification Prediction (1, 0), 5mU-Methyl Uridine 
Modification Prediction (4, 0), 2’-OmU Methyl Uridine Modification Prediction (1, 0), 6mA-Methyl Adenosine Modification Prediction 
(14, 3), 7mG-Methyl Guanosine Modification Prediction (1, 5), 5mC-Methyl Cytosine Modification Prediction (2, 0), Methylation 
Modification Prediction (8, 4), RNA-Splicing Sites Prediction (5, 0), Alternative Splicing Prediction (0, 1), RNA Functions Prediction 
(2, 10), RNA Structure Prediction (15, 6), Spatial Gene Expression Analysis (7, 0), Gene Expression Prediction (1, 3), Cell-Specific 
Gene Regulatory Networks Prediction (7, 0), 16S rRNA Taxonomic Classification (1, 1), 16S rRNA Gene Copy Number Prediction (1, 
0), Micro RNA Target Prediction (6, 1), Small Interfering RNA Target Prediction (3, 3), mRNA Degradation Prediction (2, 0), RNA-Seq 
Coverage Prediction (1, 0), and Cell-type Detection (19, 0).
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Table 1
A Summary of Publicly Accessible Biological Databases, their Inherent Data Types, Species Diversity, and Statistics of Raw Sequences Related to Different Genomic 
and Proteomic Data.

Database Name Release Date Types of Data Species Organism Sequences Statistics Data Format

SPENCE 2022 ncRNAs Homo sapiens _ 1700 patient samples, 6800 ncRNA 
transcripts, 29526 ncRNA-encoded 
peptides from 15 cancer types, 8,060 
tumor-specific peptides, 4497 peptides 
with potential immunogenicity

.txt

m6A-Atlas v2 2022 mRNAs, 
lncRNAs, 
miRNAs

42 species _ 2813 samples, 16,868,200 m6A peaks, 
797,091 m6A sites

.txt

RNALocate v2.0 2021 RNA 104 species _ Number of entries: 213,260, Number 
of subcellular localization: 171

.txt

GENCODE Release 43 2021 ncRNAs Animal, Homo 
sapiens, Mus 
musculus

_ 63,086 genes, 19,411 protein-coding 
genes, 20,310 lncRNA genes, 7565 
ncRNA genes, 14,716 pseudogenes, 
254,070 transcripts, 89,581 
Protein-coding transcripts, 21,774 
Nonsense mediated decay transcripts, 
59,927 Long non-coding RNA loci 
transcripts, 65,650 Total No of distinct 
translations, 13,620 Genes that have 
more than one distinct translations

_

Circad 2020 circRNAs Homo sapiens, 
Mus musculus, 
Rattus rattus

_ Number of disease related circRNA: 
1388, Number of diseases: 150, No. of 
circRNAs in: Homo sapiens=1270, 
Mus musculus=66, Rattus rattus=42

_

MNDR3.0 2020 lncRNAs, 
piRNAs, 
circRNAs, 
miRNAs, tRNAs, 
snoRNAs

117 species _ Experimental data: 343,273 All 
RNA-disease entries, Predicted data: 
237,329 entries miRNA-disease 
information, 348,176 entries 
lncRNA-disease information, 362,454 
entries circRNA-disease information, 
48,779 entriespiRNA-disease 
information

.txt

cantataDB 2.0 2020 lncRNAs 39 species _ 239,631 lncRNAs FASTA, .gtf

EVLncRNAs 2.0 2020 RNA 124 species _ 4010 lncRNAs, 1082 Diseases, 11,257 
lncRNA-disease associations, 1665 
Function Annotations (excluding 
interactions), 6244 Interactions, 37 
Peptide-coding, 8 Structure, 33 
Exosomal, 188 CircRNAs, 1079 
Drug/chemoresistance/stress

.xlsx

piRBase 2019 piRNAs 44 species _ 181 million unique piRNA sequences FASTA, .bed, 
.csv, .tsv, 
.json, .txt

EuRBPDB 2019 RBPs 162 species _ 315,222 RBPs .txt, .fa
PanglaoDB 2019 RNA Animal, Homo 

sapiens, Mus 
musculus

_ Mus musculus: 1063 samples, 184 
tissues, 4,459,768 cells, 8,651 clusters, 
Homo sapiens: 305 samples, 74 
tissues, 1,126,580 cells, 1,248 clusters

.tar

CSCD 2018 circRNAs Homo sapiens _ samples &amp;gt;1000, including 
∼800 tissue samples and ∼300 cell 
line samples, 1013461 cancer-specific 
circRNAs, 1533704 circRNAs normal 
samples and 354422 circRNAs from 
both cancer and normal samples

.txt

RefSeq (version 90) 2018 DNA, RNA, 
Proteins

_ _ 23838836 entries .csv, .json
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Table 1 (continued)

Database Name Release Date Types of Data Species Organism Sequences Statistics Data Format

GENCODE.v28 2018 RNA, Proteins Homo sapiens _ 58,381 Total No of Genes, 19,901 
Protein-coding genes, 15,779 Long 
non-coding RNA genes, 7569 Small 
non-coding RNA genes, 147723 
Pseudogenes, 10693- processed 
pseudogenes, 3519 - unprocessed 
pseudogenes, 218 - unitary 
pseudogenes, 38 - polymorphic 
pseudogenes, 18 - pseudogenes, 408 
Immunoglobulin/T-cell receptor gene 
segments - protein coding segments, 
237 - pseudogenes, 203,835 Total No 
of Transcripts, 82,335 Protein-coding 
transcripts, 56541 - full length 
protein-coding, 25,794 - partial length 
protein-coding, 14,889 Nonsense 
mediated decay transcripts, 28,468 
Long non-coding RNA loci transcripts, 
61,132 Total No of distinct 
translations, 13,641 Genes that have 
more than one distinct translations

.gtf, .gff, 
FASTA, .bed, 
.json, .tsv

GENCODE.vM18 2018 RNA, Proteins _ Mouse 54,146 Total No of Genes, 21,978 
Protein-coding genes, 12,726 Long 
non-coding RNA genes, 6108 Small 
non-coding RNA genes, 12,838 
Pseudogenes, 9612 - processed 
pseudogenes, 2842 - unprocessed 
pseudogenes, 37 - unitary 
pseudogenes, 79 - polymorphic 
pseudogenes, 65 - pseudogenes, 494 
Immunoglobulin/T-cell receptor gene 
segments - protein coding segments, 
203 - pseudogenes, 136,535 Total No 
of Transcripts, 57,388 Protein-coding 
transcripts, 44,118 - full length 
protein-coding, 13270 - partial length 
protein-coding, 6679 Nonsense 
mediated decay transcripts, 17,855 
Long non-coding RNA loci transcripts, 
44,166 Total No of distinct 
translations, 10,491 Genes that have 
more than one distinct translations

.gtf, .gff, 
FASTA, .bed, 
.json, .tsv

lncRNASNP2 2018 RNA _ Human, 
Mouse

10,205,295 SNPs in 141,353 human 
lncRNA transcripts of 90,062 lncRNA 
genes, 859,534 Cosmic Noncoding 
Variations and 315,234 TCGA cancer 
mutations

.xlsx

LncRNADisease v2.0 2018 lncRNAs, 
circRNAs

Animal, Homo 
sapiens, Mus 
musculus, Rattus 
norvegicus, 
Gallus gallus

_ 19,166 lncRNAs, 823 circRNAs, 529 
diseases, 205,959 lncRNA-disease 
associations, 1004 circRNA-disease 
associations

.xlsx

CircRNADisease 2018 circRNAs 12 species Human, 
Chicken, 
Cow, 
Mouse, 
Rat

4246 circRNAs, 330 DO diseases, 6998 
circRNA-diseases, 7,159,865 
mutation-circRNAs

.txt, .xlsx

CircBank 2018 circRNAs, 
miRNAs

Plants Human, 
Mouse, 
Fly, 
Worm, 
Yeast

more than 140,000 human annotated 
circRNAs, 1439 associations between 
1135 circRNAs and 82 cancers

.bed, .txt, 

.xlsx

bpRNA 2018 RNA _ _ 708,144 hairpins, 517,672 bulges, 
317,046 multi loops, 538,670 internal 
loops, 57,686 pseudoknots, 2,075,928 
stems, 229,468 unpaired regions, 
1,019,586 segments

FASTA, .pdf, 
.jpg

(continued on next page)
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Table 1 (continued)

Database Name Release Date Types of Data Species Organism Sequences Statistics Data Format

RNALocate 2017 RNA 65 species _ 42,190 Number of entries, 41 Number 
of subcellular localization, 23,100 
RNAs

.txt, .xlsx, 
FASTA

RMBase2.0 2017 miRNAs Homo sapiens, 
Mus musculus, 
Rhesus, Rattus, 
A.thaliana, 
S.cerevisiae, 
P.aeruginosa, 
Escherichia coli, 
S.pombe

Chim-
panzee, 
Pig, 
Zebrafish, 
Fly

5411 m1A, 988 m5C, 1373355 m6A, 
5096 2’-O-Me, 9570 pseudoU, 2824 
others

.txt

miRmine 2016 miRNAs Homo sapiens _ 2822 cell lines, 2822 tissues excel, .csv, 
.pdf

CircInteractome 2016 RNA Homo sapiens _ no of entries: 65535 .xlsx

ATract 2016 RBPs 38 species _ 370 RBPs and 1583 RBP consensus 
binding motifs

.txt, .csv, .tsv

HMDAD 2016 DNA, RNA, 
Proteins

_ _ 483 disease-microbe entries which 
include 39 diseases and 292 microbes

.txt

dbDEMC 2016 miRNAs _ Human, 
Mouse, 
Rat

3268 miRNAs, 40 cancer types, 149 
cancer subtypes, 403 datasets, 807 
experiments, 46388 samples

.txt

NONCODEV5 2016 lncRNAs Arabidopsis, 
Caenorhabditis 
elegans

15 
organisms

354,855 lncRNA genes, 548,640 
lncRNA transcripts

FASTA

RMBase 2016 RNA 62 species _ 1,074,100 RNA modification, 73 types 
of RNA

.tar.gz

circRNADb 2015 circRNAs Homo sapiens _ 32,914 annotated exonic circRNAs FASTA, .tsv
DisGeNET 2015 DNA, RNA, 

Protein
Animals Human 1,134,942 GDAs between 21,671 

Genes, 30,170 diseases, and traits, 
369,554 VDAs between 194,515 
variants and 14,155 diseases and traits

.txt, RDF, 
SQL Dump

NDB 2014 RNA, DNA, 
Protein

Homo sapiens _ 17894 3D structures containing 
nucleic acids

.csv, .json

LNCipedia 2013 lncRNAs Homo sapiens _ 127,802 transcripts and 56,946 genes .bed, FASTA, 
.gff, .gtf

RefSeq (version 60) 2013 DNA, RNA, 
Proteins

_ _ 4243209 entries .csv, .json

doRiNA 2013 RNA Homo sapiens, 
Mus Musculus, 
Caenorhabditis 
elegans, 
Drosophila 
melanogaster

_ _ .bed

lncRNADisease 2013 lncRNAs, 
circRNAs

Animal, Homo 
sapiens, Mus 
musculus, Rattus 
norvegicus, 
Oryctolagus 
cuniculus

_ 6,066 lncRNAs, 10,732 circRNAs, 566 
diseases, 13,191 lncRNA-disease 
associations, 12,249 circRNA-disease 
associations

.tsv, .xlsx

miRCancer 2013 miRNAs _ 34 
organisms

57984 miRNAs, 196 cancers, 9080 
miR-Cancers

.txt

A comprehensive analysis of Table 2 demonstrates that a total of 130 public and 45 in-house datasets are used to develop word 
embeddings and language model-based predictive pipelines for 8 RNA sequence analysis tasks. These tasks include long non-coding 
RNA identification, RNA-disease association prediction, protein-RNA binding sites prediction, non-coding RNA interaction, RNA 
sub-cellular localization prediction, 6mA-methyl adenosine modification prediction, 7mG-methyl guanosine modification prediction, 
methylation modification prediction, and RNA structure prediction. Notably, only 6 public datasets have commonly used by both 
kinds of predictive pipelines for 2 tasks namely RNA-disease association prediction and non coding RNA interaction prediction. Also, 
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Table 1 (continued)

Database Name Release Date Types of Data Species Organism Sequences Statistics Data Format

Encori 2013 mRNAs, miRNAs, 
ceRNAs, lncRNAs

23 species Human, 
Mouse

2,725 CLIP-seq datasets, 100 
Degradome-seq datasets, 59 RNA-RNA 
interactome datasets, RNA-seq data: 
more than 10,800 samples from 32 
cancer types, miRNA-seq data: 10,500 
samples from 32 cancer types, Disease 
data: 1,800,000 mutations from 531 
disease types, miRNA-ncRNA(CLIP): 
460,000 interactions, 
miRNA-mRNA(CLIP): 1,200,000 
interactions, RBP-mRNA:1,290,000 
interactions, RBP-ncRNA: 1,600,000 
interactions, RNA-RNA: gt;3,700,000 
interactions, 
miRNA-ncRNA(degradome): 32,000 
interactions, 
miRNA-mRNA(degradome): 459,000 
interactions, ceRNA: 2,900,000 pairs, 
function annotation: gt;34,000 
functional terms from 21 categories, 
Pan-Cancer: Differential Expression, 
Survival Analysis, CoExpression

.txt, .xlsx

CircBase 2013 circRNAs Homo sapiens, 
Mus musculus, 
Caenorhabditis 
elegans, 
Latimeria 
chalumnae, 
Latimeria 
menadoensis

_ Human: 8483 circRNAs, 
Caenorhabditis elegans: 2399 
circRNAs, Drosophila melanogaster: 
5795 circRNAs

FASTA, .txt, 
.xlsx, .bed

EPDnew 2013 RNA Animals, Plants, 
Fungi, 
Invertebrates

_ Animal: 13,1870 promoters, Plants: 
39,784 promoters, Fungi: 9919 
promoters, Invertebrates: 5597 
promoters

.bed, .dat, 

.fps, .bb, .idx, 
FASTA

PLncDB 2.0 2013 lncRNAs 80 species _ 1246372 lncRNAs, 13834 RNA-Seq 
datasets

.fa, .txt, .gff3

ClinVar 2013 DNA, RNA, 
Protein

Animals Human 4,391,341 Records, 92,225 Total 
Genes

.xml, .tsv, 
VCF

GENCODE.v17 2012 RNA, Proteins Homo sapiens _ 57,281 Total No of Genes, 20,330 
Protein-coding genes, 13,333 Long 
non-coding RNA genes, 9078 Small 
non-coding RNA genes, 14154 
Pseudogenes, 29 polymorphic 
pseudogenes, 13,897 pseudogenes, 
Immunoglobulin/T-cell receptor gene 
segments; 386 - protein coding 
segments, 228 - pseudogenes, 194,871 
Total No of Transcripts, 81,565 
Protein-coding transcripts, 56,950 full 
length protein-coding, 24,615 partial 
length protein-coding, 12,913 
Nonsense mediated decay transcripts, 
22,631 Long non-coding RNA loci 
transcripts, 61,102 Total No of distinct 
translations, 13,569 Genes that have 
more than one distinct translations

.gtf, .gff, 
FASTA, .bed, 
.json, .tsv

RNAcentral 2011 ncRNAs _ _ 96,670 sequences .txt, FASTA, 
.json

miR2Disease 2009 miRNAs Animal, Homo 
sapiens

_ 349 miRNAs, 163 diseases, 3273 
entries

.txt

HMDD 2008 miRNAs _ Human 53,530 miRNA-disease association 
entries which include 1,817 human 
miRNA genes, 79 virus-derived 
miRNAs, 2,360 diseases from 37,090 
papers

.txt, .xlsx

(continued on next page)
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Table 1 (continued)

Database Name Release Date Types of Data Species Organism Sequences Statistics Data Format

dbGap 2007 RNA _ _ 12815 phenotype datasets, 430727 
datasets, 4.64 million samples

.xml, .csv

HGMD 2007 DNA, RNA, 
Protein

Animal, Homo 
sapiens

_ Mutation totals: (public release for 
academic/non-profits only): 291,339 
or HGMD Professional release 2023.4: 
504,008

.txt

TarBase 2006 miRNAs 24 species _ 5,878,998 interactions, 103 tissues, 
3300 unique miRNAs, 57 cell types

.tsv.gz

Gencode 2006 DNA, RNA, 
Protein

Animals, Homo 
sapiens, Mus 
musculus

_ Homo sapiens: Total Genes=63086, 
Total Transcripts=254070, Total 
distinct Translations=65650, Mus 
musculus: Total Genes=57132, Total 
Transcripts=149138, Total distinct 
Translations=44819

.txt

NCBI 2005 DNA, RNA, 
Protein

Animals, Homo 
sapiens, Mus 
musculus

_ 35,608 CCDS IDs that correspond to 
19,107 Genes, with 48,062 Protein 
Sequences

FASTA

GtRNAdb 2005 tRNAs 740 species _ Eukaryota: 599 Number of Genomes, 
74,048 Number of tRNA Genes, 
Archaea: 220 Number of Genomes, 
10,476 Number of tRNA Genes, 
Bacteria: 4,038 Number of Genomes, 
242,068 Number of tRNA Genes

.fa, .bed, .txt, 

.gtf, .tsv.gz

NPInter V4.0 2005 lncRNAs, 
miRNAs, 
circRNAs, 
snoRNAs, 
snRNAs

Homo sapiens, 
Mus musculus, 
Saccharomyces 
cerevisiae, 
Agrobacterium 
tumefaciens, 
Escherichia coli, 
Caenorhabditis 
elegans, 
Drosophila 
melanogaster, 
Kaposi sarcoma-
associated 
herpesvirus

_ 658171 lncRNA interactions, 488025 
miRNA interactions, 61700 snoRNA 
interactions, 12789 snRNA 
interactions, 335 circRNA interactions, 
488315 RNA-Protein interactions

.txt, .xlsx, .tsv

miRBase 2004 miRNAs _ 271 
organisms

38 589 hairpin precursors and 48 860 
mature microRNAs

.gff3, .dat, 
FASTA

Rfam 2003 RNA _ _ 4170 families, 3,026,773 regions, ENA 
133/134 Rfamseq

.txt, .fa, 

.tar.gz

CTD 2003 mRNAs _ 632 
organisms

2,915,515 Chemical–gene 
interactions, 406,571 
Phenotype–based interactions, 
32,694,093 Gene–disease associations, 
3,489,469 Chemical–disease 
associations, 6,577,078 Chemical–GO 
associations, 1,570,026 
Chemical–pathway associations, 
305,622 Disease–pathway 
associations, 1,358,371 Gene–gene 
interactions, 39,776,068 Gene–GO 
annotations, 135,792 Gene–pathway 
annotations, 3,133,281 GO–disease 
associations, 17,667 Chemicals with 
curated data, 7,285 Diseases with 
curated data, 55,128 Genes with 
curated data

.csv, .tsv, .xml

ENCODE3 2003 scRNAs, siRNAs, 
miRNAs, small 
RNAs

Homo sapiens, 
Mus Musculus, 
Caenorhabditis 
elegans, 
Drosophila 
melanogaster

_ 9000 high-throughput sequencing 
libraries from assays

.txt, .hic, 

.fastq, .bed
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Table 1 (continued)

Database Name Release Date Types of Data Species Organism Sequences Statistics Data Format

ENCODE 2003 DNA, RNA, 
Protein

Animals, Homo 
sapiens, Mus 
musculus

_ 17238 sequences FASTA, BAM, 
BigWig, .bed, 
VCF

FANTOM5 2002 lncRNAs, 
miRNAs, 
circRNAs, 
snoRNAs, 
snRNAs

_ Human, 
Mouse, 
Dog, 
Chicken, 
Rat, 
Rhesus 
Monkey

_ .bed, .txt, 
.xlsx

GEO 2000 DNA, RNA, 
Protein

21 species _ Samples = 7209691 SOFT, 
MINiML, .txt

ENSEMBL 1999 DNA, RNA, 
Protein

Animals, Homo 
sapiens, Mus 
musculus, Danio 
rerio, Sus scrofa

_ 44,048 Genomes, 1014 Ensembl Fungi 
Genomes, 78 Ensembl Metazoa 
Genomes for invertebrate species, 236 
Genomes for vertebrate Species, 67 
Ensembl Plants Genomes, 237 
Ensembl Protists Genomes

FASTA, .gtf, 
.gff, MySQL 
Dump

KEGG 1995 DNA, RNA, 
Protein

Animals, Plants, 
Fungi, Protists, 
Bacteria, Archaea

14 
organisms

Genes: 53,674,741, Addendum 
Proteins: 4,181, Viral Genes: 688,823, 
Viral mature Peptides: 377

KGML, 
FASTA, .txt

EMBL-EBI 1994 DNA, RNA, 
Protein

_ _ _ .xml, FASTA, 
.txt, .tsv, .json

OMIM 1960 DNA, RNA, 
Protein

Animals Homo 
sapiens

17,290 Gene descriptions, 18 Gene 
and Phenotypes combined, 6859 
Phenotype description molecular basis 
known, 1502 Phenotype description 
molecular basis unknown, 1736 
mainly Phenotypes with suspected 
mendelian basis

.txt

5 public datasets for RNA-disease association prediction and only 1 dataset for non-coding RNA interaction prediction are commonly 
used by both kinds of predictive pipelines.

Additionally, 158 public and 50 in-house datasets are leveraged to develop word embedding and domain-specific representation 
learning based predictive pipelines across 13 RNA sequence analysis tasks encompassing circular RNA identification, long non-coding 
RNA identification, RNA-disease association prediction, coding RNA-protein interaction prediction, protein-RNA binding sites pre-
diction, non-coding RNA interaction, 5mU-methyl uridine modification prediction, 6mA-methyl adenosine modification prediction, 
7mG-methyl guanosine modification prediction, 5mC-methyl cytosine modification prediction, methylation modification prediction, 
RNA structure prediction, and microRNA target prediction. However, only 5 public datasets are commonly employed by both kinds of 
predictive pipelines for 2 specific tasks namely coding RNA-Protein interaction prediction and RNA-protein binding sites prediction. 
Also, 4 public datasets for coding RNA-protein interaction prediction and 1 public dataset for protein-RNA binding sites prediction 
are commonly used by both kinds of predictive pipelines.

Furthermore, an in-depth analysis of Table 2 reveals that 151 public and 55 in-house datasets are employed for developing 
language models and domain-specific approaches based predictive pipelines for 10 RNA sequences analysis tasks namely long non-
coding RNA identification, RNA-disease association prediction, protein-RNA binding sites prediction, non-coding RNA interaction, 
6mA-methyl adenosine modification prediction, 7mG-methyl guanosine modification prediction, methylation modification prediction, 
RNA function prediction, RNA structure prediction, and cell-type detection. Notably, only 19 public datasets are commonly utilized by 
both language models and domain-specific representation learning methods based predictive pipelines for 4 RNA sequence analysis 
tasks namely CRISPR/Cas9 single guide RNA identification, RNA-disease association prediction, 6mA-methyl adenosine modification 
prediction, and 7mG-methyl guanosine modification prediction. Specifically, 6 public datasets for CRISPR/CAS9 single guide RNA 
identification, 1 public for RNA-disease association prediction, 11 public for 6mA-methyl adenosine modification prediction, and 1
public datasets for 7mG-methyl guanosine modification prediction are commonly used by both kinds of predictive pipelines.

While all three distinct types of representation learning-based predictive pipelines are employed across 6 different RNA sequence 
analysis tasks including long non-coding RNA identification, RNA-disease association, protein-RNA binding sites prediction, non-
coding RNA interaction prediction, 6mA-methyl adenine modification prediction, and RNA structure prediction. Surprisingly, not a 
single dataset is commonly employed by all three kinds of predictive pipelines as they are evaluated on separate datasets for each 
task. This trend underscores that researchers have predominantly focused on developing new datasets for each type of predictive 
pipeline, rather than utilizing existing datasets. Thus, RNA sequence analysis domain lacks in rigorous fair performance comparison 
of predictive pipelines.
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Table 2
Overview of 236 Public and 74 In-house Datasets used Across 37 Different RNA Sequence Analysis Tasks.

Task Name Datasets used in Language Models Datasets used in word embeddings Datasets used in other methods 
Public In-house Public In-house Public In-house

RNA Cluster 
Analysis

Akiyama et al. 
TrainSet-A [8], 
Akiyama et al. 
TrainSet-B [8]

_ _ _ _ _

mRNA 
Identification

MLOS Flu Vaccines 
(Sanofi-Aventis) 
Dataset [107], 
Nieuwkoop et al. 
Dataset [107], Wint 
et al. Dataset [107], 
lixiProtein 
Expression 
Dataset [107], 
Groher et al. Dataset 
[107], Diez et al. 
Dataset [107], 
RYOS-I Dataset 
[107]

_ _ _ _ _

Small 
Non-coding RNA 
Classification

_ _ Aoki et al. 
Dataset [108], 
Deng et al. 
Dataset [109]

Non-Coding RNA 
Classification 
Dataset [110]

_ _

Circular RNA 
Identification

_ _ circRNAs 
[111,14], 
circRNA–Protein 
associations 
[112], 
Protein–Protein 
interactions 
[112,113]

_ Niu et al. Dataset 
[13]

_

Long Non-coding 
RNA 
Identification

Arabidopsis thaliana 
Dataset [114], 
Brassica napus 
Dataset [114], 
Brassica oleracea 
Dataset [114], 
Brassica rapa 
Dataset [114], 
Glycine max Dataset 
[114], Oryza sativa 
Dataset [114], Zea 
mays Dataset [114]

Dai et al. Dataset 
[115]

_ Human 1 [116], 
Human 2 [116], 
Mouse [116]

Tian et al. Dataset 
[117], Musleh et al. 
Dataset [118]

Nadir et al. 
Dataset [119]

Pre-micro RNA 
Identification

Gupta et al. Dataset 
[120], Raad et al. 
Dataset [121]

_ _ _ _ _

CRISPR/Cas9 
single guide RNA 
Identification

_ _ _ _ WT Dataset [122], 
ESP Dataset [122], 
HF Dataset [122], 
xCas Dataset [122], 
SpCas9 Dataset 
[122], Sniper 
Dataset [122], 
HCT116 Dataset 
[122], HELA Dataset 
[122], HL60 Dataset 
[122]

_

Enhancer RNA 
Identification

Zhang et al. Dataset 
[123]

_ _ _ _ _

Promoter 
Identification

Mai et al. Dataset 
[124], Wang et al. 
Dataset [125]

_ _ _ _ _

RNA-Gene 
Association 
Prediction

_ _ _ Xia et al. Dataset 
[126], Yoon et 
al. Dataset [127]

_ _
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Table 2 (continued)

Task Name Datasets used in Language Models Datasets used in word embeddings Datasets used in other methods 
Public In-house Public In-house Public In-house

RNA-Disease 
Association 
Prediction

Zou et al. Dataset 
[128], MDAv2.0 
Dataset [129], 
MDAv3.2 Dataset 
[129], Dai et al. 
Data2 Dataset [130], 
Ning et al. Dataset 
(1,2) [131], HMDD 
Dataset [132], 
HMDAD Dataset 
[132], 
LncRNADisease 
v2017 Dataset 
[132], Wu et al. 
Dataset (1,2,3) [133] 
Fu et al. Dataset 
[134], Zhou et al. 
Dataset [134], Li et 
al. Dataset [135], Li 
et al. Dataset (1,2) 
[136]

Wu et al. Dataset 
(1,2) [137], Ma 
et al. Dataset 
[138], Awn et al. 
Dataset [139]

Lu et al. Dataset 
[140], Ding et al. 
Dataset [141], 
Jindal et al. 
Dataset [141], 
Wang et al. 
Dataset [142], 
Human PPI 
[143], 
Disease–gene 
interaction 
Dataset [143], 
miRNA–Gene 
Network [143], 
miRNA–Disease 
Network [143], 
Duan et al. 
Dataset (1,2,3) 
[144]

Sun et al. Dataset 
[145], Zheng et 
al. Dataset [146]

Tian et al. Dataset 
[147], Ruan et al. 
Dataset [148], Xu et 
al. Dataset [149], Ji 
et al. Dataset [150], 
Li et al. Dataset 
(DS1, DS2) [151], 
Tang et al. Dataset 
[151], Huang et al. 
Dataset [152], Cao 
et al. Dataset [153], 
Gong et al. Dataset 
[154], Lan et al. 
Dataset (1,2,3,4,5) 
[155], Li et al. 
Dataset (1,2) [155], 
Lu et al. Dataset 
(1,2) [156], Zhang 
et al. Dataset [156], 
lncRNADisease 
Dataset [157], 
MNDR Dataset 
[157], Li et al. 
Dataset [158], Ma et 
al. Dataset [158], 
Xia et al. Dataset 
[158], CircR2Disease 
Dataset [159], 
circRNADisease 
Dataset [159], 
Circ2Disease Dataset 
[159], circAtlas 
Dataset [159]

Kang et al. 
Dataset (1,2,3) 
[160], Fu et al. 
Dataset (1,2) 
[161], Lu et al. 
Dataset [161], 
Yao et al. Dataset 
[162], Chen et 
al. Dataset (1,2) 
[163], Wang et 
al. Dataset [164], 
Liang et al. 
Dataset [165]

Coding 
RNA-Protein 
Interaction 
Prediction

_ _ NPInter2.0 
[166], NPIn-
ter2.0_lncRNA 
[166], RPI7317 
[166], RPI2241 
[166], RPI38317 
[166], Li et al. 
Dataset [167], 
Zhao et al. 
Dataset (1,2) 
[168]

Wei et al. Dataset 
[169], RPI369 
[170], RPI1807 
[170], RPI488 
[170]

RPI369 Dataset 
[171], RPI488 
Dataset [171], 
RPI1446 Dataset 
[171], RPI1807 
Dataset [171], 
RPI2241 Dataset 
[171]

_

Protein-RNA 
Binding Sites 
Prediction

Non-Redundant 
Dataset [172], 
circRNA fragment 
Dataset 1 [173], Full 
length circRNA 
Dataset [173], 
circRNA fragment 
Dataset 2 [173], 
Linear RNA fragment 
Dataset [173], 
Protein Dataset 
[174], WTAP [175], 
FXR1 [175], 
C17ORF85 [175], 
QKI [175], TAF15 
[175], AUF1 [175]

Jia et al. Dataset 
[176], Zhang et 
al. Dataset [176]

37 RBP Datasets 
[177], IGF2BP1 
[178], IGF2BP3 
[178], LIN28A 
[178], LIN28B 
[178], Stražar et 
al. Dataset [179]

_ RBP-120 Dataset, 
Maticzka et al. 
Dataset [180], 
RBP-24 Dataset 
[180]

Liu et al. Dataset 
[181]

Protein-RNA 
binding affinity 
prediction

Shen et al. 
Benchmark Dataset 
[182]

_ _ _ _ _

(continued on next page)
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Table 2 (continued)

Task Name Datasets used in Language Models Datasets used in word embeddings Datasets used in other methods 
Public In-house Public In-house Public In-house

Non coding RNA 
Interaction 
Prediction

_ CircBank Dataset 
[183]

Zhao et al. 
Dataset [184], 
Wang et al. 
Dataset [185], 
CMI-9905 Liu et 
al. Dataset [185], 
CMI-9589 Liu et 
al. Dataset [185]

CMI-753 Dataset 
[186]

Fu et al. Dataset 
[187], Zhou et al. 
Dataset [187]

RNA Sub-cellular 
Localization 
Prediction

Zeng et al. Dataset 
[19]

_ _ Asim et al. 
Dataset [18], Lin 
et al. Dataset 
[17]

_ _

ac4C-Acetyl 
Cytidine 
Modification 
Prediction

Wang et al. Dataset 
[188]

_ _ _ _ _

5mU-Methyl 
Uridine 
Modification 
Prediction

_ _ Feng and Chen et 
al. [189], Jiang 
et al. [189]

_ GSE78040 Dataset 
[190], GSE63753 
Dataset [190]

_

2’-OmU Methyl 
Uridine 
Modification 
Prediction

_ Soylu et al. 
Dataset [191]

_ _ _ _

6mA-Methyl 
Adenosine 
Modification 
Prediction

Wang et al. Dataset 
[192], MultiRM 
Dataset [193], 
YTHDF2 PAR-CLIP 
Dataset [194], Wan 
et al. A101 Dataset 
[195]

Dao et al. Mouse 
Dataset [196]

Zhang et al. 
Dataset [197], 
S51 Dataset 
[198], H41 
Dataset [198], 
M41 Dataset 
[198]

cDNA Sequence 
[199]

Tu et al. P Dataset 
[200], Tu et al. N 
Dataset [200], Wang 
et al. Dataset [201], 
m 6 A-Atlas Dataset 
[201], Dao et al. 
Human Dataset 
[196], Dao et al. Rat 
Dataset [196]

m6A-Seq Dataset 
[202]

7mG-Methyl 
Guanosine 
Modification 
Prediction

_ Benchmark 
Dataset [203], 
Independent 
Dataset [203], 
Dai et al. Dataset 
[204]

_ Chen et al. 
Dataset [205], 
Dai et al. Dataset 
[205]

Chen et al. Dataset 
[206]

_

5mC-Methyl 
Cytosine 
Modification 
Prediction

_ _ Hasan et al. 
Dataset [207]

_ Kurata et al. Dataset 
[208]

_

Methylation 
Modification 
Prediction

DS_song Dataset 
[209], 
N1-methyladenosine 
(m1A) Dataset 
[192], 
N6-methyladenosine 
(m6A) Dataset 
[192], 
Pseudo-uridine 
(pseU,Ψ) Dataset 
[192]

Zhang et al. M. 
musculus Dataset 
[10], Zhang et al. 
A. thaliana 
Dataset [10], 
Zhang et al. S. 
cerevisiae 
Dataset [10]

Chen et al. 
Dataset [210], 
Song et al. 
Dataset [210], 
m1A site Dataset 
[211], m6A site 
Dataset [211]

_ _ Wang et al. 
Dataset [212]

RNA-Splicing 
Sites Prediction

Chen et al. Dataset 
[213], SpliceAI-80nt 
[214], 
SpliceAI-256nt 
[214], 
SpliceAI-400nt 
[214], SpliceAI-2k 
[214]

_ _ _ _ _
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Table 2 (continued)

Task Name Datasets used in Language Models Datasets used in word embeddings Datasets used in other methods 
Public In-house Public In-house Public In-house

Alternative 
Splicing 
Prediction

_ _ _ Brawand et al 
Dataset [215]

_ _

RNA Functions 
Prediction

Shulgina et al. 
Dataset [216]

bpRNA-1 [11], 
PDB [217], 
bpRNA-1m TS0 
[217], ArchiveII 
[217], 
ArchiveII600 
Dataset [218], 
bpRNA TS0 
Dataset [218], 
RNAcontact 
Test80 Dataset 
[218], HeLa 
Dataset [218], 
Random7600 
Dataset [218], 
Human7600 
Dataset [218]

_ _ miRNA2GO-337 
[219]

_

RNA Structure 
Prediction

Rfam_TR0 Dataset 
[220], Rfam_VL0 
Dataset [220], 
Rfam_TS0 Dataset 
[220], Szikszai et al. 
Dataset [221], 
Zhang et al. Dataset 
(1,2) [222], Kalicki 
et al. Dataset [223], 
RNA-Puzzles [224], 
PDB Dataset [224], 
PT_128 Dataset 
[225], PT_512 
Dataset [225]

bpRNA-1m 
Dataset (TR0) 
[226], PDB 
Dataset [226], 
RNAStralign 
Dataset [227]

_ American Gut 
microbiome 
[228], Gevers et 
al.’s Crohn’s 
disease Dataset 
[228], SILVA 16S 
rRNA Dataset 
[228]

Stralign [229], 
ArchiveII [229], 
RNAStralign [230], 
ncRNA benchmark 
[230]

_

Spatial Gene 
Expression 
Analysis

hESC Dataset [231], 
hHEP Dataset [231], 
mDC Dataset [231], 
mESC Dataset [231], 
mHSC-E Dataset 
[231], mHSC-GM 
Dataset [231], 
mHSC-L Dataset 
[231]

_ _ _ _ _

Gene Expression 
Prediction

Khan et al. Dataset 
[232]

PBMC scRNA-Seq 
Dataset [233], 
TCGA RNA-Seq 
Dataset [233], 
Babjac et al. 
Dataset [234]

_ _ _ _

Cell-Specific 
Gene Regulatory 
Networks 
Prediction

hESC(1,2) Dataset 
[235], mESC(1,2) 
Dataset [235], 
mESCs Dataset 
[235], Bone Dataset 
[235], Dendritic 
Dataset [235]

_ _ _ _ _

16S rRNA 
Taxonomic 
Classification

_ _ 16S rRNA 
amplicon 
Sequences [236]

McDonald et al. 
Greengenes 
Dataset {ziem-
ski2021beating}

_ _

16S rRNA Gene 
Copy Number 
Prediction

_ _ _ _ Miao et al. 16S rRNA 
gene Dataset [237]

_

(continued on next page)
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Table 2 (continued)

Task Name Datasets used in Language Models Datasets used in word embeddings Datasets used in other methods 
Public In-house Public In-house Public In-house

Micro RNA 
Target Prediction

miRAW Dataset 
[238], DeepMirTar 
Dataset [238], 
deepTargetPro 
Dataset [238]

Pla et al. miRAW 
Dataset [239]

miRAW Dataset 
[240], 
DeepMirTar 
[240], 
DeepMirTarIn 
[240]

_ _ _

Small Interfering 
RNA Target 
Prediction

Huesken et al. 
Dataset [241], 
Reynold et al. 
Dataset [241], Katoh 
et al. Dataset [241]

Xu et al. Dataset 
(1,2,3) [241]

_ _ _ _

mRNA 
Degradation 
Prediction

OpenVaccine 
challenge Dataset 
[26], In vitro 
half-life Dataset [26]

_ _ _ _ _

RNA-Seq 
Coverage 
Prediction

Linder et al. Dataset 
[27]

_ _ _ _ _

Cell-type 
Detection

Multiple Sclerosis 
Dataset [242], 
Myeloid Dataset 
[242], hPancreas 
Dataset [242], PBMC 
10K Dataset [242], 
Perirhinal Cortex 
Dataset [242], 
Immune human 
Dataset [242], 
COVID-19 Dataset 
[242], Adamson 
perturbation Dataset 
[242], Norman 
perturbation Dataset 
[242], Multiome 
PBMC Dataset [242], 
BMMC Dataset 
[242], ASAP PBMC 
Dataset [242]

_ _ _ Sim Dataset (1,2) 
[243], Specter 
Dataset [243], 
10X_10K Dataset 
[243], SMAGE 
Dataset [243], 
Spleen Dataset 
[243], BMNC 
Dataset [243]

_

7. A brief look on representation learning and predictors used in RNA sequence analysis predictive pipelines

This section delves into 16 widely used word embedding methods, 8 language models, and 35 machine and deep learning predictors 
used in 47 different RNA sequence analysis tasks.

7.1. RNA sequence representation learning using word embeddings

In the realm of Natural Language Processing (NLP), the advent of word embedding methods have revolutionized efficacy of AI-
driven applications. These approaches capture syntactic and semantic relationships of words to generate similar vectors for similar 
words and dissimilar vectors for dissimilar words. For example, words like good, better and best represent a same concept, so their 
vectors will be similar to each other. On the other hand vectors of words like good and bad will be dissimilar because both words are 
opposite and represent different concepts. These approaches have also introduced the concept of transfer learning in NLP domain. 
Primarily, statistical vectors of words are generated by training word embeddings models on large unlabeled textual corpora. Similar to 
computer vision domain, where models are first trained on imagenet data, word embeddings also provides pretrained weights at input 
layer of deep learning models. Following the promising performance of various word embedding approaches on different NLP tasks 
[244] [245] [246] [247], researchers have increasingly adopted these approaches for genomics and proteomics sequence analysis 
tasks that share significant similarities with NLP tasks. As is shown in Fig. 5, overall 16 different word embedding approaches used 
in RNA sequence analysis can be classified into 2 broad categories: non-graph based, and graph based word embedding approaches.

Non-graph based word embedding approaches discretize RNA sequences into overlapping or non-overlapping k-mers. Overlapping 
k-mers are generated by sliding a fixed-size window across the sequence with a stride size smaller than the size of the window. For 
example, if the window size is 3 and the stride size is 1, the resulting k-mers overlap by 2 positions. Non-overlapping k-mers are gener-
ated by sliding a fixed-size window with the stride size equal to the size of the window. This means that each k-mer starts immediately 
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Fig. 5. Utilization of 16 Different Word Embedding Methods and 8 Large Language Models namely BigBird, LongFormer, RNAFormer, Generative Pre-trained Trans-
formers (GPT), Heterogeneous Graph Transformer (HCT), Bidirectional Encoder Representations from Transformers (BERT), ESM-1b, and Transformer in Diverse 
RNA Sequence Analysis Pipelines based on a Variety of Machine and Deep Learning Algorithms such that RFC: Rotation Forest Algorithm, RF: Random Forest, CNN: 
Convolutional Neural Network, GNN: Graph Neural Network, XGBoost: Xtreme Gradient Boosting, MLP: Multilayer Perceptron, GCN: Graph Convolutional Network, 
LogR: Logistic Regression, LSTM: Long Short Term Memory, GBDT: Gradient Boosting Decision Trees, BiLSTM: Bidirectional Long Short Term Memory, SVM: Support 
Vector Machine, GBU: Gated Recurrent Unit, NB: Naive Bayes, NNRM: Neural Network Regression Model, DF: Deep Forest, ASLM: Adaptive subspace learning model, 
ERM: ElasticNet Regression Model, DNN: Deep Neural Network, HGCN: Hyper Graph Convolutional Network.

after the previous k-mer ends, with no overlap. The size of the k-mer is determined by the size of the window. Researchers often 
generate pretrained embeddings using different k-mer sizes and select the k-mer size that performs best on downstream tasks. After 
generating k-mers, these k-mers are passed to word embedding models for representation generation. Specifically, Word2vec [109, 
108,111,127,126,248,139,249,168,177,178,250,179,251,7,187,184,185,17,197–199,205,207,210,215,228,252,236,240,253] has 2
variants namely: 1) Continuous bag of words paradigm (CBoW), 2) SkipGram. In CBoW, the context of neighboring k-mers are used 
to predict a target k-mer whereas SkipGram predicts neighboring k-mers by using a target k-mer. For better understanding lets take 
a toy RNA sequence “AGUCCCU” with k=3, four k-mers are generated such as AGU, GUC, UCC, CCU. Assume “GUC” is target k-mer 
and window size equal to 1, neighboring k-mers are “AGU” and “UCC”. In this case, CBOW model predicts target k-mer “GUC” using 
neighboring k-mers “AGU” and “UCC”, while Skip-gram model predicts neighboring k-mers (“AGU” and “UCC”) based on target k-mer 
“GUC”. Primarily, Word2Vec is a neural network-based architecture that consists of an input layer, a hidden layer, and an output 
layer. At input layer, each k-mer is initialized with a random d-dimensional vector, which is then passed to hidden layer to learn 
relationships between k-mers. These relationships are passed to output layer to estimates probability/ies of output k-mers based on 
context of input k-mers. The predicted probabilities are further used to compute loss value. This shallow neural network is trained to 
maximize the probability of the next k-mer given the context.

Furthermore, GloVe [116,211] learns k-mer embeddings by factorizing the co-occurrence matrix. Co-occurrence matrix represents 
the number of times 𝑘−𝑚𝑒𝑟𝑖 appears in the context of 𝑘−𝑚𝑒𝑟𝑗 within a fixed window size. This matrix captures how frequently k-mer 
appear together in the entire corpus. Then, it calculates the probability of 𝑘 − 𝑚𝑒𝑟𝑖 appearing in the context of 𝑘 − 𝑚𝑒𝑟𝑗 . GloVe’s 
objective is to find k-mer vectors and context vectors such that their dot product approximates the logarithm of co-occurrence 
probability. Unlike Word2vec and Glove that generate context independent embeddings that assign a single vector to each k-mer, 
Embeddings from Language Models (ELMO) [172,254,255] generates different embeddings for k-mer based on its context. ELMo 
uses a deep bidirectional language model (BiLM) that consists of multiple layers of Long Short-Term Memory (LSTM) networks. This 
model reads the sequence in both forward and backward directions to capture the context of each k-mer from both sides. The model 
is trained on a large amount of sequences to predict k-mers based on their context. After training, it provides embeddings at multiple 
layers of the network. Each layer captures different aspects of the k-mers scientific meaning.

On the other hand, rather than utilizing unlabeled data as it is, graph-based embedding methods first map data into a graphical 
space. Based on the relationships between nodes in the graph, these methods capture diverse types of information and generate new 
data on which a further model is trained. Similar to non-graph-based methods, first k-mers are generated and a graph is constructed 
using the relationships between k-mers. For example, if the input corpus has a sequence of k-mers such as AC, CG, GT, TC, etc., a 
sliding window of size two with stride size one is used to generate pairs of k-mers like (AC, CG), (CG, GT), (GT, TC), and so on. 
In the constructed graph, k-mers represent nodes, and relationships between k-mers represent links between nodes. Random walk 
based embedding methods like Node2vec [145,256,146,143], DeepWalk [140–142,257] perform random walks on this graph to 
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generate new samples in form of sequences of nodes connected by edges, also called meta-paths. Apart from target k-mer and context 
sampling, a small subset of k-mers that are not part of the context are selected as negative samples. These new samples are used 
to train Word2Vec Skipgram model to generate statistical vectors of k-mers. Although both Node2vec, DeepWalk working seems 
quite similar, however, both differ by the type of random walk and captured information. Node2vec applies a biased random walk 
strategy to explore diverse neighborhoods of k-mers. It combines breadth-first and depth-first search strategies using two parameters 
(p) and (q), to control the likelihood of revisiting a k-mer and exploring new k-mers, respectively. Node2vec captures both local and 
global structures of graph. Whereas, DeepWalk perform uniform random walks where each step in the walk has an equal probability 
of moving to any of the neighboring k-mers. DeepWalk has no additional parameters to control the walk behavior, hence it only 
captures local structures of graph.

Furthermore, HIN2vec [112] makes use of random walk and meta-paths paradigm to generate training data in the explicit form 
of (a, b, B(a, b, z)) where a and b denote two k-mers, z denotes the relationship among two k-mers, and B(a, b, z) denotes a binary 
value representing whether there exist a relationship z among a and b k-mers. As each meta-path represents a specific pattern of 
relationships within the network, HIN2vec [112] mainly targets multiple prediction tasks to capture various types of relationships 
between k-mers. Instead of learning separate models for each type of relationship, HIN2Vec [112] jointly learns a single three-layer 
feedforward neural network model that can handle all the prediction tasks. For any given pair of k-mers, the model predicts a set of 
target relationships defined by the meta-paths. These predictions involve estimating the probability that a relationship exists between 
the k-mers according to the specified meta-path. After iterative training of the neural network using back-propagation and gradient 
descent, optimized dense k-mers vectors are treated as final embeddings. Another approach Struc2Vec [186] constructs a multi-layer 
graph where each layer represents a different level of structural similarity which allows the model to learn embeddings that reflect 
the structural roles of k-mers in the graph. K-mers in different layers of the hierarchical graph are connected with weighted edges. 
The weight of these edges is determined by the structural distance that quantifies the number of edges connected to k-mer and 
their neighbors. Struc2vec [186] employs a biased random walk technique to sample paths within the hierarchical graph, where 
the probability of moving from one k-mer to another is higher if their structural distance is smaller. The random walk ensures that 
the sampling process captures local topological structures such as k-mers degree, neighboring k-mers, and neighborhood degree 
effectively while ignoring the specific positions of k-mers in the graph. Struc2vec leverages these local topological structures to 
generate embeddings that reflect the structural properties of k-mers.

In addition, General Attributed Multiplex Heterogeneous Network Embedding (GATNE) [256] method make use of random walks 
to generate new sequences of k-mers which serve as training data. GATNE considers all nodes and edges of different types and employs 
a combination of multi-layer network to effectively capture the complex relationships. The method starts with a base embedding 
layer that generates a shared embedding for each k-mer, irrespective of the edge type. This base embedding serves as a common 
feature representation across all connections. Additionally, GATNE [256] includes edge-specific embedding layers for each type of 
relationship which allows it to learn the unique characteristics of different connections. It uses an attention mechanism layer to 
weigh the importance of various neighbors and relationships, and eventually aggregate information from the most relevant ones. The 
final combination layer integrates the base embeddings and the edge-specific embeddings using the attention scores, resulting in a 
comprehensive, low-dimensional embedding for each k-mer. Another approach called MetaGraph2Vec [144] treats nodes and edges 
as of different types. It builds a metagraph that specifies the types of nodes and edges which should be considered in the random 
walks to ensure that the walks capture the complex and meaningful relationships among different types of k-mers. Then, it performs, 
random walks guided by metagraph to generate k-mer sequences and train skip-gram model. Random Walk with Restart (RWR) [147] 
approach generates node embeddings by simulating a random walk that occasionally restarts from the initial node. This method is 
particularly useful for capturing the local and global structure of the graph. RWR [147] begins by selecting a starting node, often 
referred to as the “seed” node. In a k-mers graph, this could be any k-mer of interest. The random walk is initialized from this node. At 
each step of the walk, the algorithm moves to a neighboring node based on transition probabilities. These probabilities are typically 
derived from the edge weights between nodes. For instance, if a k-mer has a high similarity or frequent occurrence with another k-mer, 
the transition probability between these nodes will be higher. At each step, there is a predefined probability that the walk will restart 
from the initial seed node. This ensures that the walk does not drift too far from the starting point, maintaining a balance between 
exploring the graph and focusing on the local neighborhood of the seed node. The random walk continues until it reaches a steady 
state, where the probability distribution over the nodes no longer changes significantly. This steady-state distribution represents the 
importance or influence of each node relative to the seed node. Once the steady state is achieved, the resulting probability distribution 
is used to generate the node embeddings. Each node’s embedding is a vector that captures its relationship with the seed node and 
other nodes in the graph.

Beyond random walks, some graph embedding methods like HOPE [258], LINE [219], SDNE [154] make use of proximity in-
formation to learn low-dimensional vector representations of k-mers. Proximity information capture the notion of how related or 
connected two k-mers are based on their attributes, relationships, or interactions. Given a k-mers graph, High Order Proximity pre-
served Embedding (HOPE) [258] constructs a high-order proximity matrix (S). This matrix quantifies the similarity between directly 
connected k-mers as well as in-directly connected k-mers on the basis of number of distinct paths of length (k) between k-mers (i) 
and (j). Then, HOPE [258] decomposes the high-order proximity matrix (S) into two smaller matrices (𝑈𝑠) and (𝑈𝑡) for source and 
target k-mer embeddings, respectively. The source k-mer embedding encodes how a k-mer influences others, while the target k-mer 
embedding encodes how a k-mer is influenced by others. Even in undirected graphs, this dual representation allows for capturing 
more complex relationships and dependencies between k-mers. The decomposition is done in such a way that the product of (𝑈𝑠) and 
(𝑈𝑡) approximates the original high-order proximity matrix (S). The optimization objective is to minimize the difference between the 
high-order proximity matrix (S) and the product of the two embedding matrices (𝑈𝑠) and (𝑈𝑡). Unlike HOPE, Large-scale Information 
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Network Embedding (LINE) [219] encodes first-order proximity information by capturing the direct interactions between k-mers. 
Also, it encodes second-order proximity information by capturing the similarity in the k-mers neighborhood structures. The method 
optimizes the embeddings such that k-mers with similar contexts have similar embeddings. This is achieved by treating the neigh-
borhood structure as a probability distribution and minimizing the Kullback-Leibler divergence between the actual and the predicted 
distributions. Another method Structural Deep Network Embedding (SDNE) [154] represents the graph by an adjacency matrix and 
employs a deep autoencoder to compresses the input data (adjacency matrix) into a lower-dimensional representation and reconstruct 
the original adjacency matrix from this compressed representation. Apart from learning embeddings of adjacency matrix, SDNE [154] 
preserves first-order proximity information by minimizing the reconstruction error between the original adjacency matrix and the 
reconstructed adjacency matrix. It also preserves second-order proximity information using the Laplacian Eigenmaps objective, which 
ensures that nodes with similar neighbors have similar embeddings. The SDNE [154] combines the first-order proximity objective 
with the second-order proximity Laplacian Eigenmaps objective into a unified loss function. This loss function is then optimized to 
learn the embeddings.

Apart from random walk, and proximity information, some graph embedding methods make use of matrix factorization techniques 
like Singular Value Decomposition [259,157] to learn final k-mers embeddings. GeneticSeq2Vec (or GraRep) [18,189] generates an 
adjacency matrix of k-mers graph, where each entry indicates whether a pair of k-mers (nodes) are connected. To capture more 
complex relationships between k-mers at different distances, k-hop proximity matrices are generated which represent connections that 
span multiple steps in the graph. These k-hop proximity matrices are factorized using Singular Value Decomposition (SVD) [259,157] 
to produce lower-dimensional representations. This step helps in capturing the essential features and relationships of the k-mers. The 
representations from different k-hop matrices are concatenated to form a comprehensive feature vector for each k-mer to ensure that 
both local and global relationships are captured. Also, SocDim (Social Dimensions) [189] operates on a graph with k-mers as nodes 
by extracting social dimensions that capture the community structure of the graph. It first identifies communities in the graph and 
then represents each k-mer as a vector of its affiliations to these communities. SocDim [189] measures the quality of the community 
detection using a metric called modularity, which quantifies the strength of division of a network into communities. Modularity is 
calculated by comparing the actual edge density within communities to the expected edge density if edges were distributed randomly. 
Actual edge density is a measure of how densely the edges are distributed in a graph relative to the number of possible edges. It is 
calculated as the ratio of the number of actual edges present in the graph to the total number of possible edges. Mathematically, the 
modularity matrix (B) is derived from the adjacency matrix (A) and degree vector (d). It adjusts the adjacency matrix to reflect the 
community structure by subtracting the expected edge density. Afterwards, it extracts the principal components of the modularity 
matrix (B) to identify the most significant community structures. This is done by performing eigenvector decomposition on (B) to 
obtain the leading eigenvectors. These eigenvectors represent the social dimensions of the network. Leading eigenvectors obtained 
from the modularity matrix (B) are used as the node embeddings.

Furthermore one unique approach called RotatE [153] operates on a knowledge graph with k-mers as nodes by representing 
relations as rotations in a complex space. It models each relationship as a rotation from the source k-mer to the target k-mer. The 
embeddings are learned by optimizing a scoring function that measures the plausibility of each triplet (source, relation, target). The 
objective is to capture the relational patterns in the graph, such as symmetry, antisymmetry, inversion, and composition.

In RNA sequence analysis landscape, word embedding methods are employed in two different ways to generate pre-trained em-
beddings. First approach breaks down RNA sequences into k-mers and generates k-mers embeddings. Alternatively, second approach 
generates embeddings for entire RNA sequences, which can be further applied in two distinct ways for homogeneous and hetero-
geneous networks. Homogeneous network deals with a same type biomolecule (RNA). In contrast, heterogeneous networks involve 
multiple types of biomolecules, such as miRNAs, lncRNAs, circRNAs, protein, and diseases. In heterogeneous graphs, nodes rep-
resent biomolecules and their interactions or associations are represented as edges. Heterogeneous networks are more complex 
than homogeneous network and extracts more detailed and comprehensive relationships through graph-based embedding meth-
ods. Specifically, 41 RNA sequence analysis predictive pipelines employ first approach to generate embeddings for 19 different RNA 
sequence analysis tasks [109,108,111,116,127,126,146,139,258,249,167,166,169,168,260,170,177,178,250,179,251,7,184,185,17, 
18,189,197,255,198,199,205,207,210,211,215,228,252,236,240,253]. On the other hand, 17 predictive pipelines leverage second 
approach to generate embeddings for 7 different RNA sequence analysis tasks including circular RNA identification [112,14], miRNA-
disease associations prediction [154,256,142,153,141,140,143,145], lncRNA-disease association prediction [261,259,144,262,248], 
circRNA-disease association prediction [257], circRNA-miRNA interactions prediction [186], and RNA function prediction [219].

7.2. RNA sequence representation learning using language models

In the rapidly advancing field of Natural Language Processing (NLP), the introduction of the Transformer model has marked a sig-
nificant milestone as it has established a new standard for future language model innovations [216,107]. The Transformer [120] and 
distinct language models including BERT [241], GPT-3 [242], and ESM-1 [172], have greatly expanded the capabilities of machines 
in understanding and generating human language [216,107]. These models are not only remarkable for their text comprehension and 
generation abilities but also for their applications in various domains, including genomics and proteomics sequence analysis [172]. By 
creating highly effective representations of biological sequences, these models are transforming numerous genomics and proteomics 
sequence analysis tasks [172]. To aid RNA sequence analysis researchers, we provide an overview of the key features, benefits, and 
drawbacks of 8 most commonly used sophisticated large language models: Transformer [120], BERT [107], GPT-3 [216], Heterge-
neous Graph Transformer (HGT) [128], BigBird [115], LongFormer [263], RNAFormer [220], and ESM-1b [172], mentioned in Fig. 5. 
Table 3 illustrates 8 distinct language models and their variants, organized into 4 categories based on their underlying architectures. 
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Table 3
A Summary of 8 Contemporary Language Models utilized in RNA Sequence Analysis tasks.

Architecture Type Language Model, Release 
Year

Language Model Variants Number of Layers 
in Encoders

Number of Layers 
in Decoders

Encoder-Decoder Longformer [263], 2020 Base 6 6

Large 12 12

BigBird [264], 2020 BigBird-ITC (Base) 12 12

BigBird-ITC (Large) 24 24

BigBird-ETC (Base) 12 12

BigBird-ETC (Large) 24 24

Transformer, [265], 2017 Base 6 6

Big 6 6

Encoder-Only BERT, [266], 2019 Base 12 _

Large 24 _

Decoder-Only GPT, 2018 GPT-1 [267] _ 12

GPT-2 small [268] _ 12

GPT-2 medium [268] _ 24

GPT-2 Large [268] _ 36

GPT-3 [269] _ 96

GPT-4 [270] _ 120

Special Transformer 
Variants

ESM-1, 2021 ESM-1b [271] 33 _

ESM-1v [272] 33 _

ESM-MSA/ MSA Transformer [273] 12 _

RNAformer [274], 2023 32 D 32 Residual convolution blocks (each block: 6 layers) 
64 D 64 Residual convolution blocks (each block: 6 layers) 
128 D 128 Residual convolution blocks (each block: 6 layers) 
256 D 256 Residual convolution blocks (each block: 6 layers) 

Heterogeneous Graph 
Transformer [275], 2020

_ 256 Residal GNN blocks (each block: 3 layers) 

These categories include encoder-decoder architecture, encoder-only architecture, decoder-only architecture, and special transformer 
variants. Moreover, Table 3 outlines number of layers in language model architecture and specifies number of encoders or decoders 
along with their respective layers.

The Transformer model [120,121,276,129,137,133,138,135,136,175,182,19,195,203,209,221,224,225,227,217,231–233,277, 
235,238,26,27], introduced by Vaswani et al. [265] in 2017, represents a significant departure from previous models that relied 
on recurrent or convolutional neural networks for processing sequential data. This model employs a unique architecture centered 
on attention mechanisms to manage long-range dependencies and grasp the context and semantics of sequences more effectively 
[265,120]. Notable innovations of the Transformer include positional encoding and self-attention mechanisms [265,120]. Positional 
encoding assigns a unique identifier to each nucleotide or group of nucleotides which helps the model recognize the order and context 
of sequences. The self-attention mechanism allows the model to evaluate the importance of each nucleotide in relation to others and 
enhances model’s ability to process and predict scientific language patterns [265,120]. The primary advantage of the Transformer 
lies in its training and inference efficiency due to parallel sequence processing [265,120]. However, it demands substantial computa-
tional resources, which can be a constraint in resource-limited settings. Despite this, its flexibility and scalability in handling diverse 
genomics tasks make it a favored choice in many advanced AI applications [120].

Bidirectional Encoder Representations from Transformers (BERT) [8,107,114,123,125,124,131,132,139,173,174,176,278–280, 
183,16,188,191,281,204,193,192,282,10,213,214,226,222,223,11,218,234,239,241,283,284], introduced by Google in 2018 [266], 
is pretrained on extensive text corpora such as Wikipedia and books [266]. BERT has transformed NLP tasks through its transformer-
based architecture, which allows the model to consider the context of words bi-directionally, rather than uni-directionally [266]. 
What sets BERT apart is its deep bidirectional nature achieved using the transformer model and specific techniques like Masked 
Language Modeling (MLM) and Next Sentence Prediction (NSP) [266]. This enables BERT to understand the context of a word 
based on all surrounding words in a sentence, not just those that come before it. It excels at capturing the semantics and contextual 
information of input text through self-supervised learning tasks such as MLM and NSP [266]. In RNA sequence analysis, BERT 
is employed to transform RNA sequences into a statistical feature space and is subsequently fine-tuned for specific downstream 
tasks. BERT captures the semantics of RNA sequences by dynamically learning their representations using a multihead self-attention 
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mechanism. By leveraging transfer learning, BERT is pretrained on a large corpus and then fine-tuned for specific RNA sequence 
analysis tasks, allowing it to adapt to diverse applications [131]. During pretraining, BERT uses MLM and NSP tasks to learn the 
contextual relationships between nucleotides in RNA sequences [131].

The main advantages of BERT include its high accuracy and efficiency across various RNA sequence analysis tasks. This is due to its 
robust handling of context and bidirectional training [131]. BERT effectively captures both discriminative and semantic relationships 
of nucleotides which makes it highly effective in characterizing RNA sequences [131]. BERT-based models have shown superior 
performance compared to traditional methods in RNA sequence analysis tasks such as enhancer identification and strength prediction 
[131]. Additionally, BERT can be adapted to specific applications by pretraining on domain-specific custom corpora [131]. However, 
BERT is a large model requiring substantial computational resources for training and inference on extensive datasets. Its optimal 
performance is achieved when trained on large and diverse datasets, which may not always be available for specific RNA sequence 
analysis tasks. While BERT delivers state-of-the-art results in many scenarios, it requires fine-tuning for specific tasks, which can be 
resource-intensive. Furthermore, BERT’s performance can degrade with longer texts, and its complex architecture makes it challenging 
to interpret the learned representations and understand the underlying biological mechanisms [131].

GPT-3 [216,242], developed by OpenAI, is among the most advanced AI language models available today [269]. It is renowned 
for its remarkable ability to generate text that closely resembles human writing, marking a significant milestone in natural language 
processing. GPT-3 is built on the transformer architecture, which uses self-attention mechanisms to process input data [269]. While 
GPT-2 featured 1.5 billion parameters, GPT-3 takes a quantum leap with 175 billion parameters. This vast increase in parameters 
significantly enhances its capacity to produce coherent and contextually appropriate text [269]. Unlike BERT and XLNet, GPT-3 
maintains an autoregressive model which allows to predict the next nucleotide in a sequence based on the preceding nucleotides, 
whereas BERT employs bidirectional context [269].

One of GPT-3’s key innovations is its use of alternating dense and locally banded sparse attention patterns. Dense attention 
considers all input nucleotides at once, while sparse attention focuses on a subset which makes the model more efficient and scalable. 
This approach allows GPT-3 to manage long-range dependencies while maintaining computational efficiency [269]. A standout feature 
of GPT-3 is its impressive performance in few-shot settings. Unlike models that require extensive fine-tuning with large amounts of 
task-specific data, GPT-3 can excel in new tasks with minimal sequences. This flexibility offers a notable advantage over models 
like BERT, which typically need substantial fine-tuning for each specific task. GPT-3 demonstrates strong performance across various 
tasks, often matching or surpassing that of fine-tuned models, which makes it a versatile tool for a wide array of applications [269].

Heterogeneous Graph Transformer (HGT) [128,130,256,285] is a graph neural network architecture designed to handle hetero-
geneity and dynamics in large-scale graphs. HGT addresses the challenges of heterogeneous graphs by introducing node-type and 
edge-type dependent attention mechanisms. It parameterizes weight matrices based on meta relation triplets which allow nodes and 
edges of different types to maintain specific representation spaces. HGT utilizes message passing across layers to incorporate infor-
mation from high-order neighbors of different types. This enables the model to capture complex relationships and dependencies in 
the graph. HGT incorporates Relative Temporal Encoding (RTE) to model structural temporal dependencies in the graph. It enables 
the model to learn the temporal evolution of the graph, even with unseen and future timestamps. HGT uses meta relation triplets 
to parameterize weight matrices which enables the attention calculation over each edge. This feature enables the model to capture 
important relationships and interactions between different types of nodes. HGT can automatically learn and extract “meta paths” that 
are important for downstream tasks without the need for manual design. This flexibility allows the model to adapt to different graph 
structures and tasks. HGT allows the integration of diverse data sources and captures the specific characteristics of different types of 
nodes and edges through dedicated representations. However, use of multiple projection weights and attention heads for dedicated 
representations requires careful parameter tuning to achieve optimal performance, which can be a tedious process. Additionally, 
training HGT on large-scale graphs demands significant computational resources.

The ESM-1b language model [172] possesses a unique working approach that distinguishes it from other language models. ESM-1b 
is a single-sequence language model explicitly designed for protein sequence analysis. It is trained on vast databases of unaligned and 
unrelated protein sequences through the use of masked language modeling. ESM-1b design incorporates the physicochemical attributes 
of amino acids in its representations which allow it to encode essential biochemical knowledge. Unlike other domain-specific language 
models that rely on next token prediction or multiple sequence alignments (MSAs), ESM-1b focuses on single-sequence training and 
does not require MSAs during inference. ESM-1b has proven to be competitive in predicting variant effects, making it a valuable 
tool for examining RNA sequences. The model is capable of capturing a broad range of protein variations and properties, enabling it 
to handle diverse RNA sequences. Furthermore, by integrating physicochemical properties, ESM-1b can encode crucial biochemical 
information pertinent to RNA sequence analysis.

The RNAformer [220] is a deep learning architecture that is inspired by the renowned protein structure prediction algorithm, 
Alphafold. It is designed for the purpose of predicting RNA secondary structures. The RNAformer utilizes a data-driven approach to 
make predictions. It makes use of a 2D latent space representation and axial attention mechanisms to capture long-range interactions 
and dependencies within the RNA sequence. The model aims to learn the underlying biophysical dynamics of the folding process with-
out relying on additional information like multiple sequence alignments (MSAs). The RNAformer is composed of multiple RNAformer 
blocks, each incorporating row-wise and column-wise axial attention layers, followed by a transition convolutional layer. The axial 
attention mechanism enables the model to efficiently process higher-dimensional data and capture dependencies along each axis 
independently. The transition convolutional layer assists in modeling local structures like stem-loops. Residual connections, pre-layer 
normalization, and dropout are applied to enhance training and prediction accuracy. The RNAformer makes use of a 2D latent space 
representation of the RNA sequence which allows the model to capture the pairing between nucleotides and leverage the advantages 
of deep learning methods. The axial attention mechanism in the RNAformer allows for efficient processing of long-range interactions 
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and dependencies within the RNA sequence. It helps the model capture the structural characteristics of the RNA secondary structure. 
RNAformer has achieved state-of-the-art accuracy on benchmark datasets for RNA secondary structure prediction. It outperforms 
previous de novo prediction methods and performs on par with current homology modeling methods, demonstrating its effectiveness 
in capturing the folding dynamics of RNA.

BigBird [115] is an innovative deep learning model that showcases unique features designed for efficient learning of nucleotide 
embeddings. It treats each base of the RNA sequence as a token and always includes a [CLS] token at the beginning of every sequence. 
Additionally, it employs the MLM pre-training framework, during which a portion of the tokens are replaced with [MASK] tokens. To 
reduce computational complexity and memory requirements, BigBird utilizes a sparse attention mechanism that incorporates three 
distinct attention components: random attention, window local attention, and global attention. In random attention, each query block 
randomly selects a specified number of key blocks to attend to, introducing a degree of randomness to capture diverse dependencies 
within the RNA sequence. Window local attention ensures that each query block attends to a specific window of key blocks, which 
is centered around the query block, and all query blocks attend to key blocks within the window range. This component is useful 
for capturing local dependencies and structural characteristics within the RNA sequence. Global attention allows one query and key 
block to attend to every other block, which helps capture the global context and dependencies across the entire RNA sequence. For 
handling long sequences, BigBird utilizes a sampling subsequence approach, dividing the long sequence into smaller subsequences or 
windows, enabling the model to process and attend to smaller chunks of data at a time. This approach helps handle longer sequences 
efficiently and avoids memory constraints. The model generates RNA sequence representations by utilizing the output embedding 
of the [CLS] tokens. This provides a concise and informative representation of each subsequence. BigBird generates different types 
of embeddings for each RNA sequence, such as Bigbird256, and Bigbird768 embeddings. These embeddings capture different levels 
of information and can be used for various downstream tasks. In summary, BigBird’s sparse attention mechanism, efficient handling 
of long RNA sequences, and multiple embeddings make it a powerful model for learning nucleotide embeddings and analyzing RNA 
sequences effectively.

LongFormer [263] presents several innovative components and features that enable it to process lengthy sequences efficiently 
and learn effective nucleotide embeddings. LongFormer addresses the limitation of quadratic attention scaling in traditional Trans-
formers by introducing an attention mechanism that scales linearly with the sequence length. This allows LongFormer to handle 
long sequences with thousands of tokens or more. LongFormer incorporates a local windowed attention mechanism, which attends 
to a specific window of tokens within the sequence. This local attention captures contextual information and dependencies within 
the windowed region. LongFormer combines the local windowed attention with a task-motivated global attention mechanism. The 
global attention allows the model to capture broader context and dependencies across the entire sequence, enhancing its understand-
ing of the nucleotide sequence. LongFormer can be pretrained using a masked language modeling (MLM) objective, similar to other 
Transformer models where some tokens are masked in the input sequence, and the model is trained to predict the original values 
of these masked tokens. This pre-training process helps LongFormer learn representations that capture the underlying patterns and 
dependencies in the nucleotide sequence. Pre-trained models can then be fine-tuned on specific downstream tasks, such as enhancer 
RNA identification and promoter RNA identification. LongFormer is specifically designed to handle long sequences efficiently. It 
adopts strategies like sampling sub-sequences and incorporating global and local attention mechanisms to process lengthy nucleotide 
sequences effectively. It can effectively capture cross-partition information without the need for complex architectures or partitioning 
the sequences into smaller sequences. LongFormer also introduces a variant called Longformer-Encoder-Decoder (LED), which follows 
an encoder-decoder architecture similar to the original Transformer model. LED is suitable for sequence-to-sequence tasks like gene 
prediction, RNA splicing, genetic variant detection, motif detection, allowing LongFormer to scale efficiently for such tasks. By incor-
porating these unique components and features, LongFormer can effectively learn nucleotide embeddings by capturing dependencies, 
contextual information, and long-range dependencies within the sequence.

7.3. Machine and deep learning predictors

Machine learning and deep learning algorithms rely on statistical vectors to identify useful patterns for particular sequence analysis 
tasks. A thorough review of 172 studies indicates that, 8 language models and 16 word embedding have been employed to generate 
statistical vectors of genetic sequences to feed 44 unique algorithms for 47 distinct RNA sequence analysis tasks. From 44 algorithm, 
13 machine learning algorithms include Support Vector Machine (SVM) [169,200,212], Naive Bayes (NB) [236], Logistic Regression 
[261,177], ElasticNet Regression Model (ERM) [202], Rotation Forest Algorithm [258], Random Forest [170], Xtreme Gradient 
Boosting [172], Gradient Boosting Decision Trees (GBDT) [280], Deep Forest [141], AdaBoost [163], CatBoost [165], and MultiLayer 
Perceptron (MLP) [249,167]. Furthermore, 9 deep learning algorithms include Convolutional Neural Network [173], Graph Neural 
Network [216], Graph Convolutional Network [147], Long Short Term Memory [18], Bidirectional Long Short Term Memory [176], 
Gated Recurrent Unit [17], Neural Network Regression Model [262], Adaptive subspace learning model [257], and Deep Neural 
Network [185]. Similarly, 5 algorithms including GPT-3 [242], ESM-1b [172], Heterogeneous Graph Transformer (HGT) [128], BERT 
[131], and Transformer [137] belong to language modeling algorithms. Besides machine and deep learning algorithms, 7 algorithms 
have utilized two or more machine learning algorithm namely CatBoost + ET + LightGBM + RF + XGBoost + LR [162], GBDT + LR 
[144], SVM + RF + XGBoost + GBDT + AdaBoost + MLP [163], SVM + LogR [286], XGBoost + LightGBM + RF + ET + CatBoost 
[165], SVM + Ridge Regression [237], and LightGBM + SVM + LR [204], 7 algorithms have employed more than 1 deep learning 
algorithm such as CNN + RNN [228,122], LSTM + CNN [205], CNN + DNN [203], BiLSTM + CNN [13,111,116,180,179,251,287], 
CNN + GRU [17], CNN + BiGRU [196], and BiLSTM + LSTM [250] and 3 algorithms reap benefits of both machine and deep learning 
algorithms namely BiLSTM + LogR [181], CNN + GuasianNB [145], and AdaBoost + CNN + LightGBM [157]. This organized 
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prediction approach simplifies the selection of the most appropriate method for a specific RNA sequence analysis task. Additionally, 
it enables comparative analyses both within and across various algorithm categories and facilitates in informed decision-making and 
assessment of algorithm strengths and weaknesses. Let’s take a brief look into the functional paradigms of 35 different algorithm.

From machine learning algorithms, Support Vector Machine (SVM) [169,200,212] algorithm works by finding the optimal hyper-
plane that maximizes the margin between different classes. For non-linear classification tasks, SVMs use kernel functions to map data 
into higher-dimensional spaces where a linear separation is possible. SVMs are particularly effective in high-dimensional spaces and 
can handle cases where the number of dimensions exceeds the number of samples. They are versatile and robust, performing well 
even with non-linearly separable data by using soft margins. However, SVMs can be computationally intensive, requiring significant 
time and memory resources, especially with large datasets. They also require careful tuning of parameters such as the kernel type 
and regularization parameter and do not inherently provide probabilistic outputs for their predictions.

Naïve Bayes (NB) [236] algorithm is fundamentally based on Bayes’ theorem, which calculates the posterior probability of a 
class given a set of features. This method operates under the “naïve” assumption that features are conditionally independent given 
the class label, which simplifies the computation. One of the main advantages of Naïve Bayes is its simplicity and computational 
efficiency, making it particularly suitable for real-time applications. It scales well with large datasets and can effectively handle 
irrelevant features. However, the independence assumption often does not hold true in real-world scenarios, which can negatively 
impact performance. Additionally, Naïve Bayes may be less effective for complex relationships between features and class labels 
and is sensitive to the quality of the data. Logistic regression (LogR) [261,177] algorithm computes probability of a specific class 
or event occurring and translates this probability into binary outcomes using a logistic function. The main advantage of logistic 
regression lies in its simplicity and interpretability, making it easy to implement and providing insights into the relationship between 
features and the outcome variable. It is also computationally efficient and can handle large datasets with numerous features, offering 
probabilistic outputs that aid in making informed decisions. However, logistic regression assumes a linear relationship between 
independent variables and the log-odds of the dependent variable, which may not always hold true. This assumption limits its 
flexibility in capturing complex, non-linear relationships. Additionally, logistic regression can be prone to overfitting, especially with 
high-dimensional data, and is sensitive to outliers. It also performs best with balanced datasets, and significant class imbalances may 
require additional techniques to maintain performance.

Elastic-Net regression [202] is a regularization based algorithm that combines penalties of both Lasso and Ridge regression methods 
in order to address some of their limitations. In foundational linear regression algorithm, the goal is to find the best-fitting line that 
predicts the relationship between the independent variables and the dependent variable. However, when there are large number of 
independent variables and multi-collinearity is present, ordinary least squares regression can lead to overfitting and poor performance. 
The working paradigm of Elastic-Net regression involves adding two penalty terms to the standard regression equation: one that is 
proportional to the absolute value of the coefficients (L1 penalty) and one that is proportional to the square of the coefficients (L2 
penalty). This combination allows Elastic-Net regression to effectively select a subset of important variables and also handles multi-
collinearity. One advantage of Elastic-Net regression is that it can handle highly correlated variables better than Lasso regression, 
which tends to select only one variable from a group of correlated variables. This makes Elastic-Net regression a more robust model for 
real-world data sets where multicollinearity is common. However, one disadvantage of Elastic-Net regression is that it introduces two 
tuning parameters that need to be optimized through cross-validation, which can make the model more complex and computationally 
intensive compared to simpler regression methods.

In tree based algorithms paradigm, in RNA sequence analysis landscape, foundational decision tree algorithm paradigm is extended 
to develop 8 algorithms including Rotation Forest algorithm [258], Random Forest [119,256,146,154,170,187,197,252], Deep Forest 
(DF) [141], Xtreme Gradient Boosting (XGBoost) [120,259,172,183,189], Gradient Boosting Decision Trees (GBDT) [280], AdaBoost 
[187], and CatBoost [186,118]. Rotation Forest algorithm builds multiple decision trees using different subsets of features and sub-
sequently combines their predictions. The core idea is to apply Principal Component Analysis (PCA) to each subset of features before 
training each individual tree. This process ensures that the diversity among the trees is maximized, which is crucial for the strength 
of ensemble methods. Its advantages include enhanced diversity, improved accuracy, robustness to overfitting, and effective feature 
utilization. However, it also has disadvantages such as computational complexity, the need for careful hyperparameter tuning, re-
duced interpretability, and high memory usage. Random Forest (RF) algorithm [119] is an ensemble learning method that constructs 
a multitude of decision trees during training and outputs the mode of the classes as the prediction. RF is known for its robustness 
to overfitting, feature importance estimation, and ability to handle high-dimensional data with ease [119]. However, RF may not 
perform as well when dealing with imbalanced datasets or when there are many irrelevant features present in the data. Deep For-
est (DF) [141] algorithm is another ensemble learning method that utilizes a cascade structure of multiple random forests to make 
predictions. DFs are capable of learning hierarchical representations of data and can capture complex patterns in high-dimensional 
spaces effectively [141]. Nonetheless, the main drawback of DF lies in its computational complexity and the need for substantial 
computational resources, which can limit its practicality in large-scale RNA sequence analysis projects.

Gradient Boosting [162] minimizes a specified loss function by using gradient descent to determine the optimal direction and 
step size for model improvement. In Gradient Boosting, each new model is trained to correct the residual errors of the combined 
ensemble of all previous models. This iterative process continues until further improvements are minimal, and effectively reduces 
both bias and variance. XGBoost (Extreme Gradient Boosting) [162] is an extension of Gradient Boosting that emphasizes speed and 
performance. Its core working difference lies in its use of regularized model formalization to control overfitting. XGBoost incorporates 
advanced features such as tree pruning, which eliminates unnecessary branches to reduce overfitting, and supports parallel processing 
for faster computations. It also includes both L1 and L2 regularization to manage model complexity. Additionally, XGBoost efficiently 
handles missing values by learning the best path for dealing with them during the training process, ensuring robust and accurate 
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predictions. Gradient Boosting Decision Trees (GBDT) [280] algorithm operates on the principle of sequentially building models, each 
one correcting the errors of its predecessor. The primary functional difference of GBDT lies in its use of gradient descent to optimize 
a chosen loss function, such as mean squared error or logistic loss. Each new tree in GBDT is trained to fit the residuals (errors) of the 
previous tree, thereby incrementally improving the model’s accuracy. GBDT also employs techniques like shrinkage (learning rate) 
to control the contribution of each tree and sub-sampling to prevent overfitting by training on different subsets of the data.

AdaBoost (Adaptive Boosting) [163] sets itself apart by focusing on combining multiple weak learners, typically decision stumps, 
to form a strong algorithm. Its working mechanism involves adjusting the weights of instances based on their prediction results. 
Wrong predicted instances are given higher weights which makes them more prominent in subsequent iterations, while correctly 
predicted instances are given lower weights. This adaptive process ensures that the model focuses on the harder-to-classify instances, 
thereby improving overall accuracy. AdaBoost’s unique approach to handling weights and concentrating on difficult cases makes it 
particularly effective for scenarios where simple models need to be boosted into powerful ensembles. CatBoost (Categorical Boosting) 
[165] is designed specifically for handling categorical data efficiently, distinguishing it from other boosting algorithms. Its primary 
functional advantage is its ability to process categorical features without extensive preprocessing like one-hot encoding. CatBoost 
uses an innovative technique called ordered boosting, which maintains a strict ordering of training examples to reduce overfitting. 
Moreover, it builds symmetric trees, ensuring balanced and faster predictions. CatBoost also has built-in support for handling missing 
values seamlessly during training, making it highly suitable for real-world datasets that often include categorical and missing data.

Multi-Layer Perceptron (MLP) [8,112,140,128,148–150,142,155,160,159,167,178,254,255,193,210,209,282,10,219,220,229, 
242] algorithm consists of multiple layers of nodes or neurons. Each node acts as a perceptron, utilizing a nonlinear activation 
function. MLPs are trained using backpropagation, a method that adjusts the weights of the connections to minimize the error. One 
of the key strengths of MLPs is their ability to approximate any continuous function, making them powerful tools for complex tasks. 
They are flexible and capable of handling a wide variety of problems, from classification to regression. However, training MLPs can 
require substantial computational resources and time, particularly with large datasets and deep architectures. MLPs are also prone to 
overfitting, necessitating the use of regularization techniques. The process of tuning hyperparameters, such as the number of layers, 
neurons per layer, and learning rate, is critical and can be challenging.

Among all categories, deep learning algorithms are most extensively used for efficient RNA sequence analysis. A total of 9
deep learning algorithms are most commonly used by scientific community for RNA sequence analysis. Convolutional Neural 
Network (CNN) [108,121,151,152,161,158,173,7,190,191,201,198,199,207,211,215,230,227,11,218,232,252,238] is designed to 
process structured grid-like data, such as images. In RNA sequence analysis, CNNs can be applied to RNA sequence analysis tasks to 
capture spatial dependencies in data. They are effective for tasks that require feature hierarchies and translation invariance [190,191]. 
However, CNNs may struggle with capturing long-range dependencies in sequences, which can be crucial in RNA analysis where dis-
tant nucleotides may interact. Graph Neural Network (GNN) [240,166,260,216] is a type of neural network designed to operate on 
graph-structured data. GNNs are suitable for tasks involving relational data, such as molecular structures that makes them applicable 
to RNA sequence analysis for tasks like clustering [216]. GNNs can effectively capture dependencies between nodes in a graph and 
are capable of learning representations that incorporate both local and global information [216]. However, GNNs may encounter 
challenges in efficiently scaling to large graphs, and interpreting the learned representations in GNNs can be complex, limiting their 
interpretability. Graph Convolutional Network (GCN) [147,153,143,156,184,171] is a type of neural network designed to operate on 
graph-structured data. GCNs can leverage graph structures to learn representations of nodes and edges, enabling tasks like node clas-
sification and link prediction in RNA sequences [184]. However, GCNs may require meticulous graph construction and preprocessing, 
and they can be computationally intensive, especially for large graphs, which can hinder their scalability. Hypergraph convolutional 
Networks (HGCN) [129] are extended GNNs which are designed for hypergraphs to capture complex relationships. These network 
captures local and global information of hyperedges and their connected node which can used in various tasks including miRNA-
disease association prediction [129]. HGCN offers significant advantages in modeling complex relationships and capture higher order 
relationships but requires higher computational resources to aggregate information through hyperedges.

Long Short-Term Memory (LSTM) [127,18] is designed to overcome the vanishing gradient problem in traditional RNNs by 
introducing a memory cell that can maintain information over long sequences. It consists of three gates: input gate, forget gate, and 
output gate, that control the flow of information. LSTM can capture long-term dependencies in sequences and is suitable for tasks 
requiring memory of past information. LSTM is more complex and computationally expensive compared to GRU, making it slower 
to train and deploy. Bidirectional Long Short-Term Memory (BiLSTM) [109,126,248,176,279,188,225,253] is an extension of LSTM 
that processes sequences in both forward and backward directions. BiLSTMs are advantageous in RNA sequence analysis for tasks 
where contextual information from both past and future is essential [176]. BiLSTMs can capture dependencies in both directions and 
are effective in tasks requiring bidirectional context understanding [176]. However, BiLSTMs may be computationally intensive due 
to processing sequences in two directions, which can impact their training and inference speed. Gated Recurrent Unit (GRU) [17] is 
a simplified version of LSTM with only two gates - reset gate and update gate. It is computationally more efficient than LSTM as it is 
faster to train and may perform better on smaller datasets due to its simpler architecture. GRU may struggle with capturing long-term 
dependencies in sequences, leading to performance degradation on tasks requiring memory of distant information.

The Neural Network Regression model [262] is a precisely deep neural network based on multiple layers. It passes the input 
features vectors through two hidden layers with ReLU activation functions, which help capture complex, non-linear relationships. To 
mitigate overfitting, a dropout layer with a 0.02 probability is used between the hidden layers. The output layer consists of a single 
neuron with a sigmoid activation function, which generates a probability score indicating the likelihood of an association. The model 
employs binary cross-entropy loss to measure the error between predicted probabilities and actual labels, and it is optimized using 
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Fig. 6. Overview of Confusion Matrix. 

the Adam optimizer. Precisely deep neural network regression model heavily relies on quality of input feature vectors and it may 
overfit easily.

The Adaptive Subspace Learning Predictor (NSL2CD) [257] is designed to discover hidden relationships between circular RNAs 
(circRNAs) and diseases by integrating multiple data sources. The core of its functionality lies in the use of projection matrices, 
which transform high-dimensional circRNA and disease features into a shared, lower-dimensional latent space. This transformation 
is achieved by multiplying each feature matrix with its corresponding projection matrix, thereby aligning the different types of data. 
The model then minimizes the regression error to ensure that the transformed features in the latent space closely resemble the original 
data. Regularization techniques like L1, 2-norm and graph Laplacian regularization are employed to maintain model simplicity and 
preserve the geometric structure of the data. An iterative optimization process fine-tunes the model parameters, gradually improving 
the accuracy of the projections and predictions. The final output is a predicted association matrix that highlights potential relationships 
between circRNAs and diseases. The process of projecting high-dimensional data into a lower-dimensional latent space can sometimes 
lead to the loss of important information, potentially affecting the model’s accuracy. Additionally, the need for multiple data sources 
means that the model’s performance is highly dependent on the quality and completeness of the input data. Furthermore, deep neural 
network (DNN) [185] algorithm is used for circRNA-miRNA association prediction. DNN algorithm is a multi-layer neural network 
designed to learn complex patterns from the feature representations of circRNA and miRNA sequences. It processes the input feature 
vectors through several hidden layers, applies non-linear transformations (ReLU), and outputs the probability of a circRNA-miRNA 
association.

For different RNA sequence analysis tasks, 5 contemporary language models namely GPT-3 [242], ESM-1b [172], Heterogeneous 
Graph transformer (HGT) [130,285], BERT [107,114,123,125,124,131,132,139,174,278,16,281,213,214,226,222,223,234,239,241, 
284], and Transformer [276,137,133,138,135,136,175,182,19,195,203,221,224,217,231,233,277,235,26,27] have been used in two 
different settings. In first setting, the addition of classification layers to these language models adapts the general-purpose language 
models to specific classification tasks by learning to map the rich contextual embeddings to the desired output classes. In second 
setting, rich contextual embeddings of these language models are passed to standalone machine learning algorithms, deep learning 
algorithms, ensemble or hybrid algorithms for accurate classification of RNA sequences.

8. Uncovering evaluation measures for RNA sequence analysis predictive pipelines

Performance evaluation of AI-driven predictive pipelines for RNA sequence analysis undergoes through two experimental settings: 
1) Train-test split [288,289], and 2) k-fold cross-validation [290,291]. In train-test split, data is splitted into two sets namely train and 
test set. In this setting, usually 70-80% of data is used for training and remaining 20-30% for testing. To prevent overfitting issues, a 
subset of training data, also known as validation set, is used to fine-tunes predictor hyperparameters [292]. On the other hand, k-fold 
cross-validation splits data into k-equal folds. Since k-fold cross-validation is an iterative process, another fold is reserved for testing 
while remaining k-1 folds are used for training. In this way, predictive pipeline is trained and tested for k-times on whole data.

AI-driven genomic sequence analysis tasks belong to five different types namely: 1) binary classification [293], 2) multi-class 
classification [293,20], 3) multi-label classification [294], 4) regression [295,296], 5) clustering [295,296]. Based on the nature of 
task, there are multiple evaluation measures for each type. This section provides an in-depth understanding of evaluation measures 
for binary/multi-class, multi-label, regression and clustering.

8.1. Binary/multi-class classification evaluation measures

In binary/multi-class classification, predicted label can either be positive or negative. In order to evaluate the performance of 
binary/multi-class predictive pipeline, precision (P) [297], recall (R) [293], F1-score (F1) [297], accuracy (Acc) [293], specificity 
(SP) [293], and Matthews correlation coefficient (MCC) [[293]] are most commonly used evaluation measure. These measures are 
calculated using confusion matrix. Fig. 6 depicts confusion matrix, comprised of four different entities: 1) True Positive (TP), 2) True 
Negative (TN), 3) False Positive (FP), 4) False Negative.(FN).

Among four entities, TP and TN specify the correct predictions of positive and negative classes respectively. However, FP and FN 
specify incorrect predictions of positive and negative classes respectively. Equation (6) embodies mathematical expressions for these 
evaluation measures.

Heliyon 11 (2025) e41488 

29 



M.N. Asim, M.A. Ibrahim, T. Asif et al. 

𝑓 (𝑥) − 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 =
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𝑃 = 𝑇𝑃

𝑇𝑃+𝐹𝑃

𝑅 = 𝑇𝑃

𝑇𝑃+𝐹𝑁

𝐹1 = 2∗𝑃∗𝑅
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𝑇𝑁+𝐹𝑃

𝑀𝐶𝐶 = (𝑇𝑃×𝑇𝑁)−(𝐹𝑃×𝐹𝑁) √
(𝑇𝑃+𝐹𝑃 )(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃 )(𝑇𝑁+𝐹𝑁)

(6)

These measures are commonly used for balance datasets. However, variants of these measures including weighted, micro, and macro 
are used for imbalanced datasets. To compensate for class imbalance problem, weighted precision (Wei-P) [298] is a ratio that 
computes sum of precision of each class weighted by its size by total number of weights for all classes. Precision of each class 
is proportion of positive prediction of the specific class, while relative weight assigns a weight score to each class based on the 
proportion in data. Similarly, weighted-recall (Wei-R) [298] and weighted F1-score (Wei-F1) [299] are computed by assigning weights 
of recall and F1-score to each class. Macro precision [300] is computed by calculating the precision of individual classes and then 
averaging these precisions. In the same way, Macro recall (Mac-R) [300] and Macro F1-score (Mac-F1) [300] are calculated by taking 
the average of all classes. Micro-precision (Mic-P) [300] calculates the proportion of all true positive instances by total number 
of predicted positive instances for all classes. In the same manner, Micro recall (Mic-R) [300] and Micro F1-score (Mic-F1) [300] 
calculate the score for all classes. Equation (7) signifies mathematical expressions for these evaluation measures.
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(7)

Here, for class 𝑧, 𝑇𝑃 z, 𝐹𝑃 z, 𝐹𝑁z represents true positive, false positive, and false negative factors respectively. 𝑃 z , 𝑅z, 𝐹1 − 𝑠𝑐𝑜𝑟𝑒z
denote precision, recall, and F1-score of class 𝑧. 𝑤z is relative weight of class 𝑧 and 𝑧 is 𝑧th class for 𝑛 number of classes.

8.2. Multi-label classification

Performance evaluation of multi-label classification predictive pipelines is relatively arduous compared to binary and multi-class 
predictive pipelines. In multi-label predictive pipelines, instances have more than one label at a time. Therefore, among predicted 
labels, some labels can be correct, some can be incorrect, all can be correct or incorrect. Because of this partial correctness, it 
becomes difficult to evaluate multi-label predictive pipelines [301]. To cope with this issue, different evaluation measures have 
been introduced including precision (P) [294], recall (R) [294], accuracy (Acc) [294], and hamming loss (HL) [294]. Equation (8) 
represents mathematical expressions for these evaluation measures.
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𝑧=1
∑𝑙

𝑘=1
[|(𝐴𝑘𝑧 ≠ 𝑃𝑘𝑧)|]

(8)

𝑀 denotes the total number of instances, 𝑚𝑧 represents 𝑧𝑡ℎ instance from 𝑀 instances, actual and predicted class labels are denoted 
by 𝐴𝑧 and 𝑃 𝑧 for 𝑚𝑧 instance respectively. Instance length and class index are indicated by 𝑙 and 𝑘 respectively, ∨ and ∧ signifies 
logical OR and AND operators. For imbalanced datasets, evaluation measures incorporate weighted, micro and macro variants. After, 
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a thorough analysis of existing literature, it is inferred that most commonly used evaluation measures in AI-driven predictive pipelines 
for genomic sequence analysis are precision, recall, accuracy, specificity, sensitivity, MCC, and F1-score [290,294].

8.3. Regression evaluation measures

There is a fundamental difference between regression and classification tasks. Regression task predicts continuous values instead 
of class labels. Thus researchers introduced variety of evaluation measures to evaluate performance of regression-based predictive 
pipelines. These measures include Mean Square Error (MSE) [302], Root Mean Square Error (RMSE) [302], Mean Absolute Error 
(MAE) [303], Mean Absolute Percentage Error (MAPE) [304], Mean Bias Error (MBE) [303], R2 Score [303], relative Root Mean 
Square Error (rRMSE) [305], relative Mean Square Error (rMSE) [305], relative Mean Absolute Error (rMAE) [305], and relative 
Mean Bias Error (rMBE) [305].

MAE computes absolute difference between predicted and actual values and then takes the average for all number of instances 
[303]. Where as, MSE calculates the average error by taking squared differences between predicted and actual values [302]. While, 
RMSE takes square root of MSE [302], and MBE calculates the average bias of the predictor pipeline by taking difference between 
actual and predicted values [303]. However, MAPE calculates percentage first using absolute difference between the actual and 
predicted values by actual values and then averages them [304]. Besides this, 𝑅2 Score is a statistical measure that analyzes the 
relationship strength between the dependent and independent variables. It uses the squared difference of predicted and actual values 
by square difference of actual and average of actual values. [303]. The minimum error scores of MAE, MSE, MBE, and MAPE indicate 
that predictor pipeline will perform well while high score or 𝑅2-squared signifies pipeline robustness. However, these error scores 
calculate N number of instances average error value.

Relative performance evaluation can enhance quality of performance assessments by diminishing data noise. In this evaluation, 
error score is calculated in percentage, ratio of particular error score by the average of actual values. Relative versions of these 
evaluation measures including rMAE, rMSE, rMBE, and rRMSE validate the pipeline performance relative to the average of the 
actual baseline. These measures are helpful for pipeline robustness analysis when tested on varying datasets. Equation (9) embodies 
mathematical expressions for these evaluation measures.
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𝑀𝐴𝑃𝐸 = 1
𝑛 
∑𝑁

𝑧=1
||| 𝑃𝑧−𝐴𝑧𝐴𝑧

||| × 100

𝑅2𝑆𝑞𝑢𝑎𝑟𝑒𝑑 = 1 −
∑𝑁
𝑧=1(𝑃−𝐴)

2∑𝑁
𝑧=1(𝐴−𝑎𝑣𝑔(𝐴))

2

𝑟𝑀𝐴𝐸 = 𝑀𝐴𝐸

�̄�
× 100

𝑟𝑀𝑆𝐸 = 𝑀𝑆𝐸

�̄�
× 100

𝑟𝑀𝐵𝐸 = 𝑀𝐵𝐸

�̄�
× 100

𝑟𝑅𝑀𝑆𝐸 = 𝑅𝑀𝑆𝐸

�̄�
× 100

(9)

Here, 𝑁 is the instances, �̄� represents average of total actual values, 𝑃 𝑧 and 𝐴𝑧 are predicted, and actual values of instance 𝑧.

8.4. Clustering evaluation measures

Clustering tasks are different as compared to classification and regression. Clustering tasks aim to group data points which share 
common features. These tasks are based on unsupervised learning methods, that make clusters based on inherited features, similarity 
score, and data structure rather than labeled data [306]. New data points are assigned to that cluster which have maximum similarity, 
mutual information, and minimum intra-cluster distance. Different evaluation measures have been adopted to validate clustering-
based predictive pipeline performance such as silhouette score (SS) [307], accuracy (Acc) [308], Dunn index (DI) [309], normalized 
mutual information (NMI) [308] and davies-Bouldin index (DBI) [310].

Accuracy is the ratio of correct predictions of instances to total instances of the data with calculating maximum match of predicted 
clusters [308]. NMI calculates an information gain score that computes mutual information by taking a mean of predicted and actual 
cluster entropies [308]. SS calculates the similarity score of an instance to its own cluster and dissimilarity between clusters [307]. 
DI measures proportion of similarity score by focusing on minimum distance within clusters to maximum distance in intra-class 
cluster [309]. DBI focuses on calculating the average similarity score by taking maximum ratio of average distance within the cluster 
to the distance between centroids [310]. SS calculates variance in cluster data while DBI evaluates how clusters are well segregated 
and compact. Minimum score of DBI is good for cluster-based predictive pipelines. However, DI computes how clusters are well 
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separated and tightly bound to internal cluster structure and maximum score is good for cluster-based predictive pipeline. Equation 
(10) illustrates mathematical expressions for these evaluation measures.

𝑓 (𝑥) − 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝐴𝑐𝑐 = 𝑚 
𝑚𝑎𝑥

∑𝑛
𝑧=1 1

{
𝑦𝑧=𝑚(𝑐𝑧)

}
𝑛 

𝑁𝑀𝐼 = 𝐼(𝑦𝑧,𝑐𝑧) 
1
2
[
𝐸(𝑦𝑧)+𝐸(𝑐𝑧)

]
𝑆𝑆 = 𝑚𝑖𝑛

{
𝑑(𝑦𝑧)

}
−𝑎(𝑦𝑧) 

𝑚𝑎𝑥
{
𝑚𝑖𝑛

{
𝑑(𝑦𝑧)

}
,𝑎(𝑦𝑧)

}
𝐷𝐵𝐼 = 1

𝑛 
∑𝑛

𝑧=1𝑚𝑎𝑥𝑘≠𝑧 (
𝑆𝑧+𝑆𝑘
𝑑(𝑐𝑧,𝑐𝑘)

)

𝐷𝐼 = 𝑚𝑖𝑛1≤𝑧<𝑘≤𝑛𝑑(𝑐𝑧,𝑐𝑘)
𝑚𝑎𝑥1≤𝑙≤𝑛𝑑′(𝑐)

(10)

Here 𝑚 is a mapping function, 𝑦𝑧 is predicted cluster, among 𝑛 clusters 𝑐𝑧 and 𝑐𝑘 refers the 𝑧𝑡ℎ and 𝑘𝑡ℎ clusters respectively. 𝐼(𝑦𝑧, 𝑐𝑧)
signifies mutual information while 𝐸(𝑦𝑧) and 𝐸(𝑐𝑧) are predicted and actual cluster entropies respectively. 𝑑(𝑦𝑧) and 𝑎(𝑦𝑧) indicate 
average distance to other cluster centroids and in that clusters respectively. 𝑑(𝑐𝑧, 𝑐𝑘) represents inter-cluster distance while 𝑆𝑧 and 
𝑆𝑘 denote the mean distance from all observations in cluster 𝑧 and mean distance for median cluster 𝑘 respectively.

9. Open-source RNA sequence analysis predictive pipelines

The public availability of source codes for predictive models, pretrained language models, and word embeddings significantly 
accelerate research efforts by eliminating the need to start from scratch. By leveraging existing predictive models and incorporating 
new strategies, researchers can develop new applications which result improved performance. Additionally, public access to these 
codes ensures transparency, reliability, and reproducibility in research. To benefit the research community and develop more precise, 
robust, and efficient AI-driven RNA sequence analysis predictive pipelines, this section provides an in-depth summary of open-source 
predictive pipelines developed using two contemporary representation learning methods namely word embeddings and large language 
models for 47 distinct RNA sequence analysis tasks. Our analysis reveals that, from 58 existing RNA sequence analysis studies, only 
20 studies have made their predictive pipelines source codes publicly available for word embeddings AI applications. In addition, out 
of 70 existing RNA sequence analysis studies based on large language models, source code of only 45 studies are publicly available. 
Tables 4 and 5 provide information on open-source codes for RNA sequence analysis applications using word embeddings and large 
language models, respectively. These tables also summarize the representation learning methods, machine/deep learning predictors 
used, and include links to the respective source codes.

Table 4 summarizes these predictive pipelines in form of their respective representation learning approaches, machine or deep 
learning predictors, target RNA sequence analysis tasks, and links of source codes. A closer examination of Table 4 shows that 
a total of 6 unique word embedding approaches namely Word2Vec, GloVe, Transformer, LINE, Node2Vec, SDNE, and SVD have 
been used to develop 20 predictive pipelines are developed for 14 distinct RNA sequence analysis tasks. These tasks are sncRNA 
Prediction, cirRNA Prediction, lncRNA Prediction, RNA Sub-cellular Localization Prediction, RNA Functions Prediction, RNA-protein 
binding sites identification, RNA-protein interaction prediction, RNA-RNA Associations prediction, 5mC-Methyl Cytosine Modification 
Prediction, Methylation Modification Prediction, RNA-Disease Associations Prediction, RNA-Gene Association Prediction, miRNA 
Target Prediction, 16S rRNA Taxonomic Classification.

Specifically, a total of 3 open source RNA-protein binding sites identification studies have utilized Word2Vec representation 
learning along with 3 deep learning architectures namely CNN, CNN + BiLSTM and LSTM + BiLSTM. Moreover, for coding RNA-Protein 
interaction prediction, two open source predictive pipelines have utilized two unique word embeddings (Word2vec, Node2Vec) along 
with GNN and GCN classifiers. Moreover, a total of 5 open-source RNA-disease association prediction studies make use of 5 unique 
word embedding approaches namely Word2Vec, Node2Vec, GloVe, SNDE, and SVD along with RF, BiLSTM, XGBoost, and DBN. For 
5mC-methyl cytosine modification prediction, 1 open source predictive pipeline make use of Node2Vec and 1 predictive pipeline 
make use of Word2vec embeddings along with CNN classifier. In addition, open-source predictive pipelines of micro RNA target 
prediction, 16S rnRNA taxonomic classification, small non coding RNA identification, circular RNA identification, and RNA subcellular 
localization prediction make use of Word2Vec embedding with 5 unique classifiers namely NB, GNN, BiLSTM, and CNN + BiLSTM. For 
RNA function prediction and long non-coding RNA identification, GloVe and LINE word embeddings along with hybrid CNN + BiLSTM 
and deep hierarchical model are used, respectively.

Table 5 provides a comprehensive summary of 45 open-source predictive pipelines based on large language models developed 
for various RNA sequence analysis tasks. Analysis of Table 5 reveals that these pipelines utilize five distinct large language models: 
Transformer, BERT, ESM-1b, Heterogeneous Graph Transformer, and GPT, along with 5 unique classifiers including MLP, CNN, 
XGBoost, BiLSTM, and Hybrid (CNN + BiLSTM + MLP). Collectively, these 45 predictive models cover 24 different RNA sequence 
analysis tasks. These tasks include RNA-Protein Binding Affinity Prediction, Cell-Specific Gene Regulatory Networks Prediction, Single-
Cell Multi-Omics Analysis, mRNA Degradation Prediction, RNA-Disease Association Prediction, Enhancer RNA Identification, 6mA-
Methyl Adenosine Modification Prediction, RNA Subcellular Localization Prediction, Pre-miRNA Prediction, Promoter Identification, 
RNA Cluster Analysis, RNA-Seq Coverage Prediction, RNA Structure Prediction, Spatial Gene Expression Analysis, CRISPR/Cas9 
single guide RNA Prediction, microRNA- Target Prediction, RNA-Protein Interaction Prediction, RNA Splicing Sites Prediction, RNA 
Function and Structure Prediction, Long non coding RNA Prediction, miRNA Target Prediction, RNA-Protein Binding Sites Prediction, 
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Table 4
Summary of open-source word embedding based RNA Sequence Analysis models in existing studies.

Author, Year [ref] Task Embedding 
Approach

Classifier Source Code

Deng et al., 2023 [109] Small non coding 
RNA Prediction

Word2Vec BiLSTM https://github.com/YinggggJ/ABLNCPP

Chaabane et al., 2020 [111] Circular RNA 
Prediction

Word2Vec CNN + BiLSTM https://github.com/UofLBioinformatics/circDeep

Liu et al., 2019 [116] Long non coding 
RNA Prediction

GloVe BiLSTM + CNN https://github.com/www-bioinfo-org/CNCI

Zeng et al., 2023 [19] RNA Sub-cellular 
Localization 
Prediction

Word2Vec Transformer https://github.com/CSUBioGroup/LncLocFormer

Wang et al., 2019 [219] RNA Functions 
Prediction

LINE Deep Hierarchical 
Model

https://github.com/JChander/DeepMiR2GO

Wang et al., 2021 [250] RNA-Protein 
Binding Sites 
Identification

Word2Vec BiLSTM + LSTM https://github.com/wzf171/CRPBsites

Deng et al., 2020 [179] RNA-Protein 
Binding Sites 
Identification

Word2Vec CNN + BiLSTM https://github.com/youzhiliu/DeepRKE/

Xiaoyong et al., 2018 [7] RNA-Protein 
Binding Sites 
Identification

Word2Vec CNN https://github.com/xypan1232/iDeepV

Han et al., 2023 [166] Coding 
RNA-Protein 
Interaction 
Prediction

Node2Vec GNN https://github.com/nwpu-903PR/ncRPI-LGAT

Shen et al., 2021 [260] Coding 
RNA-Protein 
Interaction 
Prediction

Node2Vec GNN https://github.com/AshuiRUA/NPI-GNN

Zhao et al., 2022 [184] Coding 
RNA-Protein 
Interaction 
Prediction

Word2Vec GCN https://github.com/zhaozhiya-20/SEBGLMA-
semantic-embedded-bipartite-graph-network-for-
predicting-lncRNA-miRNA-associations

Hasan et al., 2022 [207] 5mC-Methyl 
Cytosine 
Modification 
Prediction

Word2Vec CNN https://github.com/hasan022/Deepm5C

Wang et al., 2022 [211] 5mC-Methyl 
Cytosine 
Modification 
Prediction

GloVe CNN https://github.com/whl-cumt/EMDLP

Shi et al., 2019 [248] RNA-Disease 
Associations 
Prediction

SDNE RF https://
github.com/BioMedicalBigDataMining-Lab/NEMII

Shi et al., 2022 [248] RNA-Disease 
Associations 
Prediction

Word2Vec BiLSTM https://github.com/hongshi940/HGNNLDA

Li et al., 2021 [259] RNA-Disease 
Associations 
Prediction

SVD, Node2Vec XGBoost https://github.com/iALKing/SVDNVLDA

Madhavan et al., 2021 [262] RNA-Disease 
Associations 
Prediction

Node2Vec DBN https://github.com/manumad/DBNLDA

Xie et al., 2021 [126] RNA-Gene 
Association 
Prediction

Word2Vec BiLSTM https://github.com/Xshelton/SG_LSTM

Przybyszewski et al., 2023 [240] Micro RNA 
Target Prediction

Word2Vec GNN https://github.com/SanoScience/graphtar

Wolo et al., 2019 [236] 16S rRNA 
Taxonomic 
Classification

Word2Vec NB https://github.com/EESI/microbiome_embeddings
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2’-O-Methylation Modification Prediction, Methylation Modification Prediction, siRNA Target Prediction, and ac4C-Acetyl Cytidine 
Modification Prediction. An extensive analysis of Table 5 indicates that 17 Transformer based predictive pipelines are developed for 
13 RNA sequence analysis task including RNA-Protein Binding Affinity Prediction, Cell-Specific Gene Regulatory Networks Prediction, 
Methylation Modification Prediction, RNA-Protein Binding Sites Prediction, Long non coding RNA Prediction, CRISPR/Cas9 single 
guide RNA Prediction, Spatial Gene Expression Analysis, RNA structure prediction, RNA-Seq Coverage Prediction, RNA Subcellular 
Localization Prediction, Pre-miRNA Prediction, mRNA Degradation Prediction, and RNA-Disease Association Prediction. Whereas 
23 BERT based predictive pipelines are developed for 18 RNA sequence analysis tasks. Moreover, only 1 ESM-1b based predictive 
pipeline is developed for RNA-Protein Binding Sites Prediction, 1 GPT based predictive pipeline is developed for cell-type detection, 
and 2 heterogeneous graph transformer (HGT) based predictive pipelines are developed for two tasks namely RNA-Disease Association 
Prediction and microRNA- Target Prediction.

Language models based predictive pipelines can be used in different way: First is to train a language model from scratch on a 
large dataset, which is also known as self-training and second is to fine-tuning a pre-trained open-source language model for specific 
downstream tasks. A detailed analysis of existing studies shows that source codes for 24 BERT, 19 Transformer, 1 GPT, and 1 ELMo 
and ESM-1b based predictive pipelines are publicly available. Among the 24 BERT-based pipelines, 9 are self-trained for 9 different 
tasks including Single-Cell Multi-Omics Analysis [284], Enhancer RNA Identification task [123], 6mA-Methyl Adenosine Modification 
[194], Promoter Identification [124], RNA Cluster Analysis [8], RNA Structure Prediction [223], Splicing Sites Prediction [314], RNA 
Structure and Function Prediction [218], and miRNA Target Prediction [239]. Remaining 15 pre-trained BERT models are used for 
11 different tasks namely RNA-Disease Association Prediction [131,132], 6mA-Methyl Adenosine Modification Prediction [281,312], 
Promoter Identification [125], RNA Structure [223], RNA-Protein Interaction Prediction [9], RNA-Protein Binding Sites Prediction 
[174,279], 2’-O-Methylation Modification Prediction [191], Methylation Modification Prediction [193,192], Long non coding RNA 
Prediction [114], siRNA Target Prediction [241], and ac4C-Acetyl Cytidine Modification Prediction [188]. Table 6 presents details 
of the protein data used to train BERT and 4 other language models, resulting in various pretrained versions.

In a nutshell, this section provides information about 65 open-source predictive pipelines developed by using 14 unique word 
embedding and 5 distinct large language models. This knowledge can facilitate development of a comprehensive, large-scale RNA 
sequence analysis framework to harness the capabilities of AI.

10. RNA sequence analysis predictive pipelines performance analysis

To assist computer scientists, this section sheds lights on the performance figures achieved by word embedding, language model, 
and domain specific representation learning methods based predictive pipelines across 47 distinct RNA sequence analysis tasks using 
diverse benchmark datasets. To aid researchers in developing new predictors, we have conducted a thorough literature review for 
each task and discussed current state-of-the-art predictors. In Section 3, we have categorized 47 RNA sequence analysis tasks into 
10 distinct categories. Here, we have summarized the performance values of predictive pipelines developed for these tasks into 7 
different Tables. Each Table corresponds to the predictive pipelines of tasks within a single category, except two Tables that include 
the summary of predictive pipelines developed for the tasks coming from 3 different categories and 2 different categories respectively. 
Moreover, this analysis highlights which tasks within each category offers more room for improvement through the development of 
more robust and effective predictive pipelines.

Table 7 summarizes crucial details of 9 RNA sequence analysis tasks classified under the goal of RNA categorization and iden-
tification. Overall, for RNA categorization and identification goal, 10 unique representation learning methods including BERT, 
Transformer, Word2vec, HIN2Vec, one-hot encoding, k-mer composition, GloVe, pseudo nucleotides composition, Transformer + Big-
Bird + Longformer, nucleotide physico-chemical properties and occurrence frequency based representation learning approaches are 
used across 9 different tasks. In 21 predictive pipelines, along with different representation learning approaches, 13 unique classifiers 
namely BiLSTM, DenseNet, CNN, CNN + BiLSTM, MLP, SVM + LogR, CNN + BiLSTM + MLP, RF, CatBoost, XGBootst, BERT-self classifier, 
transformer-self classifier and CNN + RNN classifiers are used. Most commonly used representation learning approach is BERT followed 
by Transformers. A total of 6 studies have developed BERT based predictive pipelines with a self classifier for 5 different tasks namely 
RNA cluster analysis [8], mRNA identification [107], long non-coding RNA identification [114], enhancer RNA identification, [320] 
and promoter identification [125,124]. BERT with a self classifier based predictive pipelines has achieved state-of-the-art performance 
for 4 tasks namely RNA cluster analysis [8], mRNA identification [107], enhancer RNA identification, [320] and promoter identi-
fication [125,124]. Second most commonly used representation learning approaches are Transformer and Word2vec. Transformer 
is used with a self classifier for CRISPER/Cas9 single guide RNA identification [276], and with two classifiers namely XGBoost and 
CNN for pre-micro RNA identification [15,121]. Transformer is also combined with BigBird and Longformer representation learning 
approaches to feed statistical vectors to an ensemble (CNN + BiLSTM + MLP) classifier for long non-coding RNA identification [115]. 
Transformer with XGBoost classifier has yielded state-of-the-art performance [120] for pre-micro RNA identification. Word2vec ap-
proach is used with a hybrid (CNN + BiLSTM) classifier for circular RNA identification [111] and is used with CNN and BiLSTM 
classifiers for small non-coding RNA classification [108,109]. It is important to mention that for small non-coding RNA classification 
task, there exist three different benchmark datasets which differ from each other in terms of number of classes. Deng et al. [109] non-
coding RNA classification dataset is comprised of 4 classes namely lncRNAs, misc-RNAs, rRNAs, and sRNA, Aoki et al. [108] dataset 
is comprised of 9 classes including snRNA, snoRNA C/D, snoRNA H/ACA, scaRNA miRNA, YRNA, Vault RNA, 5S rRNA, and tRNA, 
whereas Asim et al. [110] dataset is comprised of 13 classes namely miRNA, ribozymes, 5S rRNA, 5_8𝑆_𝑟𝑅𝑁𝐴, HACA-box, CD-box, 
tRNA, scaRNA, IRES, 𝐼𝑛𝑡𝑟𝑜𝑛_𝑔𝑝𝐼 , 𝐼𝑛𝑡𝑟𝑜𝑛_𝑔𝑝𝐼𝐼 , riboswitch, and leader. Considering rich regulatory roles of non-coding RNAs, Asim 
et al. [110] dataset is more valuable as it allows to identify more types of non-coding RNAs.
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Table 5
Summary of open-source language models based predictors in existing studies.

Author, Year [ref] Task Name Language 
Model

Classifier Pre-train/ 
Self-train

Code link

Shen et al., 2024 [182] RNA-Protein 
Binding Affinity 
Prediction

Transformer _ Self-train https://github.com/xilinshen/Reformer

Zhao et al., 2024 [311] RNA-Protein 
Binding Affinity 
Prediction

Transformer _ Self-train https://github.com/pfnet-research/GenerRNA

Xu et al., 2023 [235] Cell-Specific 
Gene Regulatory 
Networks 
Prediction

Transformer _ Self-train https://github.com/zhanglab-wbgcas/STGRNS

Yang et al., 2022 [284] Single-Cell 
Multi-Omics 
Analysis

BERT _ Self-train https://
github.com/TencentAILabHealthcare/scBERT

He at al., 2023 [26] mRNA 
Degradation 
Prediction

Transformer _ Self-train https://github.com/Shujun-He/RNAdegformer

Zou et al., 2024 [128] RNA-Disease 
Association 
Prediction

Heteroge-
neous Graph 
Transformer

_ Self-train https://github.com/zht-code/HGTMDA

Li et al., 2024 [136] RNA-Disease 
Association 
Prediction

Transformer _ Self-train https://github.com/ghli16/NAGTLDA

Yao et al., 2024 [135] RNA-Disease 
Association 
Prediction

Transformer _ Self-train https://github.com/ydkvictory/GCNFORMER

Wu et al., 2023 [133] RNA-Disease 
Association 
Prediction

Transformer _ Self-train https://github.com/jinyangwu/KGETCDA

Ning et al., 2023 [131] RNA-Disease 
Association 
Prediction

BERT _ Pre-train https://github.com/zhiweining/BertNDA-main

Zhao et al., 2022 [134] RNA-Disease 
Association 
Prediction

Transformer _ Self-train https://github.com/EchoChou-990919/LDAformer

Yang et al., 2022 [132] RNA-Disease 
Association 
Prediction

BERT _ Pre-train https://github.com/Wolverinerine/GTGenie

Zhang et al., 2023 [123] Enhancer RNA 
Identification

BERT _ Self-train https://github.com/lyli1013/DeepITEH

Zhang et al., 2024 [194] 6mA-Methyl 
Adenosine 
Modification 
Prediction

BERT _ Self-train https://github.com/TingheZhang/m6A-BERT

Li et al., 2023 [281] 6mA-Methyl 
Adenosine 
Modification 
Prediction

BERT _ Pre-train https://github.com/liqianyue/zeitgeist-/tree/
master/m6A_BERT_Stacking

Le et al., 2022 [312] 6mA-Methyl 
Adenosine 
Modification 
Prediction

BERT CNN Pre-train https://github.com/khanhlee/bert-dna

Zeng et al., 2023 [19] RNA Subcellular 
Localization 
Prediction

Transformer _ Self-train https://github.com/CSUBio-Group/LncLocFormer

Raad et al., 2022 [121] Pre-micro RNA 
Prediction

Transformer CNN Self-train https://github.com/sinc-lab/miRe2e

Wang et al., 2023 [125] Promoter 
Identification

BERT _ Pre-train https://github.com/xwang1427/miPTP/tree-/main/
SCPseDNC/data

(continued on next page)
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Table 5 (continued)

Author, Year [ref] Task Name Language 
Model

Classifier Pre-train/ 
Self-train

Code link

Mai et al., 2022 [124] Promoter 
Identification

BERT _ Self-train https://github.com/hanepira/TSSnote-CyaPromBert

Akiyama et al., 2022 [8] RNA Cluster 
Analysis

BERT _ Self-train https://github.com/mana438/RNABERT.git

Linder et al., 2023 [27] RNA-Seq 
Coverage 
Prediction

Transformer _ Self-train https://github.com/calico/borzoi

Cui et al., 2024 [242] Single-Cell 
Multi-Omics 
Analysis

GPT _ Self-train https://github.com/bowang-lab/scGPT

Zhang et al., 2024 [222] RNA Structure 
Prediction

BERT _ Self-train https://doi.org/10.5281/zenodo.8280831

Fei et al., 2022 [225] RNA Structure 
Prediction

Transformer _ Pre-train https://github.com/jluF/LTPConstraint

Kalicki et al., [223] RNA Structure 
Prediction

BERT _ Pre-train https://github.com/dhesin/RNABERT-2

Wang et al., 2024 [231] Spatial Gene 
Expression 
Analysis

Transformer _ Pre-train https://zenodo.org/records/10646474

Wan et al., 2022 [276] CRISPR/Cas9 
single guide RNA 
Prediction

Transformer _ Self-train https://github.com/BioinfoApollo/TransCrispr

Liu et al., 2023 [313] Micro RNA 
Target Prediction

Heteroge-
neous Graph 
Transformer

_ Self-train https://
github.com/Liangyushi/MiR-Graph/tree/main

Yamada et al., 2022 [9] Coding 
RNA-Protein 
Interaction 
Prediction

BERT _ Pre-train https://github.com/kkyamada/bert-rbp

Chen et al., 2023 [314] RNA Splicing 
Sites Prediction

BERT _ Self-train https://github.com/biomed-AI/SpliceBERT

Chen et al., 2022 [218] RNA Structure 
Prediction RNA 
Function 
Prediction

BERT CNN Self-train https://github.com/ml4bio/RNA-FM

Dai et al., 2023 [115] Long non coding 
RNA Prediction

Transformer Hybrid (CNN 
+ BiLSTM + 
MLP)

Self-train https://github.com/yatoka233/LncPNdeep

Zhang et al., 2024 [239] Micro RNA 
Target Prediction

BERT _ Self-train https://github.com/mingziiz/miTDS

Cao et al., 2024 [175] RNA-Protein 
Binding Sites 
Prediction

Transformer _ Self-train https://github.com/cc646201081/CircSI-SSL

Yan et al., 2024 [172] RNA-Protein 
Binding Sites 
Prediction

ELMo, 
ESM-1b

XGBoost Pre-train https://github.com/yaoyao-11/Seq-RBPPred

Jin et al., 2023 [174] RNA-Protein 
Binding Sites 
Prediction

BERT BERT Pre-train https://github.com/YeoLab/HydRA

Du et al., 2022 [279] RNA-Protein 
Binding Sites 
Prediction

BERT BiLSTM Pre-train https://github.com/Xuezg/JLCRB

Soylu et al., 2023 [191] 2’-O-Methylation 
Modification 
Prediction

BERT CNN Pre-train https://github.com/seferlab/bert2ome

Wang et al., 2024 [193] Methylation 
Modification 
Prediction

BERT CNN Pre-train https://github.com/abhhba999/MRM-BERT
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Table 5 (continued)

Author, Year [ref] Task Name Language 
Model

Classifier Pre-train/ 
Self-train

Code link

Chen et al., 2023 [209] Methylation 
Modification 
Prediction

Transformer Transformer Pre-train https://github.com/lennylv/TransRNAm

Wang et al., 2024 [192] Methylation 
Modification 
Prediction

BERT BERT Pre-train https://github.com/Moretta1/BERT-RNA

Danilevicz et al., 2023 [114] Long non coding 
RNA Prediction

BERT BERT Pre-train https://github.com/AppliedBioinformatics/
lncRNAPrediction_Interpretation

Xu et al., 2024 [241] siRNA Target 
Prediction

BERT BERT Pre-train https://github.com/ChengkuiZhao/siRNABERT

Li et al., 2024 [188] ac4C-Acetyl 
Cytidine 
Modification 
Prediction

BERT BiLSTM Pre-train https://github.com/Marscolono/MetaAc4C

Beyond most common BERT, Transformer, and Word2vec approaches, several other representation approaches are used with 
different classifiers for various RNA sequence analysis tasks. Specifically, HIN2Vec with MLP classifier is used for circular RNA iden-
tification [112] and GloVe with hybrid (CNN + BiLSTM) classifier is used for long non-coding RNA identification [116]. Apart from 
word embedding and language models based predictive pipelines, k-mer composition along with hybrid (CNN + BiLSTM) classifier and 
physico-chemical properties and occurrence frequency based encoder with ensemble (SVM + LogR) classifier is used for circular RNA 
[13] identification and long non-coding RNA identification [286], respectively. Overall, among all representation learning approaches 
used for circular RNA identification, k-mer composition based representation learning approach with a hybrid (CNN + BiLSTM) classi-
fier achieves state-of-the-art performance [13]. Similarly, among all representation learning approaches used for long non-coding RNA 
identification [286], physico-chemical properties and occurrence frequency based representation learning approach along with en-
semble (SVM + LogR) classifier state-of-the-art performance. Among all 9 tasks, enhancer RNA and promoter identification have some 
room for improvement. Considering the performance trend of all predictive pipelines in this goal, potential of physico-chemical prop-
erties and occurrence frequency based representation learning approach with an ensemble classifier (CNN + BiLSTM or SVM + LogR) 
can enhance the performance figures for under-performing tasks.

Table 8 summarizes 54 existing studies related to 4 different RNA sequence analysis tasks classified under the biological goal of RNA 
target prediction. For this goal, 18 unique representation learning approaches are used that include Word2vec, DeepWalk, heteroge-
neous graph transformer, transformer, RWR, weisfeiler-leman algorithm, RotatE, Node2vec, Node2vec + GATNE, SDNE, BERT, sparse 
quality control, SVD, k-mer composition, stacked auto-encoder, Graph2vec, SVD + Node2vec, and HOPE. Using different representa-
tion learning approaches, predictive pipelines are developed by employing 27 classifiers including BiLSTM, GNN, CNN, LSTM, RF, 
MLP, GNN + MLP, GAT + MLP, GCN + MLP, hyper-graph convolutional network, rotation forest model, DF, transformer-self classifier, 
BERT-self classifier, heterogeneous graph transformer-self classifier, hybrid (CNN + GuassianNB), LogR, matrix multiplication + MLP, 
XGBoost, GBDT + LogR, XGBoost, ensemble (XGBoost + LightGBM + RF + ET + CatBoost), neural network regression model, GCN, 
ET, ensemble (AdaBoost-CNN + LightGBM), ensemble (SVM + GBDT + AdaBoost + XGBoost + RF + MLP), ensemble (CatBoost + ET 
+ LightGBM + RF + XGBoost + LR), and adaptive subspace leaning method. Most commonly used representation learning approach 
is Node2Vec followed by Word2Vec and BERT. Node2vec representation learning approach is employed with 5 different classifiers for 
non-coding RNA disease association prediction tasks [145,146,143,248,262,261]. Specifically, Node2vec is used with three different 
classifiers namely RF [146], GCN [143] and hybrid (CNN + GuassianNB) [145] classifiers for 1 task namely miRNA-disease associ-
ation prediction whereas Node2vec is employed with LogR [261] and neural network regression models [262] for lncRNA-disease 
association prediction. Moreover, combined potential of Node2vec and SVD is explored with XGBoost classifier for lncRNA-disease 
association [259] and Node2vec + GATNE representation learning is used with RF classifier for miRNA-disease association prediction 
[256]. Despite being the most common representation learning approach for this goal, Node2vec based any predictive pipeline does 
not achieve state-of-the-art performance on any task of this goal.

Word2vec is the second most commonly used representation learning approach which is employed with LSTM classifier for RNA-
gene association prediction [127] and with GNN classifier for micro RNA target prediction [240]. Furthermore, potential of Word2vec 
is explored with BiLSTM classifier for 3 tasks namely RNA-gene association prediction [126], micro RNA target prediction [253], 
and RNA disease association prediction [248]. Word2vec is also used with ensemble (matrix factorization + MLP) classifier for 
lncRNA-disease association prediction [249]. Among all tasks, Word2Vec representation with LSTM classifier has achieved state-of-
the-art performance for RNA-gene association prediction [127]. Apart from Node2vec and Word2vec, potential of BERT representation 
learning with a self classifier is explored for 3 tasks namely siRNA target prediction [241], miRNA target prediction [16] and lncRNA-
disease association prediction [131,132,139]. BERT with a self-classifier manages to achieve state-of-the-art performance across 2 
tasks namely siRNA target prediction [241], and miRNA target prediction [16]. Beyond Node2vec and Word2vec, transformer is 
used with hypergraph convolutional network for lncRNA-disease association prediction [129] and its potential is also explored with 
a self classifier for 2 tasks namely cirRNA-disease [133] and lncRNA-disease association prediction [137]. In addition, heterogeneous 
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Table 6
Summary of Uniquely Pre-trained Language Models along with pre-training Data for RNA Sequence Analysis Tasks.

Unique Language Model Pre-trained Data Unique Language Model Pre-trained Data Unique Language Model Pre-trained Data

Shen et al., Transformer 
[182]

eCLIP-seq Data Dai et al., Transformer 
[115]

48,876 LncRNAs, 
99,187 Coding RNAs

Zhang et al., BERT 
[239]

miRAW Dataset

Zhao et al., Transformer 
[311]

34.39M 
Sequences from 
RNAcentral

Fei et al., Transformer 
[225]

Rfam Data (43,273 
pieces of Data)

Kalicki et al., BERT 
[223]

410K sequences 
from 2 mRNA 
families virus 
and Humans for 
a total of 31 RNA 
families

Xu et al., Transformer 
[235]

scRNA-Seq Data Zou et al., 
Heterogeneous Graph 
Transformer [128]

Trained on 35,547 Data 
from MDA Database

Devlin et al., BERT 
[266]

BooksCorpus 
(800M words), 
English 
Wikipedia 
(2,500M words)

He at al., Transformer 
[26]

OpenVaccine 
challenge Dataset

Liu et al., 
Heterogeneous Graph 
Transformer [313]

miRAW train-validation 
dataset

Ji et al., BERT [315] human genome 
78 mouse 
ENCODE 
ChIP-seq datasets

Li et al., Transformer 
[136]

2797 
lncRNA-disease 
relationships

Yang et al., BERT [284] scRNA-Seq Data Zhang et al., BERT 
[316]

Cora, Citeseer 
and Pubmed 
Datasets

Yao et al., Transformer 
[135]

LncRNADisease, 
Lnc2Cancer 
Datasets

Zhang et al., BERT 
[123]

eRNA Data from eRNA 
Database (HeRA)

Brandes et al., BERT 
[317]

∼106 million 
UniRef90 protein 
sequences

Wu et al., Transformer 
[133]

nCRNA Dataset Zhang et al., BERT 
[194]

427,760 Human m6A 
Sites

Lee et al., BERT [318] single cell RNA 
sequence data 
and gene 
contextual 
information

Zhao et al., Transformer 
[134]

LncRNA Data Mai et al., BERT [124] dRNA-Seq Dataset Sarzynska-Wawer et al., 
ELMo [319]

20-million-words 
data set sampled 
from Wikipedia 
and Common 
Crawl

Zeng et al., Transformer 
[19]

lncRNA 
subcellular 
localization 
Dataset

Akiyama et al., BERT 
[8]

76237 Human derived 
small ncRNAs with 
lengths ranging from 20 
to 440 bases from 
RNAcentral

Rives et al., ESM 1 [271] 250 million 
protein 
sequences

Raad et al., Transformer 
[121]

Metazoan 
pre-miRNAs 
(23178)

Zhang et al., BERT 
[222]

TR0 Dataset Cui et al., GPT [242] Over 10.3M 
scRNA-Seq 
samples of 
Human blood 
and bone marrow

Linder et al., 
Transformer [27]

CAGE Dataset 
(Human and 
Mouse RNA-Seq)

Chen et al., BERT [314] Over 2M precursor 
messenger RNA 
(pre-mRNA) Sequences 
from 72 vertebrates

_ _

Wan et al., Transformer 
[276]

Sniper-Cas9, 
SpCas9-NG, 
xCas9, HypaCas9

Chen et al., BERT [218] 23M cRNA Sequences 
from RNAcentral 
Database

_ _

graph transformer is used with a self classifier for 2 tasks including miRNA-disease association prediction [130] and circRNA-disease 
association prediction [285]. Furthermore, HOPE representation learning is used with a rotation forest classifier [258], Graph2vec is 
used with an ensemble (GBDT + LR) classifier [144], and SVD is employed with ensemble (AdaBoost-CNN + LightGBM) classifier [157] 
for lncRNA-disease association prediction. Moreover, two studies have explored the potential of DeepWalk representation leaning with 
MLP classifier for miRNA-disease association prediction [140,257]. In addition, sparse quality control based representation learning is 
used with MLP classifier for circRNA-disease association prediction [155]. Overall among all different predictive pipelines, DeepWalk 
with MLP classifier based predictive pipelines achieves state-of-the-art performance for miRNA-disease association prediction [140]. 
Similarly, Transformer with a self classifier based predictive pipeline shows state-of-the-art performance across 5 different benchmark 
datasets related to lncRNA-disease association prediction [135,136]. From all 4 tasks of this goal, siRNA and miRNA target prediction 
offer some room for improvement. Considering performance trend of different predictive pipelines developed for this goal, potential 
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Table 7
RNA categorization and identification related 9 distinct RNA sequence analysis tasks predictive pipelines performance.

Task Type Task Name Author, Year Dataset Representation 
Learning

Classifier Performance Evaluation

Clustering RNA Cluster 
Analysis

Akiyama et al., 
2022 [8]

1. Akiyama et 
al. Train set-A, 
2. Akiyama et 
al. Train set-B

BERT _ (TrainSet-A) Sn=0.881, Positive 
Predictive Value=0.947, 
F1-score=0.913; (TrainSet-B) 
Sn=0.851, Positive Predictive 
Value=0.932, F1-score=0.890

Multi-label 
Classification

Small 
Non-coding RNA 
Classification

Deng et al., 
2023 [109]

Deng et al. 
Dataset 1, Deng 
et al. Dataset 2

Word2Vec BiLSTM Dataset 1: Acc=79.43, 
Precision=79.25, Sn=81.36, 
Sp=77.38, F1-score=0.803, 
MCC=0.588, AUROC=0.885; 
Dataset 2: Acc=98.61, 
Precision=99.22, Sn=98.84, 
Sp=98.01, F1-score=0.990, 
MCC=0.966, AUROC=0.997

Asim et al., 2020 
[110]

Asim et al. 
Non-Coding RNA 
Classification 
Dataset

One-hot 
Encoding

DenseNet Acc=0.9538, Precision=0.9539, 
Recall=0.9538, F1-score=0.9536

Aoki et al., 2018 
[108]

Aoki et al. 
Dataset

Word2Vec CNN Acc=0.980, F1-score=0.931

Binary 
Classification

mRNA 
Identification

Li et al., 2023 
[107]

MLOS Flu 
Vaccines 
Dataset, 
Nieuwkoop et 
al. Dataset, 
Wint et al. 
Dataset, 
lixiProtein 
Expression 
Dataset, Groher 
et al. Dataset, 
Diez et al. 
Dataset, 
SARS-CoV-2 
Vaccine 
Degradation 
Dataset

BERT _ MLOS Flu Vaccines: 
RMSE=0.78, Nieuwkoop et al. 
Dataset: RMSE=0.88, Wint et al. 
Dataset: RMSE=0.89, lixiProtein 
Expression Dataset: 
RMSE=0.57, Groher et al. 
Dataset: RMSE=0.35, Diez et al. 
Dataset: RMSE=0.48, 
SARS-CoV-2 Vaccine 
Degradation: RMSE=0.78

Binary 
Classification

Circular RNA 
Identification

Niu et al., 2024 
[13]

Niu et al. 
Dataset

k-mer 
Composition

CNN + 
BiLSTM

Acc=0.8614, SN=0.8381, 
Sp=0.8165, MCC=0.6774

Chaabane et al., 
2020 [111]

Chaabane et al. 
Dataset

Word2Vec CNN + 
BiLSTM

Acc=0.8056, MCC=0.6113, 
F1-score=0.810

Deng et al., 
2020 [112]

Deng et al. 
Dataset

HIN2Vec MLP F1-score=0.412, Recall=0.400, 
Acc=0.425

(continued on next page)

of shallow neural network based embeddings such as Word2vec, random walk based node embedding methods such as Node2vec, 
DeepWalk, and graph based transformers like heterogeneous graph transformer along with standalone classifier (MLP, GCN) or an 
ensemble (CNN + GuassianNB) classifier can be explored for enhancing the performance of under-performing tasks.

Table 9 provides a summary of 29 RNA sequence analysis studies related to 4 different tasks classified under the hood of RNA 
interaction prediction. Overall, 12 unique representation learning approaches namely nucleotides composition encoder, Word2vec, 
Node2vec, HIN2vec, VGAE + Word2vec, ELMo + ESM-1b, BERT, one hot encoding, nucleotide frequency and density encoder, trans-
former, Word2vec in conjunction with nucleotide composition encoder, and Struct2vec are used across 4 different tasks. These 
representation learning approaches are used with 18 different classifiers including GCN, MLP, GNN, SVM, RF, XGBoost, CNN, BERT-
self classifier, Transformer-self classifier, hybrid (CNN + BiLSTM), hybrid (CNN + BiGRU), LogR, BiLSTM, BiLSTM + LSTM, AdaBoost, 
DNN, GBDT, and CatBoost to develop predictive pipelines across 4 distinct tasks.

For this goal, most commonly used representation learning approach is Word2vec followed by BERT. Word2vec is utilized with 
8 different classifiers for 3 different tasks namely coding RNA-protein interaction prediction [167,170], protein-RNA binding sites 
prediction [178,250,251,179,7], and non-coding RNA interaction prediction [187,184]. Specifically, Word2vec is employed with MLP 
for 2 different tasks namely coding RNA-protein interaction prediction [167], and protein-RNA binding sites prediction [178] and it is 
employed with RF classifier for coding RNA-protein interaction prediction [170]. In addition, potential of Word2vec is explored with 3 
different classifiers namely CNN [7], hybrid (LSTM + BiLSTM) [251], and hybrid (CNN + BiLSTM) [250,179] for protein-RNA binding 
sites prediction [250,251,179,7], whereas Word2vec is employed with GCN [184], and AdaBoost [187] classifiers for non-coding 
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Table 7 (continued)

Task Type Task Name Author, Year Dataset Representation 
Learning

Classifier Performance Evaluation

Binary 
Classification

Long Non-coding 
RNA 
Identification

Tian et al., 2024 
[117]

Tian et al. 
Datasets 
(Amborella 
trichopoda, 
Ananas 
comosus, 
Arabidopsis 
thaliana, 
Brachypodium 
distachyon, 
Cucumis 
sativus, Glycine 
max, Manihot 
esculenta, 
Medicago 
truncatula, 
Musa 
acuminata, 
Oryza sativa, 
Populus 
trichocarpa, 
Solanum 
lycopersicum, 
Sorghum 
bicolor, Vitis 
vinifera, Zea 
mays, Chlamy-

domonas 
reinhardtii, 
Coccomyxa 
subellipsoidea, 
Micromonas 
pusilla, Volvox 
carteri, 
Physcomitrella 
patens)

ORFS + ORFC + 
Fickett Test 
code + 
Hexamer usage 
bias + Sequence 
Intrinsic 
Composition + 
Structural 
Information + 
EIIP based 
Physiochemical 
Properties

SVM + 
LogR

Amborella trichopoda: 
Precision=94.20, Ananas 
comosus: Precision=97.30, 
Arabidopsis thaliana: 
Precision=0.96, Brachypodium 
distachyon: Precision=0.94, 
Cucumis sativus: 
Precision=0.94, Glycine max: 
Precision=0.91, Manihot 
esculenta: Precision=0.96, 
Medicago truncatula: 
Precision=0.92, Musa 
acuminata: Precision=0.96, 
Oryza sativa: Precision=0.95, 
Populus trichocarpa: 
Precision=0.91, Solanum 
lycopersicum: Precision=0.96, 
Sorghum bicolor: 
Precision=0.97, Vitis vinifera: 
Precision=0.92, Zea mays: 
Precision=0.94, 
Chlamydomonas reinhardtii: 
Precision=0.94, Coccomyxa 
subellipsoidea: Precision=0.95, 
Micromonas pusilla: 
Precision=1.00, Volvox carteri: 
Precision=0.98, Physcomitrella 
patens: Precision=0.93

Dai et al., 2023 
[115]

Dai et al. Dataset Transformer + 
BigBird + 
Longformer

CNN + 
BiLSTM + 
MLP

Acc=0.971, Sp=0.967, Sn=0.980

Danilevicz el 
al., 2023 [114]

Danilevicz et al. 
Datasets: 1. 
Arabidopsis 
thaliana 
Dataset, 2. 
Brassica napus 
Dataset, 3. 
Brassica 
oleracea 
Dataset, 4. 
Brassica rapa 
Dataset, 5. 
Glycine max 
Dataset, 6. 
Oryza sativa 
Dataset, 7. Zea 
mays Dataset

BERT _ Arabidopsis thaliana Dataset: 
Acc=65.39, AUROC=0.72, 
F1-score=0.65, MCC=0.31, 
Precision=0.65, Recall=0.65; 
Glycine max Dataset: 
Acc=72.77, AUROC=0.79, 
F1-score=0.73, MCC=0.45, 
Precision=0.73, Recall=0.73; 
Brassica napus Dataset: 
Acc=74.6, AUROC=0.81, 
F1-score=0.74, MCC=0.49, 
Precision=0.75, Recall=0.74; 
Brassica oleracea Dataset: 
Acc=74.15, AUROC=0.81, 
F1-score=0.74, MCC=0.49, 
Precision=0.75, Recall=0.74; 
Brassica rapa Dataset: 
Acc=57.86, AUROC=0.61, 
F1-score=0.58, MCC=0.16, 
Precision=0.58, Recall=0.58; 
Oryza sativa Dataset: 
Acc=61.65, AUROC=0.65, 
F1-score=0.62, MCC=0.23, 
Precision=0.62, Recall=0.62; 
Zea mays Dataset: Acc=83.42, 
AUROC=0.90, F1-score=0.83, 
MCC=0.67, Precision=0.84, 
Recall=0.84

Nadir et al., 2021 
[119]

Nadir et al. 
Dataset

k-mer 
Composition

RF Acc=0.9984, Precision=0.9999, 
Recall=0.9968, F1-score=0.9983
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Table 7 (continued)

Task Type Task Name Author, Year Dataset Representation 
Learning

Classifier Performance Evaluation

Musleh et al., 
2021 [118]

Musleh et al. 
Datasets 
(Human, 
Mouse)

k-mer 
Composition + 
Pseudo 
Nucleotide 
Composition

CatBoost Human: Acc=96.04, Mouse: 
Acc=96.05

Liu et al., 2019 
[116]

Liu et al. Dataset GloVe CNN + 
BiLSTM

F1-score=97.9, Acc=96.4, 
AUROC=99.0

Binary 
Classification

Pre-micro RNA 
Identification

Gupta et al., 
2023 [120]

Gupta et al. 
Dataset

Transformer XGBoost Acc=98

Raad et al., 
2022 [121]

Raad et al. 
Dataset

Transformer CNN AUPRC=0.12313

Binary 
Classification

CRISPR/Cas9 
single guide RNA 
Identification

Zhu et al., 2024 
[122]

Hart et al. 
Datasets: (WT, 
ESP, HF, xCas, 
SpCas9, Snipe, 
HCT116, HELA, 
HL60)

One-hot 
Encoding

CNN + 
RNN

WT: SRCC=0.867, PRCC=0.891; 
ESP: SRCC=0.852, 
PRCC=0.846; HF: SRCC=0.859, 
PRCC=0.875; xCas: 
SRCC=0.866, PRCC=0.855; 
SpCas9: SRCC=0.852, 
PRCC=0.873; Snipe: 
SRCC=0.939, PRCC=0.959; 
HCT116: SRCC=0.335, 
PRCC=0.346; HELA: 
SRCC=0.354, PRCC=0.344; 
HL60: SRCC=0.389, 
PRCC=0.386

Wan et al., 2022 
[276]

Wang et al. 
Datasets: 1. 
eSpCas9, 2. 
SpCas9-HF1, 3. 
WT-SpCas9; Kim 
et al. Datasets: 4. 
Sniper-Cas9, 5. 
SpCas9-NG, 6. 
xCas9, 7. 
HypaCas9

Transformer _ WT-SpCas9 Dataset: SRCC=0.861, 
PCC=0.889; SpCas9-HF1 Dataset: 
SRCC=0.852, PCC=0.864; 
eSpCas9 Dataset: SRCC=0.863, 
PCC=0.856; Four Datasets: 
(Sniper-Cas9, SpCas9-NG, xCas9, 
HypaCas9): Average SRCC=0.818, 
PCC=0.783

Binary 
Classification

Enhancer RNA 
Identification

Zhang et al., 
2023 [123]

Zhang et al. 
Dataset 
(Stomach, Lung, 
Liver, Pancreas, 
LIHC, LUAD, 
PRAD, PAAD)

BERT _ Normal tissues: Stomach 
Dataset: Acc=86.25, Lung 
Dataset: Acc=78.59, Liver 
Dataset: Acc=70.74, Pancreas 
Dataset: Acc=65.43; Cancer 
tissues: LIHC Dataset: 
Acc=70.45, LUAD Dataset: 
Acc=86.25, PRAD Dataset: 
Acc=86.25, PAAD Dataset: 
Acc=86.25

Binary 
Classification

Promoter 
Identification

Wang et al., 
2023 [125]

Wang et al. 
Dataset 3

BERT _ Precision=78.13, Recall=75.76

Mai et al., 2022 
[124]

Mai et al. 
Datasets 1. 
Synechococcus 
elongatus sp. 
UTEX 2773 
(promoter, 
non-promoter), 
2. Synechocystis 
sp. PCC 6803 
(promoter, 
non-promoter), 
3. Synechocystis 
sp. PCC 6714 
(promoter, 
non-promoter)

BERT _ Synechococcus elongatus sp. 
UTEX 2773: promoter: 
AUROC=0.98, Precision=0.92, 
F1-score=0.93, Support=1001, 
non-promoter: AUROC=0.98, 
Precision=0.95, F1-score=0.93, 
Support=1036; Synechocystis 
sp. PCC 6803: promoter: 
AUROC=0.96, Precision=0.88, 
F1-score=0.91, Support=1407, 
non-promoter: AUROC=0.96, 
Precision=0.94, F1-score=0.91, 
Support=1433; Synechocystis 
sp. PCC 6714: promoter: 
AUROC=0.96, Precision=0.91, 
F1-score=0.89, Support=330, 
non-promoter: AUROC=0.96, 
Precision=0.88, F1-score=0.89, 
Support=330
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Table 8
Non-coding RNA target prediction related 4 distinct RNA sequence analysis tasks predictive pipelines performance.

Task Type Task Name Author, Year Dataset Representation 
Learning

Classifier Performance Evaluation

Interaction RNA-Gene 
Association 
Prediction

Yoon et al., 2023 
[127]

Yoon et al. 
Dataset

Word2Vec LSTM AUROC=0.9834

Xie et al., 2021 
[126]

Xie et al. 
Dataset

Word2Vec BiLSTM AUROC=0.94

Interaction RNA-
Disease 
Association 
Prediction

Lu et al., 2024 
[140]

Lu et al. Dataset DeepWalk MLP AUROC=0.9478, AUPRC=0.9464, 
Acc=0.8908, Precision=0.9237, 
Recall=0.9096, F1-score=0.8785

Zou et al., 2024 
[128]

Zou et al. 
Dataset

Heterogeneous 
Graph 
Transformer

MLP Acc=0.8927, Sn=0.8838, 
Sp=0.8881, Precision=0.8926, 
MCC=0.772, AUROC=0.9551

Ouyang et al., 
2024 [129]

MDAv2.0 
Dataset, 
MDAv3.2 
Dataset

Transformer Hypergraph 
Convolutional 
Network

MDAv2.0: AUROC=0.945284, 
AUPRC=0.945074, 
F1-score=0.879973; MDAv3.2: 
AUROC=0.962600, 
AUPRC=0.959563, 
F1-score=0.902512

Tian et al., 2024 
[147]

Tian et al. 
Dataset

RWR GCN AUROC=0.9874±0.0078, 
Acc=0.9453±0.0089, 
AUPRC=0.9882±0.0013

Ruan et al., 
2024 [148]

Ruan et al. 
Dataset

GCN MLP AUROC=0.9484±0.0002, 
AUPRC=0.3526±0.0038

Xu et al., 2024 
[149]

Xu et al. Dataset GNN MLP AUROC=96.76, AUPRC=96.37, 
Acc=86.95, F1-score=88.32, 
Recall=99.16, Precision=79.99

Ji et al., 2024 
[150]

Ji et al. Dataset Graph Attention 
Neural Network

MLP Acc=0.9292±0.0287, 
Sn=0.9331±0.0244, 
Sp=0.9254±0.0343, 
Precision=0.9261±0.034, 
MCC=0.8585±0.0573, 
AUROC=0.9738±0.0135

Liang et al., 
2024 [151]

Li et al. Dataset Weisfeiler-Leman 
Algorithm

CNN AUROC=0.9401±0.0020, 
AUPRC=0.2728±0.0077, 
F1-score=0.3212±0.0078, 
Acc=0.9937±0.0004

Jindal et al., 
2023 [141]

Ding et al. 
Dataset

DeepWalk DF AUROC=0.942

Liu et al., 2023 
[130]

Dai et al. Data2 
Dataset

Heterogeneous 
Graph 
Transformer

_ Data2: AUROC=0.9710, 
AUPRC=0.9647, Acc=0.9201, 
F1-score=0.9221, Recall=0.9457, 
Pecision=0.8998

Wang et al., 
2023 [152]

Huang et al. 
Dataset

GCN CNN AUROC=0.9032

Cao et al., 2023 
[153]

Cao et al. 
Dataset

RotatE GCN AUROC=0.9892, AUPRC=0.9898

Sun et al., 2022 
[145]

Sun et al. Dataset Node2Vec CNN + 
GaussianNB

AUROC=0.80, AUPRC=0.87

Pang et al., 2022 
[321]

HMDD Dataset Transformer _ Average Precision=92.735, 
F1-score=84.430, Acc=85.255, 
AUROC=93.012

Wang et al., 
2021 [142]

Wang et al. 
Dataset

DeepWalk MLP AUROC=0.943, AUPRC=0.937

Yu et al., 2021 
[256]

HMDD v3.2 
Dataset

Node2Vec + 
GATNE

RF Precision=0.6509, Recall=0.4991, 
F1-score=0.5649
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Table 8 (continued)

Task Type Task Name Author, Year Dataset Representation 
Learning

Classifier Performance Evaluation

Zheng et al., 
2020 [146]

Zheng et al. 
Datasets 
(miRNA-Disease 
Association 
baseline, 
Unknown 
Diseases and 
miRNAs)

Node2Vec RF miRNA-Disease Association baseline 
Dataset: AUROC=0.9145, 
Acc=84.49; Unknown Diseases and 
miRNAs Prediction: 
AUROC=0.8765, Acc=80.96

Li et al., 2019 
[143]

Li et al. Datasets 
(Disease–Gene 
Interaction 
Data)

Node2Vec GCN AUROC=0.9626, 
Precision=0.9660

Gong et al., 
2019 [154]

Gong et al. 
Dataset

SDNE RF AUPRC=0.6104 ±0.0012, 
AUROC=0.9293±0.0017, 
F1-score=0.6147±0.0025, 
Acc=0.9956±0.0001, 
Recall=0.4893±0.0060, 
Sp=0.9993±0.0001, 
Precision=0.8289±0.0164

Ning et al., 
2023 [131]

Ning et al. 
Dataset 1, Ning 
et al. Dataset 2

BERT _ Ning et al. Dataset 1: 
AUROC=0.998, AUPRC=0.998; 
Ning et al. Dataset 2: 
AUROC=0.987, AUPRC=0.988

Yang et al., 
2022 [132]

HMDD Dataset, 
HMDAD 
Dataset, 
LncRNADisease 
v2017 Dataset

BERT _ HMDD Dataset: 
AUROC=0.9755±0.0022; HMDAD 
Dataset: AUROC=0.9654±0.0160; 
LncRNADisease: 
AUROC=0.9810±0.0043

Wu et al., 2022 
[137]

Wu et al. 
Disease-lncRNA 
Dataset, Wu et al. 
Disease-miRNA 
Dataset

Transformer _ Disease-lncRNA Dataset: 
AUROC=0.8748; Disease-miRNA 
Dataset: AUROC=0.8797

Li et al., 2024 
[155]

Lan et al. 
Dataset 1, Lan 
et al. Dataset 2, 
Lan et al. 
Dataset 3, Lan 
et al. Dataset 4, 
Lan et al. 
Dataset 5, Wu et 
al. Dataset 2, Li 
et al. Dataset 1, 
Li et al. Dataset 
2

Sparse Quality 
Control (SQC)

MLP Lan et al. Dataset 1: 
AUROC=0.9569, AUPRC=0.2451; 
Lan et al. Dataset 2: 
AUROC=0.9057, AUPRC=0.2027; 
Lan et al. Dataset 3: 
AUROC=0.9495, AUPRC=0.3217; 
Lan et al. Dataset 4: 
AUROC=0.9409, AUPRC=0.5360; 
Lan et al. Dataset 5: 
AUROC=0.8644, AUPRC=0.0062; 
Wu et al. Dataset 2: 
AUROC=0.7543, AUPRC=0.0130; 
Li et al. Dataset 1: 
AUROC=0.9491, AUPRC=0.0591; 
Li et al. Dataset 2: 
AUROC=0.9384, AUPRC=0.2759

Wu et al., 2023 
[133]

Wu et al. 
Dataset 1, Wu et 
al. Dataset 2, 
Wu et al. 
Dataset 3

Transformer _ Wu et al. Dataset 1: 
AUROC=0.9213, AUPRC=0.0302; 
Wu et al. Dataset 2: 
AUROC=0.7149, AUPRC=0.0081; 
Wu et al. Dataset 3: 
AUROC=0.8398, AUPRC=0.0520

Ma et al., 2023 
[138]

Ma et al. Dataset 
2

Transformer _ AUROC=95.44

Kang et al., 2023 
[160]

Kang et al. 
Dataset 1, Kang 
et al. Dataset 2

GAT MLP Kang et al. Dataset 1: 
AUROC=0.9461, Recall=0.9475; 
Kange et al. Dataset 2: 
AUROC=0.9415, Recall=0.9423

(continued on next page)
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Table 8 (continued)

Task Type Task Name Author, Year Dataset Representation 
Learning

Classifier Performance Evaluation

Liu et al., 2023 
[159]

CircR2Disease 
Dataset, 
circRNADisease 
Dataset, 
Circ2Disease 
Dataset, circAtlas 
Dataset

GCN MLP CircR2Disease Dataset: 
AUROC=0.9877, AUPRC=0.9892, 
F1-score=0.9878; circRNADisease 
Dataset: AUROC=0.9743, 
AUPRC=0.9851, F1-score=0.9736; 
Circ2Disease Dataset: 
AUROC=0.9799, AUPRC=0.9830, 
F1-score=0.9799; circAtlas Dataset: 
AUROC=0.9587, AUPRC=0.9787, 
F1-score=0.9568

Fu et al., 2023 
[161]

Fu et al. Dataset 
2, Fu et al. 
Dataset 3

Heterogenous GCN CNN Fu et al. Dataset 2: Acc=0.9477, 
Precision=0.9423, Sn=0.9521, 
F1-score=0.9470, MCC=0.9018; Fu 
et al. Dataset 3: AUROC=0.9032, 
AUPRC=0.9123, Acc=0.8582, 
Sn=0.8335, F1-score=0.8523, 
MCC=0.7579

Lu et al., 2022 
[285]

Lu et al. Dataset 
3

Heterogeneous 
Graph Transformer

_ AUROC=0.886, AUPRC=0.817, 
Acc=0.824, Precision=0.808, 
Recall=0.814, F1-score=0.804

Xiao et al., 2021 
[257]

Xiao et al. 
Dataset

DeepWalk Adaptive 
Subspace 
Learning Model

AUROC=0.926±0.015, 
AUPRC=0.284±0.013, 
Precision=0.381±0.063, 
Recall=0.285±0.018, 
Acc=0.997±0.001, 
F1-score=0.326±0.040

Yao et al., 2024 
[135]

Fu et al. Dataset 
1, Zhou et al. 
Dataset, Li et al. 
Dataset 3

Transformer _ Fu et al. Dataset 1: 
AUROC=0.9739, AUPRC=0.9812, 
Acc=0.9726, F1-score=0.9693, 
MCC=0.9461; Zhou et al. Dataset: 
AUROC=0.9642, AUPRC=0.9616, 
Acc=0.9196, F1-score=0.9204, 
MCC=0.8379; Li et al. Dataset: 
AUROC=0.9681, AUPRC=0.9623, 
Acc=0.9203, F1-score=0.9289, 
MCC=0.8605

Li et al., 2024 
[136]

Li et al. D2 
Dataset, Li et al. 
D3 Dataset

Transformer _ Li et al. D2 Dataset: 
AUROC=0.9630, AUPRC=0.9624, 
F1-score=0.9177, Acc=0.9170, 
Recall=0.9258, Sp=0.9083, 
Precision=0.9103; Li et al. D3 
Dataset: UROC=0.9419, 
AUPRC=0.9437, 
F1-score=0.8746, Acc=0.8724, 
Recall=0.8899, Sp=0.8548, 
Precision=0.8601

Yao et al., 2024 
[162]

Yao et al. Dataset GAT CatBoost + ET 
+ LightGBM + 
RF + XGBoost + 
LR

AUROC=0.9907, AUPRC=0.9927, 
MCC=0.9249, F1-score=0.9631, 
Acc=0.9624

Chen et al., 2024 
[163]

Chen et al. 
Dataset 1, Chen 
et al. Dataset 2

GCN SVM + GBDT + 
AdaBoost + 
XGBoost + RF + 
MLP

Chen et al. Dataset 1: 
AUROC=0.8015; Chen et al. Dataset 
2: AUROC=0.8276

RNA interaction prediction. A combined potential of Word2vec and variational graph autoencoder based representation learning is 
explored with DNN classifier for coding RNA-protein interaction prediction [185]. Similarly, Word2vec is used in conjunction with 
nucleotide composition encoder along with LogR classifier for protein-RNA binding sites prediction [177]. Among all Word2vec 
based predictive pipelines, Word2vec and AdaBoost classifier based predictive pipeline demonstrates state-of-the-art performance 
for non-coding RNA interaction prediction [187]. Second most commonly used representation learning approach is BERT and its 
potential is explored with a self classifier [174], CNN [173] and BiLSTM [176] classifier for protein-RNA binding sites prediction. 
Moreover, BERT based representation learning is used with GBDT [280]and XGBoost [183] classifiers for non-coding RNA interaction 
prediction. However, BERT based any predictive pipeline does not achieve state-of-the-art performance across any of 4 tasks in 
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Table 8 (continued)

Task Type Task Name Author, Year Dataset Representation 
Learning

Classifier Performance Evaluation

Zhou et al., 
2024 [157]

lncRNADisease 
Dataset, MNDR 
Dataset

SVD AdaBoost-CNN 
+ LightGBM

lncRNADisease Dataset: 
Precision=0.8980 + 0.0306, 
Recall=0.7709 + 0.0622, 
Acc=0.8444 + 0.0445, 
F1-score=0.8278 + 0.0363, 
AUROC=0.9328 + 0.0243, 
AUPRC=0.9304 + 0.0252; MNDR 
Dataset: 
Precision=0.9494 + 0.0172, 
Recall=0.8436 + 0.0513, 
Acc=0.8989 + 0.0317, 
F1-score=0.8925 + 0.0307, 
AUROC=0.9675 + 0.0147, 
AUPRC=0.9709 + 0.0106

Wang et al., 
2024 [164]

Wang et al. 
Dataset 1

GCN ET AUROC=0.9916, AUPRC=0.9951

Lu et al., 2023 
[156]

Lu et al. Dataset 
1, Lu et al., 
Dataset 2, 
Zhang et al. 
Dataset

k-mer 
Composition

GCN Lu et al. Dataset 1: 
AUROC=0.95919, 
AUPRC=0.96059; Lu et al. Dataset 
2: AUROC=0.94037, 
AUPRC=0.91658; Zhang et al. 
Dataset: AUROC=0.9505, 
AUPRC=0.94740

Zhang et al., 
2023 [158]

Li et al. Dataset 
4, Ma et al. 
Dataset 1, Xia et 
al. Dataset

Stacked Auto 
Encoder

CNN Li et al. Dataset 4: 
AUROC=0.8863, AUPRC=0.9079; 
Ma et al. Dataset: AUROC=0.9013, 
AUPRC=0.9182; Xia et al. Dataset: 
AUROC=0.7629, AUPRC=0.8027

Shi et al., 2022 
[248]

Fu et al. Dataset Word2Vec BiLSTM AUROC=0.9786, AUPRC=0.8891

Madhavan et al., 
2022 [262]

Madhavan et al. 
Dataset

Node2Vec Neural Network 
Regression 
Model

AUROC=0.96, AUPRC=0.967

Awn et al., 2022 
[139]

Awn et al. 
Dataset

BERT _ F1-score=0.9072, 
Precision=0.8410, Recall=0.9848, 
AUROC=0.9548

Liang et al., 2022 
[165]

Liang et al. 
Dataset

GCN XGBoost + 
LightGBM + RF 
+ ET + 
CatBoost

Acc=0.9395, Sn=0.9192, 
Sp=0.9626, Precision=0.9654, 
F1-score=0.9417, MCC=0.88

Duan et al., 2021 
[144]

Duan et al. DS1 
Dataset, Duan et 
al. DS2 Dataset, 
Duan et al. DS3 
Dataset

Graph2Vec GBDT + LR DS1 Dataset: Acc=0.928, 
Recall=0.920, F1-score=0.927, 
MCC=0.858, AUROC=0.975; DS2 
Dataset: Acc=0.934, Recall=0.928, 
F1-score=0.934, MCC=0.870, 
AUROC=0.982; DS3 Dataset: 
Acc=0.887, Recall=0.871, 
F1-score=0.885, MCC=0.777, 
AUROC=0.961

Li et al., 2021 
[259]

Li et al. Dataset SVD + Node2Vec XGBoost Acc=0.9460, MCC=0.8922

Xie et al., 2021 
[261]

Fu et al. Dataset Node2Vec LogR AUROC=0.975

Zhou et al., 2021 
[258]

Zhou et al. 
Dataset

HOPE Rotation Forest 
Model

AUROC=0.8328±0.0236

Liu et al., 2020 
[249]

Liu et al. Dataset Word2Vec Matrix. 
Factorization + 
MLP

5-fold Cross-Validation: 
AUROC=0.904±0.003; 
Leave-one-out Cross-validation: 
AUROC=0.918±0.002

(continued on next page)
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Table 8 (continued)

Task Type Task Name Author, Year Dataset Representation 
Learning

Classifier Performance Evaluation

Interaction Micro RNA 
Target 
Prediction

Zhang et al., 
2024 [239]

Pla et al. miRAW 
Dataset

BERT _ F1-score=0.81, Acc=0.77

Yang et al., 
2024 [238]

miRAW Dataset, 
DeepMirTar 
Dataset, 
deepTargetPro 
Dataset

_ CNN miRAW: Acc=95.71, Sn=94.08, 
Sp=97.42, PPV=97.44, 
NPV=94.03, F1-score=95.73; 
DeepMirTar: Acc=81.25, 
Sn=81.25; deepTargetPro: 
Acc=79.97, Sn=78.56, Sp=81.29, 
PPV=79.67, NPV=80.25, 
F1-score=79.11

Przybyszewski 
et al., 2023 
[240]

miTAR Dataset: 
1. miRAW, 2. 
DeepMirTar, 3. 
MirTarRaw

Word2Vec GNN DeepMirTar Dataset: Acc=0.922, 
Precision=0.923, Recall=0.922; 
MiRAW Dataset: Acc=0.948, 
Precision=0.949, Recall=0.948; 
MirTarRaw Dataset: Acc=0.921, 
Precision=0.921, Recall= 0.921

Sun et al., 2022 
[253]

Mock Dataset, 
Experimental 
Data

Word2Vec BiLSTM Mock Dataset: Acc=96.86, 
Sn=96.97, Sp=96.75, 
F1-score=96.91; Experimental Data: 
Acc=96.04, Sn=95.65, Sp=96.44, 
F1-score=96.09

Interaction Small 
Interfering 
RNA Target 
Prediction

Xu et al., 2024 
[241]

Huesken et al. 
Dataset, 
Reynold et al. 
Dataset + Katoh 
et al. Dataset, 
Xu et al. Dataset 
1, Xu et al. 
Dataset 2, Xu et 
al. Dataset 3

BERT _ Huesken Train Dataset: PCC= 
0.636; Reynold et al. Dataset + 
Katoh et al. Dataset: PCC=0.611, 
SRCC=0.639; Xu et al. Dataset 1: 
PCC=0.57; Xu et al. Dataset 2: 
PCC=0.595; Xu et al. Dataset 3: 
PCC=0.669

this goal. Apart from Word2vec and BERT, Transformer with a self-classifier achieves state-of-the-art performance for protein-RNA 
binding affinity prediction [182]. Similarly, combined potential of ELMo and ESM-1b representation learning approach along with 
XGBoost classifier manages to achieve state-of-the-art performance for protein-RNA binding sites identification [172]. In addition, 
Struc2vec representation learning approach is employed with CatBoost classifier for non-coding RNA interaction prediction [186]. 
Furthermore, Node2vec is utilized with GNN classifier [166,260], HIN2vec is used with SVM classifier [169], and nucleotide frequency 
and density based representation learning is used with GCN classifier [171] for coding RNA-protein interaction. Overall, among all 
predictive pipelines for coding RNA-protein interaction prediction, nucleotide frequency and density based representation learning 
along with GCN classifier based predictive pipeline manages to achieve state-of-the-art performance [171]. From all 4 tasks, protein-
RNA binding affinity prediction offers some room for improvement. Taking into account the performance trend of other tasks in 
this goal, shallow neural network based word embedding such as Word2vec and hybrid representation learning approach (ELMo + 
ESM-1b) with boosting classifiers namely AdaBoost and XGBoost can raise the predictive performance of this task.

Table 10 provides a holistic overview of 16 different predictive pipelines developed for 8 different tasks classified under the hood 
of 3 distinct goals namely RNA Subcellular Localization Prediction, RNA Sites Prediction, and Gene Analysis.

For RNA subcellular localization prediction, 4 different predictive pipelines are developed that use 4 unique representation learn-
ing approaches namely BERT, Word2vec, GraRep and Transformer with 4 unique classifiers namely BERT-self classifier, ensemble 
(CNN + GRU) classifier, Transformer-self classifier and LSTM classifier. It is important to mention that for RNA subcellular localization 
prediction, overall, 3 different benchmark datasets are used for the development and validation of 4 different predictive pipelines. 
Specifically, 2 studies [16,17] use Liu et al. benchmark dataset [17], whereas, 1 study [19] uses Zeng et al. benchmark dataset. Liu 
et al. [17] and Zeng et al. [19] benchmark datasets contain sequences only related to long non-coding RNA subcellular localization 
prediction. In contrast, 1 study makes use of Asim et al., dataset [18] that has coding and non-coding sequences related to 4 different 
types of RNAs namely miRNA, mRNA, snoRNA, and lncRNA for the task of RNA subcellular localization prediction. Considering the 
direct impact of coding RNA subcellular localization on the production of proteins, and influence of non-coding RNAs in the regula-
tion of protein synthesis, Asim et al. dataset [18] holds greater value as it identifies subcellular compartments of more diverse array 
of RNAs.

Furthermore, for another biological goal namely RNA sites prediction, 3 predictive pipelines are developed. In these predictive 
pipelines, 2 unique representation learning approaches namely BERT [213,214] and Word2vec [215]are used with self-classifier, 
and CNN classifier. BERT with a self classifier achieves state-of-the-art performance for RNA splicing sites prediction [213], and 
Word2vec with CNN classifier achieves state-of-the-art performance for alternative splicing sites prediction [215]. Both splicing sites 
prediction, and alternative splicing sites prediction tasks in this goal offer some room for improvements. Potential of nucleotide 
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Table 9
RNA Interaction Prediction related 4 distinct RNA sequence analysis tasks predictive pipelines performance.

Task Type Task Name Author, Year 
[ref]

Dataset Representation 
Learning

Classifier Performance Evaluation

Interaction Coding 
RNA-
Protein 
Interaction 
Prediction

Wang et al., 
2024 [171]

RPI369 Dataset, 
RPI488 Dataset, 
RPI1446 
Dataset, 
RPI1807 
Dataset, 
RPI2241 
Dataset

k-mer 
Composition + 
DCC + KGap 
Descriptors + 
PseTNC + 
Conjoint Triad + 
GDPC + QSOrder 
Descriptors + DDE 
+ ACC

GCN RPI369: Acc=97.27; RPI488: 
Acc=97.32; RPI1446: Acc=96.54; 
RPI1807: Acc=95.76; RPI2241: 
Acc=94.98

Li et al., 2024 
[167]

Li et al. Dataset 
(DB1, DB2, DB3, 
DB4)

Word2Vec MLP DB1: AUROC=95.51±0.36, 
AUPRC=94.24±0.61, 
Acc=89.95±0.67, 
Precision=87.44±1.00, 
Recall=93.31±0.64, 
F1-score=90.28 ±0.61; DB2: 
AUROC=97.31±0.31, 
AUPRC=96.80±0.47, 
Acc=92.30±0.47, 
Precision=92.12±0.44, 
Recall=92.51±0.94, 
F1-score=92.31±0.49; DB3: 
AUROC=95.47±0.32, 
AUPRC=93.87±0.74, 
Acc=91.02±0.24, 
Precision=87.67±0.66, 
Recall=95.49±0.83, 
F1-score=91.41±0.23; DB4: 
AUROC=96.46±0.34, 
AUPRC=94.91±0.76, 
Acc=92.83±0.28, 
Precision=90.10±0.59, 
Recall=96.23±0.38, 
F1-score=93.06±0.25

Han et al., 2023 
[166]

NPInter2.0 
Dataset, 
RPI7317 
Dataset

Node2Vec GNN NPInter2.0: Sn=98.2±0.2, 
Sp=95.0±0.2, 
Precision=95.1±0.2, 
Acc=96.6±0.1, 
MCC=0.932±0.002; RPI7317: 
Sn=94.5±0.4, Sp=91.3±0.8, 
Precision=92.0±0.3, 
Acc=93.1±0.1, 
MCC=0.863±0.002

Wei et al., 2023 
[169]

Wei et al. Dataset HIN2Vec SVM AUROC=0.97, Acc=0.95, 
Precision=0.932, Recall=0.981, 
Sp= 0.928, MCC=0.9102, 
F1-score= 0.956

Zhao et al., 
2023 [168]

Zhao et al. 
Dataset 1, Zhao 
et al. Dataset 2

VGAE + 
Word2Vec

GAE Dataset 1: AUROC=0.974, 
AUPRC=0.7688, Acc=0.9851, 
F1-score=0.6397, 
Precision=0.4238; Dataset 2: 
AUROC=0.9734, AUPRC=0.9421, 
Acc=0.9305, F1-score=0.8534, 
Precision=0.7871

Shen et al., 2021 
[260]

NPInter2.0 
Dataset, RPI7317 
Dataset, RPI2241 
Dataset, 
RPI38318 
Dataset

Node2Vec GNN NPInter2.0: Acc=93.3, Sn=95.6, 
Sp=91.1, Precision=91.5, 
MCC=0.868; RPI7317: Acc=91.5, 
Sn=92.7, Sp=90.7, Precision=90.7, 
MCC=0.830; RPI2241: Acc=62.6, 
Sn=49.8, Sp=74.8, Precision=67.2, 
MCC=0.270; RPI369: Acc=60.2, 
Sn=61.5, Sp=58.9, Precision=60.0, 
MCC=0.212

(continued on next page)
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Table 9 (continued)

Task Type Task Name Author, Year 
[ref]

Dataset Representation 
Learning

Classifier Performance Evaluation

Yi et al., 2020 
[170]

RPI369 Dataset, 
RPI1807 Dataset, 
RPI488 Dataset

Word2Vec RF RPI369 Dataset: Acc=73.06, 
Sn=75.32, Sp=71.14, 
Precision=72.64, MCC=46.67; 
RPI488 Dataset: Acc=89.92, 
Sn=82.75, Sp=96.72, 
Precision=96.32, MCC=80.59; 
RPI1807 Dataset: Acc=97.10, 
Sn=97.89, Sp=96.14, 
Precision=96.91, MCC=94.13;

Interaction Protein-
RNA 
Binding 
Sites 
Prediction

Yan et al., 2024 
[172]

Yan et al. 
Dataset

ELMo + ESM-1b XGBoost Acc=0.922, Sn=0.926, 
MCC=0.757

Lasantha et al., 
2024 [173]

circRNA 
fragment 
Dataset 2

BERT CNN circRNA fragment Dataset 1: 
AUROC=0.957±0.031

Qiao et al., 
2024 [180]

Qiao et al. 
Dataset 1. 
RBP-120 
Dataset, 
Maticzka et al. 
Dataset 2. 
RBP-24 Dataset

One-hot Encoding CNN + BiLSTM RBP-24 Dataset: AUROC=0.952; 
RBP-120 Dataset: AUROC= 0.874

Liu et al., 2024 
[181]

Liu et al. Dataset Hybrid Nucleotide 
Frequencies + 
Nucleotide Density 
+ Nucleotide 
Chemical Property 
+ diNucleotide 
Physiochemical 
Properties

CNN + BiGRU AUROC=0.9135, Acc=0.8407, 
Precision=0.8398, Recall-0.8444, 
F1-score=0.8407

Cao et al., 2024 
[175]

Cao et al. 
Dataset

Transformer _ AUROC=0.977

Liu et al., 2023 
[177]

Liu et al. 
Dataset

Word2Vec + 
PseTNC + PSTNP 
+ TNC

BiLSTM + LogR AUROC=0.9362

Ma et al., 2023 
[178]

Wang et al. 
Dataset

Word2Vec MLP LIN28A Dataset: 
AUROC=0.9911±0.0016, 
Acc=0.9699±0.0026, 
Precision=0.9715±0.0043, 
Recall=0.9684±0.0044, 
F1-score=0.9699±0.0021

Jin el al., 2023 
[174]

Jin et al. 
Protein Dataset

BERT _ AUROC=0.842, AUPRC= 0.643

Li el al., 2023 
[176]

Jia et al. 
Dataset 1. 37 
circRNA 
Datasets, Zhang 
et al. Dataset 2. 
31 linear RNA 
Dataset

BERT BiLSTM 37 CircRNA Dataset: 
AUROC=0.9385; 31 Linear RNA 
Dataset: AUROC=0.9393

Cao et al., 2023 
[278]

Jia et al. Dataset 
1. 37 circRNA 
Datasets, Zhang 
et al. Dataset 2. 
31 linear RNA 
Dataset

BERT _ 37 CircRNA Dataset: Average 
AUROC=0.931±0.054; 31 Linear 
RNA Dataset: Average 
AUROC=0.931

Du et al., 2022 
[279]

Jia et al. Dataset 
1. 37 circRNA 
Datasets

BERT BiLSTM AUROC=93.68, AUPRC=90.28, 
Acc=86.72, Precision=86.47, 
Recall=87.53, F1-score=86.90
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Table 9 (continued)

Task Type Task Name Author, Year 
[ref]

Dataset Representation 
Learning

Classifier Performance Evaluation

Wang et al., 
2021 [250]

Wang et al. 
Dataset (RBP 
Datasets: 1. 
IGF2BP1, 2. 
IGF2BP3, 3. 
LIN28A, 4. 
LIN28B)

Word2Vec BiLSTM + LSTM LIN28B Dataset: Precision=0.9174, 
Recall=0.8999, F1-score=0.9086, 
Acc=0.9095, AUROC=0.9570

Deng et al., 
2020 [179]

Strazar et al. 
Dataset

Word2Vec CNN + BiLSTM AUROC=0.873

Deng et al., 2019 
[251]

Maticzka et al. 
Dataset 1. 
RBP-24 Dataset, 
Stražar et al. 
Dataset 2. 
RBP-31 Dataset

Word2Vec CNN + BiLSTM RBP-24: AUROC=0.943; RBP-31: 
AUROC=0.873

Pan et al., 2018 
[7]

RBP-24 Dataset Word2Vec CNN AUROC=0.916

Regression Protein-
RNA 
Binding 
Affinity 
Prediction

Shen et al., 
2024 [182]

Shen et al. 
Benchmark 
Dataset

Transformer _ PCC=0.85

Interaction Non-coding 
RNA 
Interaction 
Prediction

Sheng et al., 
2023 [187]

1. Fu et al. 
Dataset, 2. Zhou 
et al. Dataset

Word2Vec 1. Adaboost, 2. 
RF

Fu et al. Dataset: AUROC=0.967, 
AUPRC=0.224; Zhou et al. 
Dataset: AUROC=0.974, 
AUPRC=0.132

Zhao et al., 
2022 [184]

Zhao et al. 
Dataset

Word2Vec GCN Acc=87.09, Precision=87.66, 
Sn=87.03, Sp=87.84, 
MCC=74.18, F1-score=86.99

Guo et al., 2024 
[185]

Wang et al. 
Dataset 1. 
CMI-9905, Liu 
et al. Datasets 
2. CMI-9589, 3. 
CMI-20208

Word2Vec, CAE DNN CMI-9905: AUROC=0.9138, 
AUPRC=0.9088; CMI-9589: 
AUROC=0.9156, AUPRC=0.9086; 
CMI-20208: AUROC=0.9170, 
AUPRC=0.9131

Zhou et al., 2024 
[280]

CMI-9905 
Dataset

BERT GBDT AUROC=0.9143

Wang et al., 
2023 [186]

CMI-753 Dataset Struc2Vec CatBoost CMI-753 Dataset AUROC=0.8187, 
AUPRC=0.8081

Wei et al., 2023 
[183]

CircBank Dataset BERT XGBoost CircBank Dataset: AUROC=0.9463, 
AUPRC=0.9405

physico-chemical properties and occurrence frequency based representation learning approaches along with ensemble machine or 
deep learning classifiers can be explored to enhance the predictive performance on these tasks.

For gene analysis goal, 4 unique representation learning approaches namely Transformer, BERT, k-mer composition and Word2vec 
are used with 6 classifiers namely CNN, RF, BERT-self classifier, NB, Transformer-self classifier and ensemble (SVM + Ridge Regres-
sion) for the development of 9 different predictive pipelines across 5 different tasks. Most commonly used representation learning 
approach is Transformer followed by Word2vec. Transformer is employed with a self classifier for 3 tasks namely spatial gene expres-
sion analysis [231], gene expression prediction [233,277], and cell-specific gene regulatory networks prediction [235]. Among all of 
Transformer based predictive pipelines, Transformer with a self classifier achieves state-of-the-art performance for 2 tasks: spatial gene 
expression analysis [231], and cell-specific gene regulatory networks prediction [235]. Second most commonly used representation 
learning approach Word2vec is used with RF [252], CNN [252] and NB [236] classifiers for 16S rRNA taxonomic classification and 
has achieved state-of-the-art performance with CNN classifier [252]. Apart from Transformer and Word2vec representation learning 
approaches, BERT is used with a self classifier for gene expression prediction task [234]and potential of k-mer composition represen-
tation learning is explored with ensemble (SVM + Ridge Regression) classifier for 16s rRNA gene copy number prediction [237]. From 
5 distinct tasks in gene analysis goal, spatial gene expression analysis, cell specific gene regulatory networks prediction and 16S rRNA 
gene copy number prediction offers room for improvements. Considering performance trends of all predictive pipelines developed 
in this goal, potential of shallow neural network word embeddings namely Word2vec and BERT representation with standalone or 
hybrid deep neural networks can be explored to improve the performance of these tasks.
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Table 10

RNA Subcellular Localization Prediction, RNA Sites Prediction, and Gene Analysis related 8 distinct RNA sequence analysis tasks predictive pipelines performance.

Task Type Task Name Author, Year 
[ref]

Dataset Representation 
Learning

Classifier Performance Evaluation

Goal: RNA Subcellular Localization Prediction

Multi-Class/ 
Multi-Label 
Classifica-
tion

RNA Sub-
cellular 
Localiza-
tion 
Prediction

Zhang et al., 
2024 [16]

Liu et al. Dataset BERT _ Micro AUROC=0.791

Liu et al., 2023 
[17]

Liu et al. Dataset Word2Vec CNN + GRU Acc=0.6256, Macro 
F1-score=0.6091, MCC=0.2378, 
AUROC=0.6599

Zeng et al., 
2023 [19]

Zeng et al. 
Benchmark 
Dataset

Transformer _ Average F1-score=0.719, Micro 
Precision=0.683, Micro 
Recall=0.721, Micro 
F1-score=0.701

Asim et al. 2022 
[18]

Asim et al. 
Dataset 1. Homo 
Sapien a. miRNA 
b. mRNA c. 
snoRNA d. 
lncRNA 2. Mus 
Musculus a. 
miRNA b. mRNA 
c. snoRNA d. 
lncRNA

GraRep LSTM Human miRNA: Average 
Precision=0.86, Acc=0.63, 
Coverage=0.70, Ranking 
Loss=0.11, One error=0.26 mRNA: 
Average Precision=0.77, Acc=0.46, 
Coverage=0.68, Ranking 
Loss=0.23, One error=0.35 
snoRNA: Average Precision=0.83, 
Acc=0.55, Coverage=0.45, Ranking 
Loss=0.17, One error=0.20 lncRNA: 
Average Precision=0.85, Acc=0.55, 
Coverage=0.45, Ranking 
Loss=0.17, One error=0.20 Mouse 
miRNA: Average Precision=0.87, 
Acc=0.69, Coverage=0.50, Ranking 
Loss=0.10, One error=0.28 mRNA: 
Average Precision=0.71, Acc=0.37, 
Coverage=0.87, Ranking 
Loss=0.13, One error=0.40 
snoRNA: Average Precision=0.82, 
Acc=0.56, Coverage=0.29, Ranking 
Loss=0.20, One error=0.20 lncRNA: 
Average Precision=0.77, Acc=0.47, 
Coverage=0.60, Ranking 
Loss=0.18, One error=0.36

Goal: RNA Sites Prediction

Binary Clas-
sification

RNA-
Splicing 
Sites 
Prediction

Chen et al., 
2024 [213]

Chen et al. 
Dataset

BERT _ Zebrafish: F1-score=0.9568 Fruit: 
F1-score=0.9461 Worm: 
F1-score=0.9343 Arabidopsis: 
F1-score=0.9361

Mo et al., 2021 
[214]

Jaganathan et 
al. Datasets: 
1.SpliceAI-2k

BERT _ SpliceAI-2k: Acc=0.97, 
AUPRC=0.99

Binary Clas-
sification

Alternative 
Splicing 
Prediction

Oubounyt et al., 
2018 [215]

Brawand et al. 
Dataset (Brain, 
Heart, Kidney, 
Liver, Testis)

Word2Vec CNN Brain: Low AUROC=93.0±0.4, 
Medium AUROC=73.9±1.5, High 
AUROC=92.8±0.3; Heart: Low 
AUROC=96.1±0.2, Medium 
AUROC=77.3±1.0, High 
AUROC=95.8±0.1; Kidney: Low 
AUROC=96.0±0.9, Medium 
AUROC=80.1±1.3, High 
AUROC=95.8±0.3; Liver: Low 
AUROC=97.1±0.5, Medium 
AUROC=90.9±0.8, High 
AUROC=97.0±0.6; Testis: Low 
AUROC=89.2±0.3, Medium 
AUROC=73.5±0.9, High 
AUROC=89.3±0.5
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Table 10 (continued)

Task Type Task Name Author, Year 
[ref]

Dataset Representation 
Learning

Classifier Performance Evaluation

Goal: Gene Analysis

Interaction Spatial 
Gene 
Expression 
Analysis

Wang et al., 
2024 [231]

scRNA-seq 
Dataset

Transformer _ AUROC=91.30

Binary Clas-
sification

Gene 
Expression 
Prediction

Babjac et al., 
2023 [234]

Babjac et al. 
Dataset

BERT _ AUROC=0.81, Acc=0.62, 
Precision=0.62, Recall=0.62

Khan et al., 2023 
[232]

Khan et al. 
Datasets: 1. 
LUAD Dataset 2. 
LUSC Dataset

_ CNN 1. Acc=0.9984 2. Acc=0.9585

Zhang et al., 
2022 [233]

PBMC scRNA-Seq 
Dataset

Transformer _ TCGA RNA-Seq Dataset: Acc=94.92, 
MCC=0.9469, AUROC=0.9987 
PBMC scRNA-Seq Dataset: 
Acc=90.73, MCC=0.8971, 
AUROC=0.9964

Khan et al., 
2021 [277]

LUAD Dataset Transformer _ Acc=0.9868, AUROC=0.9966, 
Precision=0.9883, 
Recall=0.9883, F1-score=0.9883, 
MCC=0.9617

Binary Clas-
sification

Cell-
Specific 
Gene 
Regulatory 
Networks 
Prediction

Xu et al., 2023 
[235]

Yuan et al. 
Balanced 
Benchmark 
Datasets

Transformer _ AUROC=85.71, AUPRC=85.71

Multi-Class 
Classifica-
tion

16S rRNA 
Gene Copy 
Number 
Prediction

Miao et al., 
2022 [237]

Miao et al. 16S 
rRNA gene 
Dataset

k-mer 
Composition

SVM + Ridge 
Regression

RMSE=0.685, SD=0.0379

Multi-Class 
Classifica-
tion

16S rRNA 
Taxonomic 
Classifica-
tion

Ziemski et al., 
2021 [252]

McDonald et al. 
Greengenes 
Dataset

Word2Vec RF, CNN _

Woloszynek et 
al., 2019 [236]

Woloszynek et 
al. Dataset

Word2Vec NB Acc=0.977, Precision=0.971, 
Recall=0.964, F1-score= 0.968

Table 11 provides performance analysis of 7 distinct sequence analysis tasks classified under the hood of RNA modification 
prediction goal. Overall, for this goal, predictive pipelines have used 12 unique representation learning approaches namely BERT, 
one-hot encoding, SocDim, + Node2vec + GraRep, Word2vec, ELMo, NCP + EIIP, tSNE, nucleotides composition encoders, transformer, 
BiPSTP, GloVe, and nucleotide and physico-chemical properties aware encoder. Along with these representation learning approaches, 
16 unique classifiers including CNN, MLP, FGM, SVM, ElMo-self classifier, BERT-self classifier, LightGBM, Transformer-self classifier, 
ensemble (LSTM + CNN), ensemble (LightGBM + SVM + LR), ensemble (CNN + DNN), ensemble (BiGRU + CNN), RF, XGBoost, BiLSTM, 
and ElasticNet Regression model are used.

For this goal, most commonly used representation learning approach is BERT followed by Word2vec and Transformers. Specifi-
cally BERT is used with BiLSTM classifier for ac4C-Acetylcytidine Modification Prediction [188] and with CNN classifier for 2’-OmU 
Methyluridine Modification Prediction [191]. In addition, BERT is also employed with a self-classifier for two tasks namely 6mA-
methyladenine modification prediction [281] and Methylation modification prediction [193,282,10]. BERT is also used with FGM 
classifier for Methylation modification prediction [193]. Moreover, BERT representation learning is used with ensemble (Light-
GBM + SVM + LogR) for methylguasnosine modification prediction [204]. Among all BERT based predictive pipelines, BERT with 
BiLSTM and CNN classifiers has achieved state-of-the-art performance for ac4C-Acetylcytidine Modification Prediction [188] and 
2’-OmU Methyluridine Modification Prediction [191], respectively. Second most commonly used representation is Word2vec which 
is used with 4 different classifiers namely MLP, CNN, RF and ensemble (LSTM + CNN). Potential of Word2vec representation is ex-
plored with MLP classifier for RNA methylation modification prediction [210], and with CNN classifier for 5mC-methyl cytosine 
[207] and 6mA-methyl adenine modification prediction [199]. Also, Word2vec is used with RF classifier for 6mA-methyl adenine 
modification prediction [197] and with hybrid (LSTM + CNN) classifier for methyl guanosine modification prediction [205]. Overall, 
among all Word2vec based predictive pipelines, Word2vec representation learning along with RF classifier has achieved state-of-
the-art performance for 6mA-methyl adenine modification prediction [197]. In addition, Transformer is used with a self classifier 
for 3 different tasks namely 6mA-methyl adenine modification prediction [195], RNA methylation modification [209], and methyl-
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Table 11

RNA Modification Prediction related 7 distinct RNA sequence analysis tasks predictive pipelines performance.

Task Type Task Name Author, Year 
[ref]

Dataset Representation 
Learning

Classifier Performance Evaluation

Binary Clas-
sification

ac4C-
Acetylcytidine 
Modification 
Prediction

Li et al., 2024 
[188]

Wang et al. 
Dataset 
(Balanced and 
Unbalanced)

BERT BiLSTM Balanced Dataset: Sn=79.22, 
Sp=84.36, Acc=81.79, 
MCC=0.6368, AUROC=0.8749; 
Unbalanced Dataset: Sn=80.94, 
Sp=84.8, Acc=82.87, 
MCC=0.6579, AUROC=0.8951

Binary Clas-
sification

5mU-
Methyluridine 
Modification 
Prediction

Alam et al., 
2024 [190]

GSE78040 
Dataset, 
GSE63753 
Dataset

One-hot Encoding CNN GSE78040 Dataset: Acc=91.26; 
GSE63753 Dataset: Acc=95.63

Xu et al., 2023 
[189]

Jiang et al. 
Dataset

SocDim + 
Node2Vec + 
GraRep

XGBoost Sn=93.56, Sp=93.90, Acc=93.73, 
MCC=0.875, AUROC=0.984

Binary Clas-
sification

2’-OmU 
Methyluridine 
Modification 
Prediction

Soylu et al., 
2023 [191]

Human Dataset, 
S.cerevisiae 
Dataset, 
M.musculus 
Dataset

BERT CNN Human Dataset: Acc=99.15, 
AUROC=0.99; M. musculus 
Dataset: Acc=94.35, 
AUROC=0.94; S. cerevisiae 
Dataset: Acc=97, AUROC=0.98

Binary Clas-
sification

6mA-Methyl-
adenosine 
Modification 
Prediction

Ye et al., 2024 
[197]

Zhang et al. 
Dataset

Word2Vec RF _

Li et al., 2024 
[254]

Human Dataset ELMo _ Acc=0.872, MCC=0.745, 
Sn=0.873, Sp=0.870

Tu et al., 2024 
[200]

Tu et al. Dataset NCP, EIIP SVM Cross-Validation: Sn=0.795, 
Sp=0.789, Acc=0.792, 
MCC=0.584, AUROC=0.871; 
Independent Test: Sn=0.806, 
Sp=0.796, Acc=0.801, 
MCC=0.603, AUROC=0.879

Jiang et al., 2024 
[202]

Song et al. 
Dataset

tSNE Elastic Net 
Regression 
Model

Average R2=0.49, Median 
R2=0.486

Wang et al., 
2024 [201]

Wang et al. 
Dataset

One-hot Encoding CNN AUROC=77.13

guanosine modification prediction [203] and has achieved state-of-the-art performance for methylguanosine modification prediction 
[203]. In addition, ELMo is used with a self classifier and DiNucleotide based representation learning is employed with ensemble (Bi-
GRU + CNN) classifier for 6mA-methyl adenine modification prediction [255], whereas GLoVe is used with CNN for RNA methylation 
modification prediction [211]. Beyond word embeddings and language models, BiPSTP representation learning is used with SVM for 
methylation modification prediction [212], one-hot encoding is used with ensemble (CNN + DNN) classifier for methylguanosine mod-
ification prediction [206], and combined potential of DNC and TNC representation learning is used with LightGBM for 5mC-methyl 
cytosine modification prediction [208], respectively. Overall, among all predictive pipelines, BIPSTP with SVM classifier has achieved 
state-of-the-art performance for RNA methyaltion modification prediction [212]. Similarly, combined potential of DNC and TNC with 
LightGBM classifier has achieved state-of-the-art performance for 5mC-methyl cytosine modification prediction [208]. From all 9 
different tasks, ac4C-Acetylcytidine Modification Prediction, 5mU-Methyluridine Modification Prediction offer some room for im-
provements. Considering the performance trends for this goal, potential of shallow neural network embedding such as Word2vec and 
graph based transformers along with hybrid deep learning classifiers can enhance the predictive performance of under-performing 
tasks.

Table 12 provides the summary of 16 different predictive pipelines developed for 3 distinct tasks classified under the hood 
of RNA function and structure prediction goal. Overall, 7 unique representation learning approaches namely LINE, RNAformer, 
Transformer, BERT, one-hot encoding, BCM + encoder decoder network, and Word2vec are used for this goal. Along with these repre-
sentation learning approaches, 8 unique classifier including MLP, CNN, RNAformer-self classifier, BERT-self classifier, BiLSTM, GNN, 
Transformer-self classifier and ensemble (CNN + RNN) are used for developing different predictive pipelines.

For this goal, most commonly used representation learning approaches are BERT and transformer followed by Word2vec, LINE 
and RNAformer. Specifically, BERT is used with a self-classifier in 3 predictive pipelines developed for RNA structure prediction 
[226,222,223]. Similarly, Transformer is used with a self classifier in 3 predictive pipelines developed for RNA function prediction 
and structure prediction [217,224,221]. Second most commonly used representation learning approach: Word2vec [228], LINE [219], 
and RNAformer [220], are used with hybrid (CNN + RNN) [228], MLP [219], and a self classifier [220], respectively. In addition, one 
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Table 11 (continued)

Task Type Task Name Author, Year 
[ref]

Dataset Representation 
Learning

Classifier Performance Evaluation

Huang et al. 
2024 [196]

Dao et al. 
Dataset (Human 
Brain Dataset, 
Human Liver 
Dataset, Human 
Kidney Dataset, 
Mouse Brain 
Dataset, Mouse 
Liver Dataset, 
Mouse Kidney 
Dataset, Rat 
Brain Dataset, 
Rat Liver 
Dataset, Rat 
Kidney Dataset, 
Rat Heart 
Dataset, Rat 
Testis Dataset)

diNucleotides 
One-hot Encoding 
+ NPC

BiGRU + 
CNN

5-fold Cross-Validation h-b: 
Acc=0.7499, Sn=0.8108, 
Sp=0.6882, MCC=0.503, 
AUROC=0.8252; h-k: 
Acc=0.8131, Sn=0.8585, 
Sp=0.7678, MCC=0.6287, 
AUROC=0.8889; h-l: Acc=0.8238, 
Sn=0.8414, Sp=0.8065, 
MCC=0.6488, AUROC=0.893; 
m-b: Acc=0.7998, Sn=0.8451, 
Sp=0.7543, MCC=0.6021, 
AUROC=0.8821; m-h: 
Acc=0.7647, Sn=0.8366, 
Sp=0.692, MCC=0.5364, 
AUROC=0.8335; m-k: 
Acc=0.8263, Sn=0.8555, 
Sp=0.7967, MCC=0.6543, 
AUROC=0.9001; m-l: 
Acc=0.7361, Sn=0.8132, 
Sp=0.6577, MCC=0.4783, 
AUROC=0.8087; m-t: 
Acc=0.7719, Sn=0.8373, 
Sp=0.7053, MCC=0.5492, 
AUROC=0.8498; r-b: Acc=0.79, 
Sn=0.8145, Sp=0.7652, 
MCC=0.5811, AUROC=0.8607; 
r-k: Acc=0.8388, Sn=0.8448, 
Sp=0.8331, MCC=0.678, 
AUROC=0.9107; r-l: Acc=0.8246, 
Sn=0.855, Sp=0.7935, 
MCC=0.6503, AUROC=0.8888; 
Independent Test h-b: 
Acc=0.7510, Sn=0.8082, 
Sp=0.6937, MCC=0.5053, 
AUROC=0.8300; h-k: 
Acc=0.8093, Sn=0.8231, 
Sp=0.7955, MCC=0.6189, 
AUROC=0.8885; h-l: Acc=0.8153, 
Sn=0.8383, Sp=0.7923, 
MCC=0.6313, AUROC=0.8907; 
m-b: Acc=0.7989, Sn=0.8510, 
Sp=0.7468, MCC=0.6010, 
AUROC=0.8835; m-h: 
Acc=0.7605, Sn=0.8623, 
Sp=0.6586, MCC=0.5321, 
AUROC=0.8384; m-k: 
Acc=0.8163, Sn=0.8016, 
Sp=0.8310, MCC=0.6329, 
AUROC=0.8961; m-l: 
Acc=0.7334, Sn=0.8224, 
Sp=0.6443, MCC=0.4743, 
AUROC=0.8094; m-t: 
Acc=0.7850, Sn=0.8198, 
Sp=0.7501, MCC=0.5713, 
AUROC=0.8629; r-b: Acc=0.7850, 
Sn=0.7733, Sp=0.7967, 
MCC=0.5701, AUROC=0.8647; 
r-k: Acc=0.8403, Sn=0.8622, 
Sp=0.8185, MCC=0.6813, 
AUROC=0.9154; r-l: Acc=0.8184, 
Sn=0.8314, Sp=0.8053, 
MCC=0.6370, AUROC=0.8956

(continued on next page)
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Table 11 (continued)

Task Type Task Name Author, Year 
[ref]

Dataset Representation 
Learning

Classifier Performance Evaluation

Li et al., 2023 
[281]

Human Brain 
Dataset, Human 
Liver Dataset, 
Human Kidney 
Dataset, Mouse 
Brain Dataset, 
Mouse Liver 
Dataset, Mouse 
Kidney Dataset, 
Rat Brain 
Dataset, Rat 
Liver Dataset, 
Rat Kidney 
Dataset, Rat 
Heart Dataset, 
Rat Testis 
Dataset

BERT _ H_b Dataset: Acc=0.747, Sn=0.812, 
Sp=0.681, MCC=0.498, 
AUROC=0.827; 𝐻_𝑘 Dataset: 
Acc=0.806, Sn=0.838, Sp=0.775, 
MCC=0.614, AUROC=0.888; 𝐻_𝑙
Dataset: Acc=0.815, Sn=0.857, 
Sp=0.773, MCC=0.632, 
AUROC=0.89; 𝑀_𝑏 Dataset: 
Acc=0.792, Sn=0.806, Sp=0.775, 
MCC=0.582, AUROC=0.876; 𝑀_ℎ
Dataset: Acc=0.757, Sn=0.831, 
Sp=0.684, MCC=0.521, 
AUROC=0.835; 𝑀_𝑘 Dataset: 
Acc=0.819, Sn=0.814, Sp=0.824, 
MCC=0.638, AUROC=0.898; 𝑀_𝑙
Dataset: Acc=0.736, Sn=0.786, 
Sp=0.686, MCC=0.474, 
AUROC=0.816; 𝑀_𝑡 Dataset: 
Acc=0.78, Sn=0.772, Sp=0.789, 
MCC=0.561, AUROC=0.867; 𝑅_𝑏
Dataset: Acc=0.783, Sn=0.773, 
Sp=0.793, MCC=0.566, 
AUROC=0.866; 𝑅_𝑘 Dataset: 
Acc=0.838, Sn=0.848, Sp=0.828, 
MCC=0.676, AUROC=0.914; 𝑅_𝑙
Dataset: Acc=0.82, Sn=0.844, 
Sp=0.796, MCC=0.64, 
AUROC=0.903

Xiang et al., 
2023 [195]

Wan et al. A101 
Dataset

Transformer _ Acc=0.8434, MCC=0.6867, 
Sn=0.8488, Sp=0.8377

Fan et al., 2022 
[255]

Human Dataset ELMo _ Sn=0.8876, Sp=0.8779, 
Acc=0.8828, MCC=0.7663, 
AUROC=0.9541

Nazari et al., 
2019 [198]

Chen et al. 
Dataset (S51, 
H41), 
Dominissini et 
al. Dataset 
(M41)

Word2Vec CNN S51 Dataset: Acc=75.38, 
Sn=76.15, Sp=74.62, 
MCC=0.5078; M4 Dataset: 
Acc=89.51, Sn=78.87, Sp=100.0, 
MCC=0.8079; H41 Dataset: 
Acc=91.11, Sn=82.14, Sp=100.0, 
MCC=0.8354

Zou et al., 2019 
[199]

Zhou et al. 
Dataset

Word2Vec CNN AUROC=0.841, AUPRC=0.980

Binary Clas-
sification

7mG-Methyl-
guanosine 
Modification 
Prediction

Zhang el al., 
2024 [203]

Zhang et al. 
Dataset 
(Benchmark, 
Independent)

Transformer _ Benchmark Dataset: Acc=98.70; 
Independent Dataset: Acc=92.92

Zhang et al., 
2023 [206]

Chen et al. 
Dataset

One-hot Encoding CNN + 
DNN

Acc=92.6, F1-score=91.1, 
Recall=92.8, Precision=91.4, 
MCC=0.852, AUROC=0.968, 
AUPRC=0.969

Tahir et al., 2022 
[205]

Chen et al. 
Dataset

Word2Vec LSTM + 
CNN

Acc=95.95, Sp=95.94, Sn=95.97, 
MCC=0.919

Zhang el al., 
2021 [204]

Dai et al. Dataset BERT LightGBM 
+ SVM + 
LR

Sn=95.8, Sp=95.1, Acc=95.5, 
MCC=0.910

Binary Clas-
sification

5mC-Methyl-
cytosine 
Modification 
Prediction

Kurata et al., 
2024 [208]

Kurata et al. 
Dataset

DNC + TNC + 
RCk-mer + 
CKSNAP + PseEIIP

LightGBM MCC=0.841, Acc=0.92, 
AUROC=0.971

Hasan et al., 
2022 [207]

Hasan et al. 
Dataset

Word2Vec CNN MCC=0.691, Acc=0.852
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Table 11 (continued)

Task Type Task Name Author, Year 
[ref]

Dataset Representation 
Learning

Classifier Performance Evaluation

Binary Clas-
sification

Methylation 
Modification 
Prediction

Human Dataset Human Dataset Bidirectional 
position-specific 
trinucleotide 
propensities 
(BiPSTP)

SVM NmH2: Acc=0.981, Sn=1.000, 
Sp=0.974, MCC=0.956, 
AUROC=1.000; AID: Acc=0.960, 
Sn=0.937, Sp=0.983, MCC=0.921, 
AUROC=0.986; m5CA1: 
Acc=1.000, Sn=1.000, Sp=1.000, 
MCC=1.000, AUROC=1.000; 
m5CA2: Acc=0.920, Sn=0.912, 
Sp=0.928, MCC=0.840, 
AUROC=0.976; m5UH1: 
Acc=0.938, Sn=0.944, Sp=0.932, 
MCC=0.877, AUROC=0.983; 
m5UH2: Acc=0.982, Sn=0.988, 
Sp=0.976, MCC=0.963, 
AUROC=0.996; ΨS: Acc=1.000, 
Sn=1.000, Sp=1.000, MCC=1.000, 
AUROC=1.000; ΨH: Acc=0.995, 
Sn=1.000, Sp=0.990, MCC=0.990, 
AUROC=0.999; m6AmH1: 
Acc=0.977, Sn=0.983, Sp=0.972, 
MCC=0.955, AUROC=0.997; 
m7GH1: Acc=0.965, Sn=0.620, 
Sp=1.000, MCC=0.773, 
AUROC=0.993; m7GH2: 
Acc=0.928, Sn=0.919, Sp=0.937, 
MCC=0.857, AUROC=0.980; 
m6AA: Acc=0.986, Sn=0.990, 
Sp=0.982, MCC=0.973, 
AUROC=0.998; m6AS1: Acc=0.806, 
Sn=0.669, Sp=0.820, MCC=0.337, 
AUROC=0.845; m6AH: Acc=0.826, 
Sn=0.842, Sp=0.809, MCC=0.652, 
AUROC=0.901

(continued on next page)

hot encoding representation learning is used with MLP classifier [229] and combine potential of BCM and encoder decoder network 
is explored with CNN classifier [230] for RNA structure prediction. Overall, LINE representation learning with MLP classifier has 
achieved state-of-the-art performance for non-coding RNA function prediction while RNAformer with a self classifier has achieved 
state-of-the-art performance for RNA structure prediction. From all tasks of this goal, non-coding RNA function prediction has some 
room for improvement. Considering the performance trends in this goal, potential of large language models namely RNAformer, Trans-
former, and BERT with their own classifiers or separate deep learning classifiers can enhance the performance of under-performing 
task.

Table 13 provides a high-level overview of 6 different predictive pipelines developed for 3 distinct tasks classified under the hood 
of 2 different categories namely RNA special characteristics analysis and RNA single cell analysis.

For RNA special characteristics analysis goal, RNA sequence analysis tasks mostly belongs to regression. 2 transformer based 
predictive pipelines with a self-classier are used for mRNA degradation prediction [26], and RNA-Seq coverage prediction [27] and 
have achieved state-of-the-art performance. Considering the room for performance improvement in both tasks, potential of word 
embedding, physico-chemical properties and occurrence frequencies aware representation learning approaches can be explored with 
deep learning predictors.

Furthermore, for single-cell analysis goal, researchers have developed 4 different predictive pipelines using 3 unique representa-
tion learning approaches namely BERT, GPT, and non-negative matrix factorization (NNMF) and 4 unique classifiers namely kNN, 
BERT-self classifier, GPT-self classifier and 1 clustering algorithm for 3 different tasks. Most commonly used representation learning 
approach is BERT which is employed with kNN [283] and a self classifier [284] for single-cell RNA-Seq cell type detection. Both 
BERT based predictive pipelines achieved state-of-the-art performance across 3 benchmark datasets. Apart from BERT, potential of 
non-negative matrix factorization is explored with clustering algorithm for single-cell multi-omics cell type detection across 5 differ-
ent benchmark datasets [180]. In addition, Cui et al., [242] explored the potential of GPT representation with a self classifier for 3 
tasks namely cell type detection, scRNA-seq cell type detection, and scMultiomic cell type detection. Moreover, GPT based predictive 
pipeline manages to achieve top performing values across 9 different dataset for all 3 task. It is imperative to understand that single-
cell RNA-seq and single-cell multi-omics analysis encompasses a multitude of diverse tasks. Consequently, this domain inherently 
possesses substantial room for enhancement. An in-depth analysis of all these studies uncovers that physico-chemical properties and 
occurrence frequencies based representation learning approaches along with ensemble classifiers, can enhance performance in this 
domain.
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Table 11 (continued)

Task Type Task Name Author, Year 
[ref]

Dataset Representation 
Learning

Classifier Performance Evaluation

Wang et al., 
2024 [193]

DS_song Dataset 
(m5C, Am, Cm, 
Gm, Um, 
m6Am, 37G, 
AtoI, Psi)

BERT _ m5C: Acc=0.9440 + 0.0331, 
Sn=0.9245 + 0.0416, 
Sp=0.9632 + 0.0253, 
MCC=0.8887 + 0.0657, 
AUROC=0.9827 + 0.0122, 
F1-score=0.9422 + 0.0346; Am: 
Acc=0.9566 + 0.0294, 
Sn=0.9324 + 0.0497, 
Sp=0.9789 + 0.0121, 
MCC=0.9141 + 0.0575, 
AUROC=0.9815 + 0.0152, 
F1-score=0.9532 + 0.0329; Cm 
Acc=0.9567 + 0.0129, 
Sn=0.9517 + 0.0145, 
Sp=0.9602 + 0.0166, 
MCC=0.9107 + 0.0264, 
AUROC=0.9794 + 0.0072, 
F1-score=0.973 + 0.0153; Gm: 
Acc=0.9784 + 0.0102, 
Sn=0.9669 + 0.0155, 
Sp=0.9873 + 0.0101, 
MCC=0.9562 + 0.0207, 
AUROC=0.9933 + 0.0076, 
F1-score=0.9750 + 0.0118; Um: 
Acc=0.9429 + 0.0260, 
Sn=0.9340 + 0.0272, 
Sp=0.9511 + 0.0316, 
MCC=0.8859 + 0.0520, 
AUROC=0.9789 + 0.0119, 
F1-score=0.9404 + 0.0268; m6Am: 
Acc=0.8923 + 0.0266, 
Sn=0.8339 + 0.0526, 
Sp=0.9550 + 0.0139, 
MCC=0.7927 + 0.0475, 
AUROC=0.9544 + 0.0054, 
F1-score=0.8884 + 0.0304; m7G: 
Acc=0.8859 + 0.0579, 
Sn=0.8589 + 0.0607, 
Sp=0.9107 + 0.0684, 
MCC=0.7729 + 0.1167, 
AUROC=0.9373 + 0.0398, 
F1-score=0.8786 + 0.0614; AtoI: 
Acc=0.9230 + 0.0297, 
Sn=0.8693 + 0.0608, 
Sp=0.9631 + 0.0142, 
MCC=0.8437 + 0.0597, 
AUROC=0.9715 + 0.0163, 
F1-score=0.9053 + 0.0394; Psi: 
Acc=0.7522 + 0.0331, 
Sn=0.6498 + 0.1207, 
Sp=0.8369 + 0.0940, 
MCC=0.5071 + 0.0604, 
AUROC=0.8492 + 0.0238, 
F1-score=0.6992 + 0.0655

Wang et al., 
2024 [192]

Wang et al. 
Dataset

BERT FGM Sn=0.97, Sp=0.98, AUROC=0.99, 
MCC=0.94

Wang et al., 
2024 [210]

Chen et al. 
Dataset (m6A, 
m1A, m5C, m5U, 
m6Am, m7G, Ψ, 
I, Am, Cm, Gm, 
Um)

Word2Vec MLP m6A: AUROC=98.34; m1A: 
AUROC=85.41; m5C: 
AUROC=97.29; m5U: 
AUROC=96.74; m6Am: 
AUROC=99.04; m7G: 
AUROC=79.94; Ψ: AUROC=76.22; 
I: AUROC=65.69; Am: 
AUROC=92.92; Cm: 
AUROC=92.03; Gm: 
AUROC=95.77; Um: AUROC=89.66
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Task Type Task Name Author, Year 
[ref]

Dataset Representation 
Learning

Classifier Performance Evaluation

Chen et al., 
2023 [209]

DS_song Dataset 
(I)

Transformer _ Sn=0.8000, Sp=0.6200, 
Acc=0.7100, MCC=0.4270

Liang et al., 2023 
[282]

DS_song Dataset 
(m1A, m5U, 
m6Am, Ψ)

BERT _ m1A: Acc=0.9376, MCC=0.8752, 
Sn=0.9406, Sp=0.9345; m5U: 
Acc=0.9662, MCC=0.9323, 
Sn=0.9648, Sp=0.9676; m6A: 
Acc=0.9246, MCC=0.8492, 
Sn=0.9264, Sp=0.9228; Ψ: 
Acc=0.8320, MCC=0.6655, 
Sn=0.7902, Sp=0.8726

Zhang et al., 
2023 [10]

1. Zhang et al. M. 
musculus Dataset 
(m1A, m6A, 
m5C, Ψ); 2. 
Zhang et al. A. 
thaliana Dataset 
(m6A, m5C, Ψ); 
3. Zhang et al. S. 
cerevisiae 
Dataset (m6A, 
m5C, Ψ)

BERT _ 1. M. musculus Dataset: m1A: 
AUROC=1.000, Average 
Precision=1.000; m6A: 
AUROC=0.988, Average 
Precision=0.983; m5C: 
AUROC=0.997, Average 
Precision=0.996; Ψ: 
AUROC=0.840, Average 
Precision=0.832; 2. A. thaliana 
Dataset: m6A: AUROC=0.977, 
Average Precision=0.956; m5C: 
AUROC=0.949, Average 
Precision=0.942; Ψ: 
AUROC=0.830, Average 
Precision=0.825; 3. S. cerevisiae 
Dataset: m6A: AUROC=0.998, 
Average Precision=0.997; m5C: 
AUROC=1.000, Average 
Precision=1.000; Ψ: AUROC=0.732, 
Average Precision=0.775

Wang et al., 
2022 [211]

Chen et al. 
Dataset (m1A 
site), Zou et al. 
Dataset (m6A 
site)

GloVe CNN m1A: AUROC=95.56; m6A: 
AUROC=85.24

In conclusion, comprehensive analysis of advanced predictive pipelines based on word embeddings, language models, and domain-
specific representation learning methods reveals interesting trends. Among 47 RNA sequence analysis tasks classified into 10 main 
biological goals, 26 tasks belong to binary classification tasks, 8 tasks belong to interaction prediction, 5 tasks belong to multi-class 
classification, 1 task belongs to multi-label classification, 4 tasks belong to regression, 1 task belongs to clustering, 1 task namely 
RNA Subcellular localization is performed as multi-class classification task as well as multi-label classification task, and 1 task namely 
Cell Type detection is performed as a clustering task as well as multi-class classification task. In total, 38 distinct representation 
learning methods and 56 predictive algorithms are used to develop robust predictive pipelines for these tasks. Language models-
based representation learning strategies and deep learning classifiers consistently achieve superior performance across majority of 
tasks within these 10 biological goals. Researchers should consider exploring potential of latest transformer-based language models, 
such as hierarchical and heterogeneous Graph transformer, GPT-4, and hybrid representation learning techniques along with advanced 
ensemble machine learning or deep learning predictors for various classification, regression, and clustering tasks.

11. Publisher and journal-wise distribution of research articles

This section provides a comprehensive overview of distribution of 47 RNA sequence analysis studies across various conferences, 
journals, and publishers. Selection of appropriate journals for submission of a study in interdisciplinary field of AI-based RNA sequence 
analysis is a critical step. There are primarily three types of journals relevant to this field: 1) journals dedicated to core AI algorithms, 
2) journals focusing on biological findings, and 3) hybrid journals that integrate both biology and AI algorithms. Researchers often 
encounter desk rejections when submitting to core AI or biological journals due to narrow disciplinary focus of journal. To avoid 
this, researchers should target hybrid journals that bridge both domains. Numerous tools exist for identifying suitable journals. 
However, this comprehensive analysis provides in-depth information to assist researchers in identifying journals that have published 
applications of word embeddings and large language models for RNA sequence analysis.

Fig. 7 illustrates publication landscape of 172 RNA sequence analysis studies across 60 journals, 4 conferences, 2 transactions, 
and 2 pre-print repositories. Among all journals, most number of studies are published in Briefing in Bioinformatics followed by BMC 
Bioinformatics, Bioinformatics, Computational and Structural Biotechnology Journal. Similarly, among all conferences, more studies 
are published in IEEE International Conference on Bioinformatics and Biomedicine (IEEE-BIBM) followed by 2022 IEEE 24𝑡ℎ Inter-
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Table 12

RNA Function and Structure Prediction related 3 distinct RNA sequence analysis tasks predictive pipelines performance.

Task Type Task Name Author, Year Dataset Representation 
Learning

Classifier Performance Evaluation

Multi-label 
Classifica-
tion

Non-coding 
RNA 
Functions 
Prediction

Wang et al., 
2019 [219]

Wang et al. 
Dataset 
miRNA2GO-337

LINE MLP AUROC=0.8696, AUPRC=0.4110, 
F1-score=0.2693

Multi-class 
Classifica-
tion

RNA Structure 
Prediction

Franke et al., 
2024 [220]

Franke et al. 
Dataset (Rfam 
Dataset)

RNAformer _ F1-score=0.725, Precision=0.765, 
Recall=0.707

Penic et al., 
2024 [221]

Szikszai et al. 
Dataset

Transformer _ Mean F1-score=0.72

Gong et al., 2024 
[226]

bpRNA-1m 
Dataset (TR0)

BERT _ Acc=0.460

Zhang et al., 
2024 [222]

Zhang et al. 
Dataset 1

BERT _ F1-score=0.74

Kalicki et al., 
[223]

Kalicki et al. 
Dataset

BERT _ Acc=0.70

Wang et al., 
2023 [224]

Wang et al. 
Dataset (30 
Independent 
RNAs, CASP15)

Transformer _ 30 Independent RNAs: Average 
RMSD=8.5 + 5.7; CASP15: Average 
RMSD=7.4

Qiu et al., 2023 
[229]

Tan et al. Dataset 
(Stralign), Solma 
et al. Dataset 
(ArchiveII)

One-hot Encoding, 
k-mer

MLP _

Chen et al., 
2023 [230]

RNAStralign 
Dataset, Chen et 
al. Dataset 
(ncRNA 
Benchmark)

BCM + Encoder 
Decoder Network

CNN RNAStralign: Acc=0.970, 
Sn=0.974, PPV=0.971, 
F1-score=0.973; ncRNA 
Benchmark: Acc=0.950, 
Sn=0.952, PPV=0.939, 
F1-score=0.946

Fei et al., 2022 
[225]

Rfam, 5SrRNA, 
tRNA, PDB, SPR

_ BiLSTM Rfam: Precision=0.8599, 
Recall=0.7897, F1-score=0.8233; 
5SrRNA: Precision=0.9857, 
Recall=0.9804, F1-score=0.9831; 
tRNA: Precision=0.9985, 
Recall=0.9992, F1-score=0.9988; 
PDB: Precision=0.6695, 
Recall=0.3050, F1-score=0.4190; 
SPR: Precision=0.9929, 
Recall=0.9971, F1-score=0.9950

Wang et al., 
2020 [227]

RNA Stralign 
Datasets (1. 
tRNA, 2. 
5S_rRNA, 3. 
Telomerase, 4. 
tmRNA)

_ CNN tRNA: F1-score=0.966, Positive 
Predictive Value=0.972, Sn=0.961; 
5S_rRNA: F1-score=0.927, Positive 
Predictive Value=0.933, Sn=0.923; 
Telomerase: F1-score=0.816, 
Positive Predictive Value=0.846, 
Sn=0.791; tmRNA: F1-score=0.66, 
Positive Predictive Value=0.686, 
Sn=0.64

Zhao et al., 2021 
[228]

SILVA 16S rRNA 
Dataset

Word2Vec CNN + 
RNN

Acc=0.742±0.001

Multi-Class 
Classifica-
tion

RNA Function 
and Structure 
Prediction

Shulgina et al., 
2024 [216]

23S rRNA 
Sequence 
Dataset, 228 
RNA Sequence 
Dataset

_ GNN _

Yin et al., 2024 
[11]

bpRNA-1m 
Dataset

_ CNN Average Binary F1-score=0.748, 
Macro Average F1-score=0.873, 
Recall=0.867, Precision=0.887

Heliyon 11 (2025) e41488 

58 



M.N. Asim, M.A. Ibrahim, T. Asif et al. 
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Task Type Task Name Author, Year Dataset Representation 
Learning

Classifier Performance Evaluation

Boyd et al., 2023 
[217]

Boyd et al. 
Dataset (PDB, 
ArchiveII), Sato 
et al. Dataset 
(bpRNA-1m TS0)

Transformer _ PDB: F1-score=0.879, PPV=0.891, 
Sn=0.856; bpRNA-1m TS0: 
F1-score=0.564, PPV=0.524, 
Sn=0.653; ArchiveII: 
F1-score=0.636, PPV=0.653, 
Sn=0.628

Chen el al., 2022 
[218]

ArchiveII600 
Dataset, bpRNA 
TS0 Dataset

_ CNN ArchiveII600 Dataset: 
Precision=0.936, Recall=0.951, 
F1-score=0.941; bpRNA TS0 
Dataset: Precision=0.718, 
Recall=0.713, F1-score=0.704

Table 13

RNA special characteristics analysis and single-cell analysis related 3 distinct RNA sequence analysis tasks predictive pipelines performance.

Task Type Task Name Author, Year 
[ref]

Dataset Representation 
Learning

Classifier Performance Evaluation

Goal: RNA special characteristics analysis

Regression mRNA 
Degradation 
Prediction

He et al., 2023 
[26]

NLuc Eterna 
PCC, eGFP, MEV

Transformer _ NLuc Eterna: PCC=-0.655; eGFP: 
PCC=-0.499; MEV: PCC=-0.578

Regression RNA-Seq 
Coverage 
Prediction

Linder et al., 
2023 [27]

Human Samples 
Gene-level

Transformer _ Human Samples: PCC=0.83; 
Gene-level: PCC=0.89

Goal: RNA single-cell analysis

Multi-class 
Classifica-
tion

Cell Type 
Detection

Wan et al., 2024 
[283]

Large cell type 
Alpha, Small cell 
type Delta

BERT KNN Large cell type Alpha: 
H-score=0.838, Acc=0.845; Small 
cell type Delta: H-score=0.826, 
Acc=0.837

Yang et al., 2022 
[284]

Human Cell Atlas 
Dataset

BERT _ F1-score=0.826, Acc=0.840

Qiu et al., 2024 
[243]

Single-Cell 
Multi-omics 
Dataset: Specter 
Dataset, 
10X_10K 
Dataset, SMAGE 
Dataset, Spleen 
Dataset, BMNC 
Dataset

Non-negative 
Matrix 
Factorization

Clustering 
Algorithm

Specter: ACC=0.70, AMI=0.72, 
NMI=0.62, ARI=0.68; 10X_10K: 
ACC=0.82, AMI=0.78, NMI=0.76, 
ARI=0.78; Spleen: ACC=0.69, 
AMI=0.72, NMI=0.71, ARI=0.68; 
BMNC: ACC=0.78, AMI=0.79, 
NMI=0.82, ARI=0.80; SMAGE: 
ACC=0.77, AMI=0.66, NMI=0.67, 
ARI=0.68

Cui et al., 2024 
[242]

1. Cell Type 
Discovery a) 
Myeloid 
Dataset, b) 
Multiple 
Sclerosis 
Dataset, c) 
hPancreas 
Dataset

GPT _ Myeloid Dataset: Acc=0.642, 
Precision=0.366, Recall=0.347, 
Macro F1-score=0.346; Multiple 
Sclerosis Dataset: Acc=0.856, 
Precision=0.729, Recall=0.720, 
Macro F1-score=0.703; hPancreas 
Dataset: Acc=0.968, 
Precision=0.735, Recall=0.725, 
Macro F1-score=0.718

(continued on next page)

national Conference on High Performance Computing & Communications (ICHPC), the 2021 International Conference on Innovative 
Computing (ICIC), and the 14𝑡ℎ ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics 
(BCBHI). Among all Transactions, more studies are published in ACM Transaction on Computational Biology. Considering the fast 
pace of research findings, researchers have also published 15 studies in BioRxiv, and arXIv platforms. Overall, researchers are more 
inclined towards journals publications due to broader dissemination, and lasting impact of their work. Furthermore, Fig. 8 illustrates 
distribution of 172 RNA sequence analysis studies across 21 different publishers including Oxford University Press,8 Springer,9 El-

8 https://academic.oup.com/.
9 https://www.springer.com/in.
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Table 13 (continued)

Task Type Task Name Author, Year 
[ref]

Dataset Representation 
Learning

Classifier Performance Evaluation

Clustering Cell Type 
Detection

Cui et al., 2024 
[242]

1. scRNA-seq 
cell type 
clustering a) 
COVID-19 
Dataset, b) 
PBMC 10K 
Dataset, c) 
Perirhinal 
Cortex; 2. 
scMultiomic 
cell type 
clustering a) 
10X Multiome 
PBMC Dataset, 
b) BMMC 
Dataset, c) 
ASAP PBMC 
Dataset

GPT _ COVID-19 Dataset: Biological 
Conservation (Average 
BIO=0.504, NMI=0.659, 
ARI=0.400, ASW=0.452), Batch 
Correction (Average 
BATCH=0.850, ASW=0.826, 
GraphCon=0.874) Overall=0.642; 
PBMC 10K Dataset: Biological 
Conservation (Average 
BIO=0.821, NMI=0.850, 
ARI=0.873, ASW=0.740), Batch 
Correction (Average 
BATCH=0.923, ASW=0.950, 
GraphCon=0.895) Overall=0.862; 
Perirhinal Cortex Dataset: 
Biological Conservation (Average 
BIO=0.899, NMI=0.930, 
ARI=0.919, ASW=0.848), Batch 
Correction (Average 
BATCH=0.930, ASW=0.898, 
GraphCon=0.964) Overall=0.911; 
BMMC Dataset: Biological 
Conservation (Average 
BIO=0.697, NMI=0.783, 
ARI=0.725, ASW=0.582), Batch 
Correction (Average 
BATCH=0.871, ASW=0.834, 
GraphCon=0.908) Overall=0.766; 
ASAP PBMC Dataset: Biological 
Conservation (Average 
BIO=0.587, NMI=0.645, 
ARI=0.469, ASW=0.648), Batch 
Correction (Average 
BATCH=0.951, ASW=0.909, 
GraphCon=0.992) Overall=0.732; 
10X Multiome PBMC Dataset: 
Biological Conservation (Average 
BIO=0.758, NMI=0.807, 
ARI=0.822, ASW=0.645)

sevier,10 IEEE,11 MDPI,12 ACS Publications,13 Frontiers Media SA,14 Frontiers,15 Public Library of Science San Francisco CA USA,16

Nature Publishing Group US New York,17 Nature Publishing Group UK London,18 Taylor & Francis,19 Cold Spring Harbor Lab,20

Hindawi,21 Hindawi Limited,22 PeerJ Inc.,23 ASBMB,24 Pre-print,25 AIMS,26 Stanford Project,27 and ACM.28 Notably, 113 out of 172 
RNA sequence analysis articles have been published by Oxford University Press, Springer, Elsevier, and IEEE. Additionally, MDPI, 
Frontiers Media SA, Nature Publishing Group US New York, and Cold Spring Harbor Lab have collectively contributed 32 relevant 

10 https://www.elsevier.com/.
11 https://www.ieee.org/.
12 https://www.mdpi.com/.
13 https://pubs.acs.org/.
14 https://research.monash.edu/en/activities/frontiers-media-sa-publisher.
15 https://www.frontiersin.org/.
16 https://plos.org/.
17 https://www.nature.com/.
18 https://www.iabuk.com/member-directory/nature-publishing-group.
19 https://taylorandfrancis.com/.
20 https://www.cshlpress.com/.
21 https://www.hindawi.com/.
22 https://hindawi.editage.com/.
23 https://peerj.com/.
24 https://www.asbmb.org/.
25 https://arxiv.org/.
26 https://www.aimspress.com/.
27 https://www.sup.org/.
28 https://www.acm.org/publications.
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Fig. 7. Publication Distribution of RNA Sequence Analysis Literature Across Diverse Journals and Conferences. 

Fig. 8. Distribution of Publishers Involved in the Publication of RNA Sequence Analysis Literature. 

articles. Also, 27 RNA sequence analysis articles have appeared in journals published by ACS Publications, Frontiers, Public Library 
of Science San Francisco, CA USA, Nature Publishing Group UK London, Taylor & Francis, Hindawi, Hindawi Limited, PeerJ Inc., AS-
BMB, Pre-print, AIMS, Stanford Project, and ACM. In summary, from 172 RNA sequence analysis studies, 141 are journal studies, 8 are 
conference studies, 8 are transaction studies, and 15 are pre-print studies, published by 21 different publishers. This comprehensive 
analysis across different journals, conferences, transactions, pre-print repositories and published underscores diverse and extensive 
research landscape in RNA sequence analysis.

12. Discussion

The paper in hand performs comprehensive analysis of existing literature having focus on AI applications across 47 distinct RNA 
sequence analysis tasks to provide a detailed overview of benchmark datasets, innovative representation learning methods (word 
embeddings and large language models), machine and deep learning predictors. A thorough analysis of the existing AI-driven RNA 
sequence analysis literature identifies a total of 90 potential databases that have been utilized to create benchmark datasets for 47
unique RNA sequence analysis tasks. Among these databases, only 64 are currently accessible, while 26 are either unavailable or no 
longer exist. Furthermore, 172 AI-driven RNA sequence analysis studies have generated 310 unique datasets to support development 
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of AI predictors for 47 diverse RNA sequence analysis tasks. Among these 310 datasets, 236 are publicly available, while 74 remain 
proprietary or in-house.

Despite the availability of numerous public datasets, a notable inconsistency remains in the evaluation of predictors across the same 
datasets for each RNA sequence analysis task. In the process of new predictors development, most of the researchers are evaluating 
their predictors solely on their newly developed datasets and are overlooking the vast array of existing datasets available in the 
field. Development of new benchmark datasets is a valuable effort since sequences in public databases are updated daily, weekly, or 
monthly. The new datasets contains up-to-date and newly discovered sequences. In addition, most of existing datasets are relatively 
small and deep learning models demonstrate better performance with larger datasets. To address this, there is an urgent need for 
standardized dataset utilization. For a more objective and transparent performance comparison, two approaches can be used: 1) 
Evaluation of new predictors on both existing and new datasets, 2) Benchmark existing predictors performance on new datasets. 
Unfortunately, limited availability of open-source code of existing predictors intensifies this issue and hinders direct performance 
comparison of predictive pipelines. To ensure methodological advancement, it is important to develop task-specific standardized 
datasets and foster open-source practices for predictive pipeline implementations.

Besides datasets standardization, a robust and precise predictor development relies heavily on sophisticated representation learn-
ing methods along with appropriate machine or deep learning algorithms. The role of representation learning methods is key in 
AI-driven RNA sequence analysis predictive pipelines, as raw RNA sequences cannot be directly processed by machine and deep 
learning algorithms. In the realm of AI-driven RNA sequence analysis, researchers have explored potential of various advance rep-
resentation learning methods including 16 word embedding methods and 8 large language models. In addition to these methods, 
potential of other 15 word embedding methods and 12 large language models has been explored in DNA and protein sequence 
analysis fields. However, the potential of these word embedding methods and language models has not been explored yet in RNA 
sequence analysis predictive pipelines. The unexplored word embedding methods include DANE [322], FastText [323,324], GEM-
SEC [325], MetaGraph2Vec [144], HAKE [326], Laplacian eigen maps [327], Locally linear embedding [327], Mashup [328,329], 
OPA2Vec [330], Random Watcher-Walker (RW2) [331], RWR [147], SVD [157,259], Topo2Vec [332], TransE [333], and Graph2vec 
[334]. Moreover, unexplored language models are ALBERT [335–337], AlphaFold [220,338–341], AlphaFold2 [342,343], ELECTRA 
[335,344], ESM-2 [342,345,172,346], Graph Transformer Network [347], IgFold [348], RoBERTa [337,349], T5 [346,350–352], 
Transformer-XL [353], ULMFiT [354,355], Vision Transformer [356], and XLNet [335]. The utilization of additional word embed-
dings methods and large language models for DNA and protein sequences can offer new insights and improved accuracy for AI-driven 
RNA sequence analysis tasks.

In the current landscape of AI-driven RNA sequence analysis predictive pipelines, an analysis at the predictor level algorithms 
indicates that researchers have investigated the potential of 13 machine learning and 9 deep learning algorithms. Overall in 58
different word embedding based predictive pipelines, 13 predictive pipelines have utilized standalone machine learning algorithms, 
and 33 have employed standalone deep learning algorithms. In addition, 2 predictive pipelines are designed by using machine 
learning based algorithms meta predictors, 5 are developed using deep learning based meta predictors and 4 predictive pipelines 
have employed both machine and deep learning based meta predictors are utilized. On the other hand, within 70 large language 
models based predictive pipelines, 53 predictive pipelines have utilized self classifier, 12 are developed by using standalone machine 
learning based algorithm, and 5 are designed by employing deep learning based algorithms. Moreover, 2 language models based 
predictive pipelines have utilized deep learning based meta predictors and 1 has leveraged machine learning based meta predictor.
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