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Abstract
Previous studies have reported that dietary sphingomyelin could inhibit early stages of colon cancer. Lactic acid–producing 
bacteria have also been associated with an amelioration of cancer symptoms. However, little is known about the potential 
beneficial effects of the combined administration of both sphingomyelin and lactic acid–producing bacteria. This article 
analyzes the effect of a diet supplemented with a combination of the probiotics Lacticaseibacillus casei and Bifidobacterium 
bifidum (108 CFU/ml) and sphingomyelin (0.05%) on mice with 1,2-dimethylhydrazine (DMH)-induced colon cancer. Thirty-
six BALB/c mice were divided into 3 groups: one healthy group (group C) and two groups with DMH-induced cancer, one 
fed a standard diet (group D) and the other fed a diet supplemented with sphingomyelin and probiotics (DS). The number of 
aberrant crypt foci, marker of colon cancer development, was lower in the DS. The dietary supplementation with the syn-
biotic reversed the cancer-induced impairment of galactose uptake in enterocyte brush–border–membrane vesicles. These 
results confirm the beneficial effects of the synbiotic on the intestinal physiology of colon cancer mice and contribute to the 
understanding of the possible mechanisms involved.
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Introduction

Colorectal cancer (CRC) is the third most common diag-
nosed cancer representing an important health issue world-
wide. Despite strong hereditary components, about 80% of 
cases of colorectal cancers are sporadic and develop slowly 

over more than 10 years. Epidemiologic studies have shown 
that the environmental factors, especially diet, are important 
risk factors for CRC [1, 2]

Mounting evidence supports the view that the colonic 
microbiota is involved in the etiology of colon cancer. 
Different factors, such as probiotics and different dietary 
bioactive compounds can modulate gut microbiota and its 
metabolism [3]. In this context, several investigations have 
focused on the beneficial effects of probiotics and bioac-
tive compounds and their possible role in the prevention 
of colon cancer [4, 5]. Most probiotics are members of the 
genus Bifidobacterium and several genera of the Lactobacil-
lus group, but Saccharomyces and Enterococcus have also 
been studied. Experimental animal and human studies have 
shown that probiotics may reduce intestinal permeability 
and participate in the regulation of several intestinal func-
tions [6–8]. Concretely, animal studies have demonstrated 
that certain species of lactic acid–producing bacteria, such 
as Lacticaseibacillus casei [9] and Bifidobacterium bifidum 
[10], could prevent colon cancer and other diseases linked 
to the gastrointestinal tract.
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On the other hand, sphingolipids are structural and functional 
bioactive lipids found in eggs, milk, meat, fish, and soybeans 
that can act as chemo-protective agents regulating cell growth, 
differentiation, and death [11, 12]. Sphingomyelin (SM) is the 
most abundant sphingolipid in plasma lipoproteins and contains 
predominantly a phosphocholine as head group [13]. The 
hydrolysis of SM by alkaline sphingomyelinase (alk-SMase) 
generates other bioactive molecules, such as ceramide and 
sphingosine, that play key roles in the maintenance of intestinal 
mucosal integrity and the inhibition of colon tumorigenesis [12, 
14]. Ceramide has been proposed as an important intracellular 
messenger in different signalling pathways implicated in the 
regulation of cellular proliferation, differentiation, and apoptosis 
[14–16]. Early studies have indicated that a therapy based on 
probiotics mixture containing several strains of acid lactic 
bacteria increased alk-SMase levels in mice with inflammatory 
gut disease [17] and cancer [18]. Furthermore, the combination 
of probiotic and other dietary compounds may exert additive 
effects in the improvement of colon carcinogenesis as compared 
to its separate administration [2, 19]. However, the combination 
of SM and probiotics has not yet been analyzed although it could 
be hypothesized that dietary supplementation with probiotics 
together with SM could help to maintain the membrane integrity 
of the enterocytes, as well as alk-SMase activity in colon cancer 
models. Therefore, in this study, we have analyzed, for the first 
time, the beneficial effects of the combined administration of 
both lactic acid–producing bacteria (L. casei and B. bifidum) 
and SM in a mouse model of 1,2-dimethylhydrazine (DMH)-
induced colon cancer.

Materials and Methods

Bacterial Strains and Growth Condition

The L. casei CECT 475 T strain was isolated from kefir 
manufactured in the Lactology Laboratory of the Universi-
dad Pública de Navarra, whereas the B. bifidum strain was 
obtained from the Spanish Collection of Cultures (CECT) 
with the number CECT 870. Both strains were used in this 
study as probiotics. Both bacteria were grown in autoclaved 
skim milk (Difco™; BD, Detroit, MI, USA), at 37 °C for 
24 h under aerobic conditions for L. casei and at 39 °C for 
72 h under microaerophilic conditions for B. bifidum in the 
presence of 5% CO2. The cell pellets were resuspended in 
10% Difco™ skim milk at a final concentration of 108 CFU/
ml for each strain.

Chemicals

All chemicals were purchased from Sigma Chemicals (St. 
Louis, MO, USA) unless otherwise noted. All reagents were 
of analytical grade.

Animals, Diets, and Experimental Design

Thirty-six male BALB/c mice of 28 days old and weighing 
about 20 g were obtained from the colony of Charles River 
Laboratory Animals (Barcelona, Spain). The mice were 
housed in cages (four animals per cage) and kept in a well-
ventilated, thermostatically controlled room (22 ± 2 °C tem-
perature and 55 ± 5% relative humidity) with a photoperiod 
of 12 h light/night cycle.

The animals, after an acclimatization period of 4 days, 
were weighed and randomly assigned to 3 homogeneous 
groups (n = 12, each) and fed a standard diet (AIN-93G, 
Research Diets Inc., New Brunswick, NJ, USA). Control 
group (C) animals were injected subcutaneously with eth-
ylenediaminetetraacetic acid (EDTA) 1 mM, whereas the 
mice of the DMH group (D) and DMH + supplemented diet 
group (DS) were injected subcutaneously with 1,2-dimethyl-
hydrazine (DMH) dissolved in EDTA 1 mM (30 mg DMH/
kg body weight, twice per week for 3 weeks) to induce the 
pre-neoplastic lesions (ACF).

Fresh diets were prepared weekly with purified ingre-
dients. All diets were isonitrogenous and isoenergetic and 
were stored at 4 °C until serving feed. One week after the 
last DMH injection, the animals in the DS group were fed 
the standard diet supplemented with sphingomyelin 0.05% 
and skim milk was supplemented with probiotic bacteria at 
108 CFU/ml. Food and drink were available ad libitum. The 
body weight was recorded weekly.

At the end of the 66th day of the experimental period, 
the animals were anesthetized with CO2 and sacrificed by 
decapitation. Trunk blood was collected for the measurement 
of serum biochemical parameters, and different organs 
(spleen, liver, colon, jejunum, and cecum) were extracted 
and weighed. The jejunum was carefully removed, 
flushed out with ice-cold saline, frozen in liquid nitrogen 
and stored at −80 °C until processed for the isolation of 
the brush–border–membrane vesicles (BBMV) for the 
measurement of the intestinal absorption of D-galactose.

The Animal Research Ethics Committee of the “Univer-
sidad Pública de Navarra” reviewed and approved (reference 
PI:07/06) the animal care protocol and the killing method 
to ensure compliances with the guidelines of the Canadian 
Council on Animal Care [20].

Histological Analyses

Colon sections of 6 animals per group were flushed with ice-
cold saline, opened longitudinally, fixed flat in 10% formalin 
for 24 h, dehydrated, and stained in 0.1% methylene blue for 
15 min. The colon pieces were placed mucosa-side up on 
glass slides and evaluated for the presence of aberrant crypts 
foci by light microscopy (40 × or 100 ×). The aberrant foci 
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were identified following the counting criteria described by 
Paulsen et al. [21]. Before being frozen, a portion of the dis-
tal colon (1 cm length) was taken for histological examina-
tion. Samples of distal colon tissue were immediately fixed 
in 4% formalin solution for 24 h. They were then dehydrated, 
embedded in paraffin, sliced into 5-µm sections and pro-
cessed for hematoxylin–eosin staining.

Serum Biochemical Assays

All serologic parameters (Table 2) were quantified in an 
automatic chemistry analyzer Cobas-Mira (Roche Diagnos-
tic System, Basel, Switzerland) following the manufacturer’s 
procedures.

Preparation of Mouse Intestinal BBMV

BBMV were obtained according to the method described by 
Shirazi-Beechey et al. [22]. Briefly, the BBMV were pre-
pared from a portion of small intestine extracted from each 
animal of the three different experimental groups.

The mucosa was then resuspended in buffer containing 
100  mM mannitol and 2  mM 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid (HEPES) adjusted to pH 7.1 
with 1 M Tris–HCl buffer. The suspension was homogenized 
with a Potter–Elvehjem (Braun, Melsungen, Germany) at 
3000 rpm at 4 °C for 1 min. Next, MgCl2 was then added 
to the homogenate to a final concentration of 10 mM, and 
the mixture was maintained on ice with continuous ice-cold 
shaking for 20 min. After that, the mixture was centrifuged 
at 2000 g for 15 min, and the supernatant was collected and 
centrifuged at 27,000 g for 30 min. This supernatant was 
discarded and the pellet resuspended in a buffer containing 
100 mM mannitol, 0·1 mM MgSO4 and 2 mM HEPES 
adjusted to pH 7·4 with Tris. After a second precipitation 
with MgCl2, the mixture was finally centrifuged at 27,000 g 
for 30 min. The pellet was then resuspended in a buffer 
containing 300 mM mannitol, 0·1 mM MgSO4 and 10 mM 
HEPES adjusted to pH 7·4 with Tris. The BBMV of ten 
mice were pooled, assayed for protein content by using the 
Bradford diagnostic kit (Bio-Rad Laboratories, Barcelona, 
Spain), diluted to 10 mg BBMV protein/ml, aliquoted and 
frozen in liquid nitrogen. The final BBMV preparation was 
fivefold enriched for sucrase specific activity compared with 
the initial homogenate.

Sugar Uptake by BBMV

Sugar uptake by the BBMV was measured using a slightly 
modified version of the rapid filtration technique devel-
oped by Hopfer [23]. Three replications were performed 
for each experimental group. D-galactose (0.1 mM) uptake 
was determined in the presence of a Na+ gradient at pH 7.4 

and 37 °C. BBMV were incubated in a medium containing 
0.1 mM D-galactose, 100 mM NaSCN, 100 mM mannitol, 
0.1 mM MgSO4, 10 mM HEPES, and traces of D-[1-14C]
galactose (0.037 MBq/ml; Amersham Radiochemical Cen-
tre, UK). At the different incubation times, uptake was 
halted by adding ice-cold stop solution (150 mM KSCN, 
0.25 mM phloridzin and 10 mM HEPES) at pH 7.4 for the 
galactose uptake determination.

The suspension was poured immediately onto a cellu-
lose nitrate filter (0.45 μm, 25 mm diameter; Sartorius, 
Edgewood, NY, USA) and the filter was then washed twice 
in ice-cold stop solution and dissolved in HiSafe 3 scin-
tillation liquid for the final measurement of radioactiv-
ity using a β-counter (1450 MicroBeta® TriLux; Wallac, 
Turku, Finland).

Statistical Analysis

Descriptive and inferential statistics were used according 
to procedures described by Anderson [24]. The normal-
ity of the sample distribution of each continuous variable 
was tested with the Kolmogorov–Smirnov test. To identify 
significant differences among the groups (body and organ 
weights, and biochemical parameters), statistical analysis 
was performed by one-way ANOVA followed by Dunnett’s 
test (D group as reference). Kruskal–Wallis followed by 
Mann–Whitney U test (D group as reference) were used 
to compare Western blot data and the ACF number of the 
three experimental groups. Differences were considered 
statistically significant when 2-tailed p < 0.05. Statistical 
calculations were performed with the statistical software 
package SPSS version 21.0 for Windows (SPSS, Chicago, 
IL, USA).

Results

Animal Growth: Body and Organ Weights

The second week after cancer induction, body weight was 
significantly lower in the animals of the D and DS groups 
when compared with the C group (Fig. 1). The body weight 
of the animals of the DS group was significantly higher than 
those of the D group from day 45 of the experimental period, 
indicating that the dietary supplementation improves the 
growth rate of the animals.

Regarding the weights of the different tissues (Table 1), 
colon, and liver were the only organs that showed statistical 
differences when comparing the three experimental groups. 
Colon weight was higher in the DS group when compared 
with C (p = 0.002) and D (p = 0.015) groups, whereas liver 
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weight was lower in D (p = 0.001) and DS (p = 0.007) groups 
when compared with C group.

Serum Biochemical Measurements

Serum glucose, urea, total cholesterol and high-density 
lipoprotein cholesterol levels tended to be higher in the D 
and DS groups, but without statistical differences (Table 2). 
Serum aspartate aminotransferase levels were significantly 
lower in the control group and in the DS group when 
compared to D group although statistically significant 
differences were only observed in control group. In this 
line, alanine aminotransferase levels were also significantly 
lower in control and DS groups when compared to D group 
indicating that the induction of pre-neoplastic lesions in 
the colon increased the enzymatic activity and that the 
administration of the symbiotic combination reduced this 
increase, although control levels were not reached. This 
altered enzymatic activity observed in the DMH treated 
animals confirms the DMH-induced liver damage observed 
in treated animals. The supplementation with SM and 
probiotics did not prevent the liver weight loss observed in 

the DMH-treated mice, but it reverted the increase in alanine 
amino transferase serum level (p ≤ 0.05).

Histological Analysis

These ACF are considered indicators of pre-neoplastic 
damage. All the ACF found were located in the distal 
colon. Interestingly, dietary supplementation with sphin-
gomyelin plus L. casei and B. bifidum resulted in a signifi-
cantly reduction in the number of ACF when compared 
with the D group (Fig. 2). Colon sections of control mice 
displayed normal crypt foci and a colonic architecture with 
no signs of apparent abnormality. However, large areas 
with dense lymphocytic hyperplasia, compatible with pre-
neoplastic lesions, were observed in the D group. Interest-
ingly, this high lymphocyte infiltration was reduced by the 
administration of the symbiotic compound (Fig. 3).

Sugar Uptake in BBMV

Intestinal function has also been analyzed in the present work 
by measuring D-galactose uptake in BBMV. In this context, 
sugar uptake was stimulated by CRC development. The 
presence of the synbiotic in the diet inhibited D-galactose 
uptake as compared to DMH group (Fig. 4). This effect was 
observed only when the nutrients entered the enterocyte 
by an active transport mechanism that was mediated by a 
transporter located in the brush–border–membrane (short 
assay times and a Na+ gradient). For longer incubation times 
(10 min and 60 min, respectively), the sugar entered the 
vesicles by a process of diffusion that was not altered by 
the synbiotic.

Fig. 1   Body weight gain of 
the three experimental groups 
(n = 12 per group): filled 
diamond, control group; filled 
square, DMH group (D); filled 
circle, DMH + supplemented 
diet group (DS). Data are 
expressed as mean ± SEM. 
*p < 0.05 vs D group

Table 1   Organ weights of the three experimental groups

Data (n = 12 per group) are expressed as mean ± SEM
C control group, D DMH group, DS DMH + supplemented diet group
* p <0.01 vs C group; **p <0.05 vs D group (highlighted inbold font)

Experimental 
groups

C D DS

Jejunum (g) 0.724 ± 0.011 0.677 ± 0.025 0.706 ± 0.048
Colon (g) 0.163 ± 0.101 0.171 ± 0.007 0.199 ± 0.006*/**
Liver (g) 1.639 ± 0.045 1.434 ± 0.031* 1.488 ± 0.033*
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Discussion

Previous reports have demonstrated that several probiotics and 
bioactive compounds have a positive effect on the immune 
system, improving the immune response by unspecific and 
specific mechanisms [25]. In the context of colorectal cancer, 
the protective effect of dietary supplementation with different 
probiotics and synbiotics has been studied in animal models [26]. 
The present work has analyzed the effects of the combination 
of two probiotics (L. casei, B. bifidum) and a sphingolipid 
(sphingomyelin) on the physiopathology and intestinal function 
of mice with DMH-induced colon cancer. As there are no animal 
models that develop colon cancer spontaneously, DMH has been 
used to induce pre-cancerous lesions that are histologically 
similar to those observed in humans and has been widely used 
in the literature [27, 28].

Regarding body weight, the results obtained are in agree-
ment with other studies that did not find differences in body 

weight gain after supplementation with SM [11, 15] or 
probiotics [6] and in line with studies by other authors in 
which DMH has been used as carcinogen [29]. Although 
sphingolipids have relevant biological activities, they are 
not considered as essential nutrients for an optimal growth 
rate of the animals [30, 31].

As it has been previously mentioned, colon and liver 
were the only organs affected by the pre-cancerous lesion 
induction or synbiotic treatment. DMH-treated animals 
(D) showed a tendency to a higher colon weight than the 
untreated control group. This effect could be due to the ini-
tial stage of the disease that occurs with the presence of 
colon mucosa polyps that would increase the organ weight. 
However, the colon of the animals treated with the supple-
mented diet (DS group) was significantly higher than the 
one of the DMH group (D) suggesting that the consumed 
bacteria might attach to the colonic mucosae and increase, in 
consequence, the colon weight. In this sense, other authors 
have demonstrated that some strains of the Lactobacillus 
group are able to colonize the colon and adhere to the intes-
tinal epithelium [32]. On the other hand, the liver was also 
affected by CRC development. Liver weight was lower in 
the animals with DMH-induced cancer than in the control 
group, suggesting that liver damage is related to colon can-
cer development and therefore could be implicated in the 
body weight loss observed in these animals. This liver dam-
age was confirmed by the altered levels of serum alanine 
aminotransferase and aspartate aminotransferase observed 
in D and DS groups. In this context, a previous study found 
lower liver weight and decreased hepatic lipid accumulation 
in mice fed a diet supplemented with 0.2–0.4% sphingolipids 
[33]. Furthermore, other authors have shown that treatment 
with probiotics like Lactobacilli and Bifidobacteria could 
improve liver function [34].

Moreover, the dietary supplementation decreased 
the number of ACF as compared to D group, as found in 

Table 2   Serum biochemical 
parameters of the experimental 
groups

Data (n = 12 per group) are expressed as mean ± SEM
C control, D DMH group, DS DMH + supplemented diet group
* p < 0.05 vs D group (highlighted in bold font)

Experimental groups C D DS

Glucose (mg/dl) 86.4 ± 5.8 104.2 ± 5.9 97.9 ± 5.3
Urea (mg/dl) 38.8 ± 4.9 45.7 ± 3.7 48.1 ± 5.2
Plasma protein (g/dl) 3.23 ± 0.18 2.91 ± 0.17 2.85 ± 0.16
Albumin (g/dl) 2.13 ± 0.21 1.94 ± 0.20 2.05 ± 0.13
Aspartate aminotransferase (U/l) 68.6 ± 5.0* 109.5 ± 9.7 86.5 ± 8.7
Alanine aminotransferase (U/l) 16.1 ± 1.8* 40.7 ± 3.9 30.3 ± 3.2*
Lactate dehydrogenase (U/l) 553.8 ± 58.1 577.5 ± 83.0 624.0 ± 54.0
α-amylase (U/l) 3773 ± 416 4091 ± 430 4522 ± 373
Cholesterol (mg/dl) 76.5 ± 6.3 83.8 ± 7.9 75.0 ± 5.5
HDL-cholesterol (mg/dl) 61.3 ± 5.6 64.5 ± 7.0 61.6 ± 3.7
Cholesterol:HDL cholesterol ratio 1.28 ± 0.04 1.34 ± 0.05 1.22 ± 0.05

Fig. 2   Number of aberrant crypt foci (ACF) in control (C), DMH 
group (D) and DMH + supplemented diet group (DS). Data are 
expressed as mean ± SEM (n = 4). *p < 0.05 vs D group: **p < 0.01 
vs D group
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previous studies with flavonoids [35]. Similar to our results, 
Li et al. demonstrated that germinated brown rice grains 
fermented by Lactobacillus acidophilus could modulate the 
formation of pre-neoplastic lesions through the activation 
of apoptotic pathways [36]. Benito et al. have reported that 
microencapsulated B. bifidum and Lactobacillus gasseri can 
inhibit CRC development in ApcMin/+ mice [37]. Finally, the 
inhibition of tumor formation due to dietary sphingomyelin 
has been attributed to a normalization of cell proliferation 
and rate of apoptosis, but not the induction of differentia-
tion [12].

Finally, it seems that diet supplementation with the 
two bacteria and sphingomyelin inhibits the mechanisms 
involved in sugar absorption stimulation observed in DMH 
animals, restoring the sugar uptake levels obtained in con-
trol mice. These findings are in line with previous studies 
that demonstrated that probiotics [6] and sphingomyelin [11] 
are able to decrease glucose transport in intestinal epithelial 
cells models. These results suggest that the administration 
of the synbiotic could help to prevent colon cancer devel-
opment in humans since the stimulation of sugar uptake 

Fig. 3   Hematoxylin–eosin 
staining of the colon obtained 
from the different experimen-
tal groups (× 40). C, control 
group; D, DMH group; DS, 
DMH + supplemented diet 
group

Fig. 4   Uptake of 1  mM D-galactose by intestinal BBMV obtained 
from mice (n = 3 per group): filled diamond, control group (C); filled 
square, DMH group (D); filled circle, DMH + supplemented diet 
group (DS). Data are expressed as mean ± SEM. *p < 0.05 vs D group
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increases the amount of intracellular glucose available for 
metabolic conversion, thereby promoting enhanced cell pro-
liferation and cancer development [38].

In summary, the dietary supplementation with the synbi-
otic preparation reduced the number of histological intesti-
nal lesions, suggesting that this combination has beneficial 
effects in DMH-treated mice with pre-neoplastic lesions. 
Moreover, this supplementation reversed the impaired intes-
tinal sugar uptake observed in animals with DMH-induced 
pre-cancerous lesions, suggesting that it could be a good 
complementary therapy for the prevention of colon cancer 
in humans although more investigations are needed.
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