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Abstract

The Réunion grey white-eye (Zosterops borbonicus) is a single-island endemic passerine bird that exhibits striking
geographically structured melanic polymorphism at a very small spatial scale. We investigated the genetic basis of this color
polymorphism by testing whether the melanocortin-1 receptor (MC1R), a gene often involved in natural melanic
polymorphism in birds, was associated with the observed plumage variation. Although we found three non-synonymous
mutations, we detected no association between MC1R variants and color morphs, and the main amino-acid variant found in
the Réunion grey white-eye was also present at high frequency in the Mauritius grey white-eye (Zosterops mauritianus), its
sister species which shows no melanic polymorphism. In addition, neutrality tests and analysis of population structure did
not reveal any obvious pattern of positive or balancing selection acting on MC1R. Altogether these results indicate that
MC1R does not play a role in explaining the melanic variation observed in the Réunion grey white-eye. We propose that
other genes such as POMC, Agouti or any other genes involved in pigment synthesis will need to be investigated in future
studies if we are to understand how selection shapes complex patterns of melanin-based plumage pigmentation.
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Introduction

The genetic basis and origin of color polymorphism in natural

populations is a classic theme in our understanding of ultimate and

proximate causes of phenotypic variation and evolution [1]. In

vertebrates, the study of melanic coloration has led to the

characterization of important target genes that may underlie

phenotypic variation and divergence in natural populations [2,3].

One recurrent result emerging from most studies is the involve-

ment of the melanocortin-1 receptor (MC1R) coding region in

explaining variation in melanism, sometimes showing shared

mutations due to convergent evolution between distantly related

species [4]. In birds, associations between dark coloration and

mutations in MC1R have been highlighted in a number of wild

species (Table 1), including snow geese [5], fairy-wrens [6],

bananaquits [7], swans [8], falcons [9], Acrocephalus warblers [10]

and Monarcha flycatchers [11]. MC1R has been shown to play an

important role in a variety of processes such as sexual selection

[5,11,12], crypsis [13] and possibly immunity [9] although it is

generally considered to have few pleiotropic effects [2]. While

most studies have focused on functional substitutions in MC1R

coding region in species displaying discrete color dimorphism, few

have tried to examine amino acid variation in species with diverse

melanin-based patterns of plumage pigmentation (but see [12,14]).

For instance, in studies of the blue-crowned manakin (Lepidothrix

coronata) [15] which displays a gradation in melanic coloration

according to geography, or the Old World leaf warblers

(Phylloscopus sp.) in which there is interspecific variation in

unmelanized plumage pattern elements [14], no association

between the degree of melanism and nucleotide variation at

MC1R could be found.

In this study, we assess whether MC1R could explain variation

in melanistic patterns in the Réunion grey white-eye, Zosterops

borbonicus, a species composed of four distinct plumage morphs on

the topographically and ecologically complex island of Réunion

(Mascarene archipelago). This species provides an excellent system

because its prominent plumage color polymorphism stands in stark

contrast to the single morph found in its sister species, Z.

mauritianus [16,17] and variation in plumage color among morphs,

while conspicuous, is relatively complex in terms of melanin

pigmentation patterns, with a completely brown morph, a

completely grey morph, a grey-headed brown morph, and a

grey-headed brown morph with a brown nape. The morphs

occupy discrete geographic entities, with the exception of the

brown and grey morphs that are completely sympatric at high

altitudes (see [16], [17] for details). Hybrid zones arise where

morphs come into contact, as happens between parapatric

morphs. In contrast, there appears to be no assortative mating
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with regards to morph color in the area of sympatry between grey

and brown morphs (unpublished data). Patterns of coloration

among morphs are stable over time, with no sex effect [17]. Brown

parts involve deposition of phaeomelanin in feather barbs and

eumelanin deposition in barbules, while grey parts involve low

deposition of phaeomelanin [17].

Although to date MC1R has not been associated with

phaeomelanin variation in the presence of eumelanin, its central

position in controlling the production of both eumelanin and

phaeomelanin [18] makes it a relevant candidate in explaining at

least partly this plumage color polymorphism.

The main aims of this study are to ask whether there is an

association between mutations in MC1R and color variation in

Z.borbonicus. First, we examined nucleotide variation in the coding

region of MC1R and assessed whether mutations were associated

with patterns of variation in melanin pigmentation. Secondly, we

investigated whether natural selection could have shaped the

pattern of nucleotide variation among morphs. Third, we asked

whether sequence variation in MC1R coding region could be due

to hitch-hiking to positively selected cis-regulatory mutations by

examining whether color morph was associated with patterns of

genetic differentiation.

Methods

Sampling
Blood samples used for DNA extraction were collected during

field trips at different locations on the islands of Réunion (55u399E;

21u009S) and Mauritius (57u339 E; 20u179 S) between 2007 and

2009 (Figure 1, Table 2). Birds were captured using mistnets and

approximately 10 mL of blood were collected from each bird.

Blood was conserved in Queen’s lysis buffer [19] and stored at

220uC for long-term preservation. Morphs were identified by eye

in the field, and visual assignments were further confirmed in the

laboratory by using pictures taken in the field and on the basis of

previous reflectance analysis [20]. With respect to the brown

morph, reflectance studies suggested that highland (.1,500 meters

high) and lowland forms are distinguishable in terms of coloration,

so we analyzed these populations separately. We analyzed a total

of 51 individuals from Réunion, including five brown individuals

from lowland localities, 15 brown individuals from three highland

localities, 13 grey individuals from two localities, eight grey-headed

brown individuals from two localities and 10 grey-headed brown-

naped brown individuals from one locality (Table 2). For

comparison purposes, we also included nine individuals of Z.

mauritianus in our analyses.

DNA Extraction and Amplification
DNA was extracted using a QiagenH kit, following the

manufacturer’s instructions for nucleated blood cells. We ampli-

fied a 817-bp fragment of the MC1R coding region, including all

sites previously shown to be associated with plumage color change

in birds, following [15] for conditions and primers.

Reactions were performed using: 5 mL of 5X buffer (PromegaH),

0.5 mL 10 mM dNTPs, 0.125 mL of Taq (5 u/mL, Promega

GoTaqH DNA polymerase), 1 mL of each primer (10 mM),

15.4 mL of sterile distilled water, and 2 mL of DNA (,30 ng of

template DNA), totaling 25 mL. The thermocycling profile was as

Table 1. Summary of major patterns of melanic variation in birds and their link with MC1R.

Mutation Phenotype Species studied References

Glu92RLys92 Extensive black (black plumage). Less marked in quail.
Dominant.

Chicken (Gallus gallus) Japanese quail (Coturnix
japonica) Bananaquit (Coereba flaveola) Tahiti
Reed Warbler (Acrocephalus caffer)

[7,10,31,39]

Ala16R Thr16, Ile38RAsn38,
Ile111RVal111, Gln157RArg157,
Val166RIle166

Ala16R Thr16, Ile38RAsn38, Ile111RVal111, Gln157RArg157,
found associated with the mainland (blue) phenotype.
Val166RIle166 found associated with melanic phenotype
and is dominant.

White-winged Fairywren (Malurus leucopterus) [6]

Val85RMet85 Different amounts of grey or brown (heterozygous) to
completely dark (homozygous).

Lesser snow goose (Chen c. caerulescens), Red-
footed boobies (Sula sula)

[5,40]

Glu100RLys100 Associated with neck melanism.Found with
Glu92RLys92.

Black-necked Swan (Cygnus melanocoryphus) [8]

Deletion 114-117 Dark plumage. Dominant. Eleonora’s Falcon (Falco eleonorae) [9]

Asp119RAsn119 Black plumage. Dominant. Chestnut-bellied Monarch from Ugi island
(Monarcha castaneiventris)

[11]

His215RPro215 Alteration of light stripes on back and dorsal head.
Associated with Glu92RLys92. Recessive.

Chicken (Gallus gallus) [31]

Arg230RHis230 Grey (heterozygous) to black (homozygous) plumages.
No melanism in Coscoroba coscoroba.

Arctic skua (Stercorarius parasiticus), Black Swan
(Cygnus atratus), Coscoroba Swan (Coscoroba
coscoroba)

[5,8]

Deletion 256 Causes melanism. Wild allele is dominant. Guinea fowl (Numida meleagris) [41]

No mutation linked to
phenotype

Black plumage. Chestnut-bellied Monarch from Three Sisters
Islands (Monarcha castaneiventris)

[11]

No mutation linked to
phenotype

Geographically structured gradation from green to black
plumage.

Blue-crowned manakin (Lepidothrix coronata) [15]

No mutation linked to
phenotype

Variation in melanization in wing bars, crown stripe and
rump patches.

Old World leaf warblers (genus Phylloscopus) [14]

No mutation linked to
phenotype

Variation in the extent of phaeomelanin deposition
across the body.

Réunion Grey White-Eye (Zosterops borbonicus) This study

doi:10.1371/journal.pone.0050906.t001

Role of MC1R in Zosterops borbonicus Polymorphism
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follows: an initial denaturation at 94uC for 60 s, then 40 cycles

consisting of a 45-s 94uC denaturation step, a 45-s 62uC annealing

step, and a 60-s extension step at 72uC. A final elongation step at

72uC for 5 minutes ended the process. PCR products were

visualized on 1% agarose gels. DNA was sequenced in both

directions using a 96-well capillary sequencer 3730XL (Applied

Biosystems H) and the same primer pairs used for PCR reactions.

MC1R Sequence Analysis
Sequences were checked and aligned unambiguously by eye.

MEGA 5 [21] was used to translate nucleotide sequences to

amino-acid sequences. To guard against amplification of pseudo-

genes, the absence of misplaced stop codons and frame shift

mutations was verified for all sequences. We aligned the sequences

obtained with MC1R cDNA from chicken (Gallus gallus, Genbank

accession number: AY220305) and Zebra finch (Taeniopygia guttata,

Ensembl accession number: ENSTGUG00000008024) to detect

potential variants at sites previously identified as being associated

with melanic variation in other bird species. We noted double

peaks at single sites that were approximately half the height of

neighboring peaks. Individuals were considered as heterozygous if

these double peaks were observed in both strands. To visualize the

relationship among haplotypes we constructed a haplotype

network using the Network software (http://www.fluxus-

engineering.com/sharenet.htm).

Tests for Molecular Signatures of Selection
Despite having relatively similar effects on sequence polymor-

phism, demography and selection can be distinguished to varying

degrees with five of the tests we employed: Tajima’s D [22], Fu’s Fs

[23], Fay and Wu’s H [24] and Fu and Li’s D* and F* [25]. Fu

and Li’s D* and F* focus on rare alleles and are useful in detecting

positive selection in a context of low sequence diversity. Fu’s Fs

and Tajima’s D are classical tests of selection focusing either on the

distribution of haplotype frequencies relative to neutral expecta-

tions (Fu’s Fs) or on the difference between the number of

segregating sites and the average number of nucleotide differences

(Tajima’s D). We also calculated Fay and Wu’s H, which

compares genealogies between and within species and is often

presented as less sensitive to demographic events than other tests

[24] but see [26]). In the case where positive selection acts on one

or several morphs, negative values should be obtained for these

Figure 1. Map showing Z. borbonicus sampling localities, and distribution of the four morphs on Réunion. Letters correspond to the
different plumage morphs: A: Brown morph; B: Grey morph; C: Grey-headed brown morph; and D: Grey-headed brown-naped brown morph. For a
more detailed description of pigmentation phenotypes, see [17]. Adapted from [18].
doi:10.1371/journal.pone.0050906.g001

Table 2. Localities and number of birds sampled on the
islands of Réunion and Mauritius.

Locality/Morph Sample size

Réunion 51

Brown 20

Bélouve 5

Maı̈do 4

Pas de Bellecombe 6

Etang Salé 5

Grey 13

Maı̈do 4

Pas de Bellecombe 9

Grey-headed brown 8

Moka 5

Forêt Mourouvin 3

Grey-headed brown-naped brown 10

Basse Vallée 10

Mauritius 9

doi:10.1371/journal.pone.0050906.t002
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tests, especially for tests supposedly more impacted by selection

such as Tajima’s D or Fay and Wu’s H [24,26,27]. If balancing

selection occurs, these tests should display significant positive

values. The Japanese white-eye Zosterops japonicus (Genbank

accession number JN635726) when necessary, and significance

of the tests was assessed by 10,000 coalescent simulations on the

basis of segregating sites using DNAsp version 5 [28].

Selection also acts on the ratio of non-synonymous to

synonymous mutations. When a coding site is under positive

selection, it can limit the appearance of other non-synonymous

mutations. To identify putative functionally important sites, we

performed the McDonald-Kreitmann test [29] using the Japanese

white-eye as an outgroup.

We also examined whether significant differentiation occurred

between morphs rather than between populations. This is

expected if positive selection acts on a cis-regulatory mutation,

as a selective sweep is likely to fix distinct haplotypes between

morphs. We obtained differentiation indices using an analysis of

molecular variance (AMOVA) with morphs as groups as

implemented in Arlequin 3.5 [30]. P-values were obtained by

performing 10,000 permutations.

Results

A total of 817 bp of the MC1R gene were successfully

sequenced. Eight sites were variable, giving a total of nine

different haplotypes. Mutations consisted of four non-synonymous

and five synonymous substitutions. Non-synonymous substitutions

were an Ala45RVal45, a Val172R Ile172 and a Pro225R Ser225 for

Z. borbonicus and an Ala228R Val228 for Z. mauritianus

(Table 3).These amino acids all had a hydrophilic lateral chain

except for Proline. Moreover, in chicken Ala45 is replaced by a

Thr45, having a neutral lateral chain, suggesting this site is less

constrained. These substitutions do not seem to modify greatly the

chemical properties of the protein and are unlikely to have a large

impact on the receptors structure. This was supported by

McDonald-Kreitman tests which failed to detect any sign of

positive selection on amino acid-altering mutations at MC1R

(Table 4).

No correlation between these substitutions and variation in

pigmentation between Z. borbonicus morphs was detected (Figure 2).

We found several shared mutations between Z. borbonicus morphs

or between Z.borbonicus and Z. mauritianus, both synonymous and

non-synonymous. Since the Mauritian species is monomorphic

across its range, these mutations do not seem to be linked to color

variation and might instead represent shared ancestral polymor-

phism.

Nucleotide diversity was relatively low (p= 0.00078 and

0.00167 for Z. borbonicus and Z. mauritianus respectively). All

neutrality tests were skewed towards negative values in all Z.

borbonicus morphs (Table 5). However, values were significantly less

than zero only for Fs and H values in the brown morphs (both

lowland and highland populations), the grey morph and the grey-

headed brown morph. Negative Fs values suggest a role for

demographic expansion, whereas negative Fay and Wu’s H could

be consistent with long-term purifying selection in explaining

patterns of variation at MC1R instead of positive selection

associated to morphs.

The lack of positive selection associated to morphs was

supported by the AMOVA analysis, which did not detect any

significant morph effect (wct = 0.013, P.0.05). Since no variation

in haplotype frequencies was associated to color morphs, no effect

of a selective sweep linked to a putative cis-regulatory mutation

could be detected.

Discussion

Despite its frequent involvement in pigmentation patterns in

vertebrates, especially in birds (Table 1), MC1R does not seem to

play a role in explaining variation in plumage pigmentation in Z.

borbonicus. We found no relationship between plumage pigmenta-

tion and variation at the MC1R locus, for either synonymous or

non-synonymous substitutions, and observed non-synonymous

substitutions are unlikely to result in functional changes.

Since we could not sequence the first 23 and last 20 codons of

MC1R we cannot exclude the possibility that functional modifi-

cations occurred in these regions. However, this seems unlikely

since the region examined here contains all the sites previously

described as important for MC1R function in birds [5,7,11,31,32].

We did not find any of the color-associated mutations already

reported in previous studies on birds. Substitutions Val85RMet85,

Glu92RLys92 and Asp119RAsn119 [5,7,11] observed in banana-

quits (Coereba flaveola), snow geese (Anser caerulescens) and the

chestnut-bellied monarch (Monarcha castaneiventris) were not ob-

served here. Similarly, other substitutions like Arg230RHis230

observed in Arctic skuas (Stercorarius parasiticus) or Glu100RLys100

reported in swans (Cygnus) were not found in our study [5,8]. It is

difficult to definitively rule out the possibility that MC1R cis-

regulatory mutations underlie some pigmentation phenotypes in Z.

borbonicus or other species. However, in our study, we found no

Table 3. Amino-acids variants observed at the MC1R locus in 51 Z. borbonicus individuals representing the four Réunion morphs
and nine Z. mauritianus individuals.

Variant 1 Variant 2 Variant 3 Variant 4

Position of the mutation C134RT134 G514RA514 C673RT673 C683RT683

Amino-acid change Ala45RVal45 Val172R Ile172 Pro225R Ser225 Ala228R Val228

Brown (lowlands) Not found Heterozygous Not found Not found

Brown (highlands) Not found Heterozygous Not found Not found

Grey Not found Heterozygous Not found Not found

Grey-headed brown Heterozygous Not found Not found Not found

Grey-headed brown-naped brown Not found Heterozygous Heterozygous Not found

Mauritius Not found Not found Not found Heterozygous

For each variant the corresponding nucleotide substitution is indicated, with its state (heterozygous or homozygous) in each morph and species studied here.
Sequences were numbered in reference to the chicken genome (Genbank accession number: AY220305).
doi:10.1371/journal.pone.0050906.t003
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indication for genetic hitchiking in MC1R coding sequences, as

would be expected if they were linked to positively selected regions

in nearby locations.

Our results are instead consistent with those obtained by

[11,14,15]. Indeed, many studies having shown the involvement

of MC1R focused on species displaying extreme dimorphism and

rarely on variation in patterns of melanin deposition across the

body (Table 1). This confirms that MC1R is not systematically

involved in melanin-based pigmentation changes in birds,

reinforcing the notion that understanding the evolution of

plumage coloration in species with complex patterns of

eumelanin/phaeomelanin deposition requires a wider exploration

of other genes within the melanocortin pathway, as well as

variation in other candidate genes. Indeed, several genetic and

developmental mechanisms are likely to regulate the complex

patterns of pigment deposition in feathers [33,34] possibly

interacting with MC1R regulatory variation, which also need to

be characterized.

A potentially interesting candidate gene that may underlie

such mechanisms is Agouti (ASIP), a paracrine signaling protein

antagonist of MC1R involved in pigment patterning in

domestic quail and chicken [35,36] and in pocket mice [37].

In addition to MC1R, Agouti also interacts with MC3R and

MC4R and has pleiotropic effects on food intake, energy

expenditure or nociception [2]. Its antagonist, the pro-

opiomelanocortin gene (POMC), is also a candidate since it

interacts with the entire family of melanocortin receptors

(MCRs), including MC1R, and may play a role in controlling

many metabolic functions, such as stress resistance, reproduc-

tive investment or immunity [2] [38].

Since mutations in ASIP and POMC genes appear to be

associated with many physiological, behavioral, and life-history

traits, not just color, these two genes seem ideal candidates to

understand the origin and evolution of complex melanin-based

pigmentation polymorphisms. Yet adaptive changes in the

pattern formation of eumelanin and phaeomelanin in Z.

borbonicus and probably many other species are likely to involve

a mixture of modifications in the structure and regulation of

the genes underlying pigment production, suggesting that

mechanisms of plumage color evolution may be more diverse

than implied by recent studies of discrete melanic/non melanic

polymorphisms.

Table 4. Results for McDonald-Kreitman neutrality test.

Non-synonymous mutations Synonymous mutations McDonald-Kreitmann test

Lowland brown Fixed 6 3 NS

Polymorphic 1 1

Highland brown Fixed 6 2 NS

Polymorphic 1 3

Brown (both lowland and
highland)

Fixed 6 2 NS

Polymorphic 1 3

Grey Fixed 6 2 NS

Polymorphic 1 3

Grey-headed brown Fixed 6 2 NS

Polymorphic 1 2

Grey-headed brown-naped brown Fixed 6 2 NS

Polymorphic 2 3

Zosterops borbonicus Fixed 6 2 NS

Polymorphic 3 4

Zosterops mauritianus Fixed 6 2 NS

Polymorphic 1 3

Zosterops japonicus sequence was used as an outgroup. NS: non-significant.
doi:10.1371/journal.pone.0050906.t004

Figure 2. MC1R non-synonymous variants network for 120
haplotypes from Z. borbonicus and Z. mauritianus. This is a
median-joining network. Circles represent variants with areas propor-
tional to their sample sizes. Each branch represents a single substitution
with amino-acid position indicated. Proportions of individuals of each
locality are indicated by pie charts for each haplotype (black: Z.
mauritianus, light brown: lowland brown morph, dark brown: highland
brown morph, grey: grey morph, orange: grey-headed brown morph,
red: grey-headed brown-naped brown morph, yellow: outgroup,
Zosterops japonicus).
doi:10.1371/journal.pone.0050906.g002
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16. Milá B, Warren BH, Heeb P, Thébaud C (2010) The geographic scale of

diversification on islands: genetic and morphological divergence at a very small

spatial scale in the Mascarene grey white-eye (Aves: Zosterops borbonicus).

BMC Evolutionary Biology 10: 158.

17. Gill FB (1973) Intra-island variation in the Mascarene White-eye Zosterops

borbonica. Ornithological Monographs 12.

18. Hubbard JK, Uy JAC, Hauber ME, Hoekstra HE, Safran RJ (2010) Vertebrate

pigmentation: from underlying genes to adaptive function. Trends in Genetics

26: 231–239.

19. Seutin G, White BN, Boag PT (1991) Preservation of avian blood and tissue

samples for DNA analyses. Canadian Journal of Zoology 69: 82–90.

20. Cornuault J (2008) Divergence due à la sélection dans une aire géographique
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