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Abstract: Short-statured plants revolutionized agriculture during the 1960s due to their ability to
resist lodging, increased their response to fertilizers, and improved partitioning of assimilates which
led to yield gains. Of more than 21 reduced-height (Rht) genes reported in wheat, only three—Rht-B1b,
Rht-D1b, and Rht8—were extensively used in wheat breeding programs. The remaining reduced
height mutants have not been utilized in breeding programs due to the lack of characterization. In the
present study, we determined the inheritance of Rht18 and developed a genetic linkage map of the
region containing Rht18. The height distribution of the F2 population was skewed towards the mutant
parent, indicating that the dwarf allele (Rht18) is semi-dominant over the tall allele (rht18). Rht18 was
mapped on chromosome 6A between markers barc146 and cfd190 with a genetic distance of 26.2 and
17.3 cM, respectively. In addition to plant height, agronomically important traits, like awns and tiller
numbers, were also studied in the bi-parental population. Although the average tiller number was
very similar in both parents, the F2 population displayed a normal distribution for tiller number
with the majority of plants having phenotype similar to the parents. Transgressive segregation was
observed for plant height and tiller number in F2 population. This study enabled us to select a
semi-dwarf line with superior agronomic characteristics that could be utilized in a breeding program.
The identification of SSRs associated with Rht18 may improve breeders’ effectiveness in selecting
desired semi-dwarf lines for developing new wheat cultivars.
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1. Introduction

The Green Revolution, in the mid-twentieth century, brought about advancements in agriculture
that are still in practice to date. The introduction of semi-dwarf varieties that are more responsive to
changing agriculture practices like response to fertilizers was pivotal in bringing the green revolution
by increasing cereal production to meet the population demands particularly in developing countries
like China, India, Brazil, and Egypt [1]. Two genotypes, Norin10 {Rht1 (Rht-B1b) and Rht2 (Rht-D1b)}
and Akakomugi (Rht8), were first incorporated into breeding programs to introduce the semi-dwarf
genes in wheat cultivars in the United States and Italy [2,3].

The development of semi-dwarf cultivars can be attributed to a shorter yet stronger culm that
accommodates high yields and prevents lodging [4,5]. Of the 21 wheat mutants reported to be
associated with height reduction, only Rht-B1b and/or Rht-D1b, Rht8 and Rht12 have been characterized
in detail [6,7]. Rht-B1 and Rht-D1 are two homoeologous genes present on B and D genomes in
hexaploid wheat that code for DELLA proteins, which suppress gibberellin (GA)-responsive growth [8].
Normally, GA regulates binding of the GA insensitive dwarf 1 (GID1) receptor protein with DELLA
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proteins and promotes their degradation. Mutant alleles, Rht-B1b and Rht-D1b, produce DELLA
proteins that do not bind GID1 resulting in growth inhibition due to insensitivity to GA [8]. Similarly,
modulation in GA synthesis or signaling is known to be involved in reducing plant height in different
species. Studies in Arabidopsis, maize [6], rice [9,10], and barley [11], suggest that GA affects the
inter-nodal elongation and thus alters plant height.

Height reduction in present day cultivars of wheat is achieved mainly by Rht-B1b and/or Rht-D1b,
accounting for ~95% of the cultivated wheat around the world [2]. Of the other 19 height mutants
reported in wheat, only Rht8 has been used in some European wheat cultivars. The rest have not been
utilized either because of the lack of genetic characterization or mapping information. The limited
genetic variability in semi-dwarf lines used in breeding programs is becoming a bottleneck for further
wheat improvement, due to the association of some negative effects with the Rht-B1b and Rht-D1b
genes, particularly under abiotic stresses or changing environmental conditions [12]. Currently used
semi-dwarf wheat lines are defective from the perspective of GA, which plays an important role
in the growth and development of the plant. These genotypes display a significant effect on early
seedling growth. Specifically, coleoptile length, first leaf elongation, seedling emergence, and plant
height reduction have been reported in the genotypes carrying Rht-B1b and Rht-D1b compared to
tall parents [6,13]. The GA-responsive Rht12 and Rht13 were reported to reduce plant height with
no adverse effect on the coleoptile and root trait during the seedling stage [14,15]. Rht12 delayed ear
emergence, reducing flag leaf length and grain size, while Rht13 adversely affected the 1000 kernel
weight and flag leaf length. Initially classified as GA-responsive, Rht8 was reported to be involved
in reduced sensitivity to brassinosteroids that resulted in reducing plant height [16]. The 17 other
reduced-height mutants have not been fully characterized. Rht18 was found to be GA-sensitive and
was identified as a possible reduced height mutant candidate for future breeding programs [4,17].
In durum wheat, Rht18 was previously mapped to the short arm of chromosome 6A at the same
locus as Rht14 and Rht16 [17,18]. Applications of exogenous gibberellins (GA3) restored plant height
and other agronomic traits of Rht18 dwarf lines to the wild-type levels, indicating that Rht18 dwarf
mutants are impaired in GA biosynthesis [19]. In this investigation, we have mapped Rht18 to
chromosome 6A using a cross between a pre-green revolution tall line (Indian) devoid of any know
height reducing genes and Rht18 mutant Icaro. The transfer of the Rht18 allele into bread wheat and
the selection of potential semi-dwarf lines with good agronomic characteristics can be useful for wheat
breeding programs.

2. Results and Discussion

2.1. Plant Height of F2 and F2:3 Progenies

The plant height of the F2 population was recorded under controlled environmental conditions in
a greenhouse along with parental lines Indian and Icaro. The height of the tall parent Indian and dwarf
mutant parent Icaro averaged 86 ± 2.82 cm (Mean ± S.E.) and 44 ± 1.02 cm (Mean ± S.E.), respectively
(Figure 1). Of the 94 F2 plants, approximately 55 were within 10 cm of the Icaro height range. Only four
of the plants in the F2 population had a phenotype similar to Indian (86 ± 10 cm). Three of the
originally-sown plants did not grow to maturity. This is expected as sterility is often associated with
the incompatibility among the tetraploid and hexaploid crosses [20,21]. The F2 population had a height
distribution skewed towards the parent Icaro (Figure 1). The skewed distribution towards reduced
height parents was also reported in the Rht3 F2 mapping population [22]. This distribution suggests
that the mutant phenotype is dominant, as only a few plants had the tall phenotype. Interestingly, a few
F2 plants were taller than the tall parent and many were shorter than the dwarf parent. The height
distribution pattern suggests that additional modifier genes might be involved in regulating plant
height. Plant height is known to be a complex trait regulated by interaction and interplay among
major and minor genes [23]. The transgressive segregation observed for plant height might be due
to epistatic gene actions [23]. Transgressive segregation was reported earlier in wheat for several
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agronomic traits, including plant height [24], grain yield and its components [25], heading date, and
vernalization requirement [26]. In a previous study involving Rht8, transgressive segregants were
observed for longer peduncles and grains per spike with no significant change in spike length, spikelet
number, or number of fertile tillers [27]. Additionally, no significant effect was observed on roots,
while a slight decrease in coleoptile length occurred. Partitioning of dry matter to ears was increased
at anthesis, however, dry weight of stems and above-ground biomass, including ears, decreased [27].
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Figure 1. Height distribution in the F2 population. Plant height was grouped into 10 cm series. The star
represents plant height of tall or dwarf mutant parent. The average plant height of Indian is recorded
86 cm (from eight plants) and Icaro as 44 cm (from six plants).

Forty seeds from each individual F2 plant representing the F2:3 progenies were sown in the field
the following summer to evaluate the genotypes of the F2 plants, as it was difficult to classify plants
into distinct categories in F2. The F2:3 population showed segregation for plant height (Figure 2),
with 14 progenies classified as homozygous short, one as homozygous tall, and 54 were classified
as heterozygous. Highly significant effects were found for the plant height (Table 1). For the F2:3

population the height was found to be on average taller than the F2, possibly due to the photoperiod
effect in the field. As seen in the F2 generation, we observed some very dwarf and some very tall plants
in F2:3 progenies (Figure 2), indicating the role of additional modifier genes in transgressive segregation.

Table 1. Analysis of variance (ANOVA) of plant height for the F2:3 population.

Source DF SS MS F Value Pr > F

Model 76 155,138.4 2041.29 14.49 <0.0001
Error 648 9131.879 140.91

Corrected total 724 246,452.3
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difference in spike morphology among the F2 and F2:3 plants (Figure 3). The Indian spike is long and 
had loose spikelets, while the Icaro head is small with compact spikelets (Figure 3). We have observed 
plants with Indian-type heads with awns and Icaro-type heads without awns (Figure 3).  
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Icaro; and (C–H) different F2:3 progenies. 

Figure 2. Plant height distribution among F2:3 families. (A) Indian and Icaro; and (B–H) different
F2:3 families.

2.2. Spike Morphology

Along with the plant height, the F2 population also segregated for awn-less/short or long, black
awns. Among the parents, Indian spikes were awn-less and Icaro spikes bear long black awns (Figure 3).
Among the F2 plants, 55 plants had awns and 36 plants were awn-less. We have also observed a
difference in spike morphology among the F2 and F2:3 plants (Figure 3). The Indian spike is long and
had loose spikelets, while the Icaro head is small with compact spikelets (Figure 3). We have observed
plants with Indian-type heads with awns and Icaro-type heads without awns (Figure 3).
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2.3. Tiller Number

The F2 population displayed a range for the number of tillers per plant ranging from three tillers
per plant to 28 tillers per plant (Figure 4). Fifty-five percent of plants have tiller numbers ranging
from 9 to 15 per plant, resembling the average for both Indian and Icaro, which were approximately
11 and 12 tillers per plant, respectively. The highest tillering plants were usually dwarf and sterile or
contained only a few seeds in a spike. This might be due to incompatibility between the two genotypes.
The higher or lower number of tillers compared to the average of both the parents might be due to
multigenic nature of the trait. Extreme dwarf plants were sterile and did not set seeds. Further, of the
91 F2 lines used for F2:3 field evaluation, only 75 plants produced seed. This is expected for a hexaploid
and tetraploid cross due to pollen viability issues restricting the seed set [28]. Among the plants that
set seeds, some had good seed sets while others only contributed a few per plant.
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Figure 4. Tiller number distribution in the F2 population. The average number of tillers for parents
Indian and Icaro were 11 and 12, respectively.

The variation observed in spike morphology was not associated with the height phenotype each
plant displayed (data not shown). The seed weight did not correlate with plant height. Tiller number
in F2 plants did not associate with the seed weight or number of seeds harvested at maturity (data
not shown). The 100 seed weight for Indian and Icaro were 3.43 g and 3.69 g, respectively. Among
the F2:3 families, the short families had an average 100 seed weight of 2.8 g while the tall families had
3.1 g. The height mutation in wheat is reported to have affected the seed weight compared to the tall
counterpart. Of the studied reduced height mutants, Rht12 reduces the grain weight more compared
to Rht-B1b, Rht-B1c, and Rht8 [29]. The reduction in grain weight might be due to the adverse effect of
Rht18 on grain size [27,30]. In fields conditions, the tiller number per plant was difficult to measure,
hence, was not recorded for the F2:3 plants. The F2:3 families were also evaluated in the field for their
agronomic characteristics to identify the agronomically important plant to be utilized in hexaploid
wheat breeding. We have selected one line (line 29) based on plant height, stem strength, and spike
morphology. More detailed agronomic and molecular analysis will be performed on the selected line
to determine its suitability for utilization in a breeding program.

2.4. Genetic Mapping of Rht18

In order to map the gene on a wheat chromosome, over 700 SSR markers [31] were used to screen
parents Indian and Icaro. Of these, 154 markers showed polymorphism between the parents and
were used to genotype the population. The Rht18 gene was mapped to the short arm of chromosome
6A and was flanked by barc146 and cfd190 (Figure 5). The SSR marker cfd190 was placed at a
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distance of 17.3 cM away from Rht18. Previously, barc003, a marker from the short arm of the
chromosome 6A, was mapped 25.1 cM away from Rht18 in durum wheat [17,32]. Earlier, Rht18 was
mapped on chromosome 6A between barc118 and IWA4371 using recombinant inbred lines (RILs) in
durum wheat [18]. The mapping location of Rht18 in our study is consistent with the previous map
position [17,18]. Recently, several independent single nucleotide variants in the GA2oxA9 gene located
on chromosome 6A were associated with the Rht18 mutant phenotype [33]. GS20xA9 is predicted to
encode GA 2-oxidase, which reduces the amount of bioactive GA (GA1).

Plants 2018, 7, x FOR PEER REVIEW  6 of 9 

 

wheat [18]. The mapping location of Rht18 in our study is consistent with the previous map position 
[17,18]. Recently, several independent single nucleotide variants in the GA2oxA9 gene located on 
chromosome 6A were associated with the Rht18 mutant phenotype [33]. GS20xA9 is predicted to 
encode GA 2-oxidase, which reduces the amount of bioactive GA (GA1).  

 
Figure 5. Genetic linkage map showing the position of Rht18 on chromosome 6A. Genetic distances 
are shown in centiMorgans (cM). 

Reduced-height genes in wheat have been imperative to the agronomic success of the crop. The 
resulting yield increases have been credited to the improved structure of the plant that responded 
better to the agronomic practices in use today. The semi-dwarf phenotype increases resistance to 
lodging along with increasing the number of grains per plants. Incorporating additional reduced-
height genes into breeding programs could help contribute to the diversification of the genotype. 
Considering climate change and the demand for food security, incorporating additional dwarfing 
genes into the germplasm and evaluating their agronomic worth might help to address the wheat 
productivity under a changing climate. As the photoperiod and the background of a genotype affect 
height, a marker close to the gene may assist in easy and precise selection of the locus. Thus, 
identification of SSR markers closer to the Rht18 locus may assist breeders in early identification of 
dwarfing lines for breeding populations. Further, conducting the genomic and agronomic 
characterization of this mutant gene may become instrumental in developing a better dwarfing 
system in wheat. Additionally, we have identified a semi-dwarf line from F2:3 families with superior 
agronomic characters that might have potential to be used in wheat breeding to incorporate the gene 
into the hexaploid background of Pacific Northwest region. 

3. Materials and Methods  

3.1. Plant Materials 

The dwarf parent, Icaro (tetraploid; 4×) (Rht18; PI 503555), was originally derived in 1987 in Italy 
from fast-neutron treatment of cv. Anhinga (PI 428455). The tall line Indian (hexaploid; 6×) (CI 4489), 
was developed at the University of Idaho, Idaho before 1915. As the tall parent is released before the 
introduction of reduced height genes, we presumed that cv. Indian would be devoid of the Rht18 
allele in the background. Both the germplasms were procured from GRIN [34]. 

3.2. F1 and Plant Growing Conditions 

The F1 produced by crossing Indian as the female parent and Icaro as the male parent was self-
pollinated, and 120 F2 seeds were collected. The F2 mapping population was grown at the plant 
growth facility, Washington State University, under controlled conditions of 16 h days (22 °C) and 8 
h (18 °C) nights. For ease of genotyping, 94 randomly-selected F2 plants were selected for further 
analysis. Forty seeds of each F2 plant were grown in three-foot rows at the Spillman Agronomy Farm, 

Figure 5. Genetic linkage map showing the position of Rht18 on chromosome 6A. Genetic distances are
shown in centiMorgans (cM).

Reduced-height genes in wheat have been imperative to the agronomic success of the crop.
The resulting yield increases have been credited to the improved structure of the plant that responded
better to the agronomic practices in use today. The semi-dwarf phenotype increases resistance to
lodging along with increasing the number of grains per plants. Incorporating additional reduced-height
genes into breeding programs could help contribute to the diversification of the genotype. Considering
climate change and the demand for food security, incorporating additional dwarfing genes into the
germplasm and evaluating their agronomic worth might help to address the wheat productivity under
a changing climate. As the photoperiod and the background of a genotype affect height, a marker close
to the gene may assist in easy and precise selection of the locus. Thus, identification of SSR markers
closer to the Rht18 locus may assist breeders in early identification of dwarfing lines for breeding
populations. Further, conducting the genomic and agronomic characterization of this mutant gene
may become instrumental in developing a better dwarfing system in wheat. Additionally, we have
identified a semi-dwarf line from F2:3 families with superior agronomic characters that might have
potential to be used in wheat breeding to incorporate the gene into the hexaploid background of Pacific
Northwest region.

3. Materials and Methods

3.1. Plant Materials

The dwarf parent, Icaro (tetraploid; 4×) (Rht18; PI 503555), was originally derived in 1987 in Italy
from fast-neutron treatment of cv. Anhinga (PI 428455). The tall line Indian (hexaploid; 6×) (CI 4489),
was developed at the University of Idaho, Idaho before 1915. As the tall parent is released before the
introduction of reduced height genes, we presumed that cv. Indian would be devoid of the Rht18 allele
in the background. Both the germplasms were procured from GRIN [34].
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3.2. F1 and Plant Growing Conditions

The F1 produced by crossing Indian as the female parent and Icaro as the male parent was
self-pollinated, and 120 F2 seeds were collected. The F2 mapping population was grown at the plant
growth facility, Washington State University, under controlled conditions of 16 h days (22 ◦C) and
8 h (18 ◦C) nights. For ease of genotyping, 94 randomly-selected F2 plants were selected for further
analysis. Forty seeds of each F2 plant were grown in three-foot rows at the Spillman Agronomy Farm,
Pullman, WA for phenotypic screening. Four rows were planted in each plot with a row-to-row and
plot-to-plot spacing of one foot. Each row represented progeny of a single F2 plant. The seeds were
planted mechanically using four planter drills and the plants were grown until maturity using the
standard regional agricultural practices with no irrigation.

3.3. Phenotypic Screening

The phenotypic data for height, awns, tiller number, and seed weight was collected for the F2

and F2:3 populations. The plant height was recorded at maturity to the nearest cm excluding the
awns. The population was characterized into tall, intermediate, and dwarf based on the plant height at
maturity. Tiller numbers were counted manually per plant and seed weight was measured for each
individual plant.

3.4. DNA Isolation and Genotyping

Young leaf tissue of F2 plants was collected in 96-well DNA extraction plates. Four, 2-cm long
leaf segments were clipped and lyophilize for three days. The lyophilized tissue was used for DNA
isolation using a modified SDS extraction method [35]. The DNA was diluted to a final concentration
of 25 ng/µL. Primer sequence information for simple sequence repeat (SSR) markers were obtained
from GrainGenes website [36].

Over 700 SSR markers were first screened for polymorphism between the parental genotypes.
The PCR was performed in 12 µL reaction volume containing 1× NEB reaction buffer, 200 µM of
dNTPs, 2.5 mM MgCl2, 0.05 µM forward primer, 0.25 µM reverse primer, 0.2 µM M13 forward-labeled
primer, and 1U homemade Taq polymerase. For multiplexing, the M13 sequence was fluorescently
labeled separately with FAM, HEX, NED, and PET dyes. The amplification of SSR loci was performed
using the protocol consisted of 94 ◦C/4 min for initial denaturation, followed by 37 cycles (94 ◦C/30 s,
60 ◦C/45 s, 72 ◦C/60 s), with final extension at 72 ◦C/10 min. The amplification products were
separated using ABI DNA analyzer 3100 (Applied Biosystems Inc., Carlsbad, CA, USA). Alleles were
sized relative to internal size standard (cassual445 labeled with Dy630) using GeneMarker software
(Softgenetics, State College, PA, USA). MapMaker 2.0 was used to construct the genetic linkage map
using the Kosambi mapping function [37,38].
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