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Abstract

Background: Levels of sex hormone-binding globulin (SHBG) and the androgen testosterone have been associated
with risk of diseases throughout the lifecourse. Although both SHBG and testosterone have been shown to be
highly heritable, only a fraction of that heritability has been explained by genetic studies. Epigenetic modifications such
as DNA methylation may explain some of the missing heritability and could potentially inform biological knowledge of
endocrine disease mechanisms involved in development of later life disease. Using data from the Avon Longitudinal
Study of Parents and Children (ALSPAC), we explored cross-sectional associations of SHBG, total testosterone
and bioavailable testosterone in childhood (males only) and adolescence (both males and females) with
genome-wide DNA methylation. We also report associations of a SHBG polymorphism (rs12150660) with DNA
methylation, which leads to differential levels of SHBG in carriers, as a genetic proxy of circulating SHBG levels.

Results: We identified several novel sites and genomic regions where levels of SHBG, total testosterone, and
bioavailable testosterone were associated with DNA methylation, including one region associated with total
testosterone in males (annotated to the KLHL31 gene) in both childhood and adolescence and a second region
associated with bioavailable testosterone (annotated to the CMYA5 gene) at both time-points. We also identified one
region where both SHBG and bioavailable testosterone in males in childhood (annotated to the ZNF718 gene) was
associated with DNA methylation.

Conclusion: Our findings have important implications in the understanding of the biological processes of SHBG
and testosterone, with the potential for future work to determine the molecular mechanisms that could
underpin these associations.
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Background
Epigenetic modifications such as DNA methylation can
alter gene expression without changing underlying DNA
sequences. Aberrant DNA methylation changes are
known to be involved in causing disease, the most
well-known examples being Rett syndrome [1] and cancer
[2]. Differential DNA methylation has also been shown to
be involved in common diseases such as type 2 diabetes
[3]. There is much interest in such associations due to the

potential to explain ‘missing’ heritability and inform bio-
logical knowledge of disease mechanisms that may lead to
successful preventative or therapeutic interventions
through drug development [4, 5].
Levels of sex hormone-binding globulin (SHBG) and

testosterone have been previously associated with vari-
ous diseases such as metabolic syndrome [6], type 2
diabetes [7, 8] and hormone-dependent cancers [9–11].
Response to androgens such as testosterone has been
indicated to have an important role in prostate cancer
progression [12]. Variation in SHBG and testosterone
has been shown to be highly heritable [13–15] and pre-
vious genome-wide association studies have identified
common variants strongly associated with both testos-
terone and SHBG [16, 17]. Although these variants
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explain a large portion of the heritability of testosterone
and SHBG, there remains a large amount of unexplained
heritability in both traits. Differential DNA methylation
may further serve as a marker of future disease risk or
may even mediate the effect of sex hormones on endo-
crine disease onset and progression.
The DNA-binding domains of androgen and estrogen

receptors, like almost all nuclear receptors, have been
shown to induce chromatin remodeling activity (conver-
sion of euchromatin to inactive heterochromatin and
vice-versa) [18] indicating a potentially direct role of sex
hormones in epigenetic processes. Sex hormones are
also thought to be involved in DNA methylation
processes underpinning sexual differentiation, with evi-
dence from animal models indicating that masculinizing
genes in the fetal brain are subject to regulation by DNA
methyltransferases [19]. In human populations, on an
epigenome-wide level, previous studies have reported
conflicting results regarding associations of sex hor-
mones with DNA methylation and have been limited to
assessing average methylation across the genome or in
genomic repeats [20, 21]. Site-specific DNA methylation
changes have not been assessed and therefore little can
be concluded as to the effect of sex hormones on
specific genes or biological pathways.
In this study, we explore associations of SHBG and tes-

tosterone with epigenome-wide DNA methylation in both
childhood (for males) and adolescence (for males and
females) that may a) explain some of the missing heritabil-
ity of sex hormone levels and b) mediate risk of disease in
later-life. We use complementary observational and genetic
epidemiology approaches to strengthen our conclusions.

Methods
Data
Study population
The Avon Longitudinal Study of Parents and Children
(ALSPAC) recruited 14,541 pregnant women resident in
the former county of Avon, UK with expected dates of
delivery 1st April 1991 to 31st December 1992. There
were 14,541 initial pregnancies, for which the mother
enrolled in the ALSPAC study and had either returned
at least one questionnaire or attended a “Children in
Focus” clinic by the 19th July 1999. Of the initial preg-
nancies, there were a total 14,062 live births and 13,988
children were alive at 1 year of age. The cohort profile
paper describes the phases of enrolment in more detail
[22]. A searchable data dictionary on the study website
contains details of the data http://www.bris.ac.uk/alspac/
researchers/data-access/data-dictionary/. All ALSPAC
participants provided written informed consent. The
ALSPAC Law and Ethics Committee and the local
Research Ethics Committees (Bristol and Weston Health
Authority: E1808, Southmead Health Authority: 49/89

and the Frenchay Health Authority: 90/8) granted initial
ethical approval for the study, in accordance with the
guidelines of the Declaration of Helsinki. Subsequent
follow-up data collection was granted ethical approval
from ethics committees as specified in Additional file 1.

DNA methylation data
DNA methylation data was available for approximately
1000 mother-child pairs under ARIES, the Accessible
Resource for Integrated Epigenomics Studies [21]. DNA
methylation was assayed using the Illumina Infinium
HumanMethylation 450 k BeadChip platform which
measures methylation status of over 480,000 CpG sites
across the genome. DNA methylation measures assayed
at approximately 7.5 years (childhood) and 16.5 years
(adolescence) were used in all analyses. Pre-processing
of peripheral blood samples was performed as previously
described [23]. A complete description of the DNA
methylation data can be found in Additional file 1.

Hormone data
Males
SHBG and total testosterone were measured using
enzyme-linked immunosorbent assays in a subset of 513
male ALSPAC participants at 9.9 and 17.8 years of age.
The quantification methods and assay standardisations
used on male samples has been previously described
[24]. Male measures of total testosterone were standard-
ized by time-of-venipuncture (since testosterone displays
a circadian rhythm) by using multilevel modelling to
predict testosterone at a standard time of day, as
described previously [24]. Measures of bioavailable
testosterone were derived from measures of total testos-
terone (not corrected for time-of-venipuncture or exact
age) and SHBG as previously described [24]. A complete
description of the male hormone assays is available in
Additional file 1.

Females
For the female samples, one SHBG and one total testos-
terone measure was made on serum samples obtained
from females at 15.5 years. Assays in females were con-
ducted at a different time and in a different way to those
in males. Standardization by time-of-venipuncture was
not performed on samples from females. A complete
description is available in Additional file 1.

Genetic data
Genetic data for the ALSPAC children were generated
by Sample Logistics and Genotyping Facilities at the
Wellcome Trust Sanger Institute and LabCorp (Labora-
tory Corporation of America) with support from
23andMe using the Illumina Human Hap 550-quad and
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the Illumina GenomeStudio calling algorithm. Details of
genetic data QC can be found in Additional file 1.

Statistical analyses
EWAS
Multiple linear regression was used to model methyla-
tion as the outcome and a measure of either SHBG or
testosterone as the exposure. All measures of SHBG and
testosterone were standardized to the mean (z-scored)
to enable comparisons across time-points. Measures of
SHBG or testosterone at 9.9 years were paired with
DNA methylation at 7.5 years, and measures at 17.8
years were paired with DNA methylation at 16.5 years.
Measures of SHBG and testosterone were therefore
prospective (measured after the DNA methylation).
However, in all models SHBG and testosterone were
considered the exposures and DNA methylation the out-
come. Results were corrected for multiple testing by
controlling for the expected proportion of false-positives
(FDR-adjusted p-value< 0.05). All analyses were stratified
by sex, with males and females in separate models and
all models were adjusted for batch effects and residual/
unknown confounding by use of maximum 10 surrogate
variables (SVs) using the sva R package [25]. Addition-
ally, models were adjusted for maternal smoking during
pregnancy, maternal age, parity, maternal education and
estimated cell-counts derived using a reference dataset
[26] and the Houseman method [27]. EWAS models
were run in R version 3.2.2 using the CpGassoc package
[28]. Results of fully adjusted models that include all the
above-mentioned confounders are those presented in
the results. Descriptions of the EWAS covariates can be
found in Additional file 1.

EWAS of genotype
Observational associations between hormones measured
from peripheral blood and DNA methylation are subject
to confounding and reverse causation. Common genetic
variants, such as SNPs, however, are randomised at birth
and are therefore not subject to the same confounding
structures. Therefore, we explored associations of DNA
methylation with the rs12150660 polymorphism previ-
ously found to be associated with SHBG (p = 2 × 10− 106)
[16]. Up to 7.8% of the variation in SHBG in males and
3.3% of the variation in females is estimated to be due to
the rs12150660 variant [16]. The polymorphism is in
strong linkage disequilibrium (LD) with a nearby penta-
nucleotide repeat that is thought to directly affect SHBG
expression levels [29]. A sex-stratified EWAS of the vari-
ant was performed, as a proxy for SHBG, in both child-
hood and adolescence, as we hypothesized that the
effects of the polymorphisms would be different between
males and females and would also differ prepubertally vs
postpubertally. We adjusted for batch effects (by use of

max 10 SVs), estimated cell counts and participants age
but not for maternal confounders as we considered the
variant independent of this type of maternal confound-
ing. We also excluded CpGs on chromosome 17, the
same chromosome as the variant since associations
observed with CpGs on the same chromosome as the
genetic variant are likely driven by LD.

DMR analysis
Differentially methylated regions (DMRs) were deter-
mined using comb-p [30]. Briefly, comb-p is a statistical
software package that combines adjacent p-values based
on calculations of their auto-correlation and assigns
significance to regional enrichment after adjustments for
multiple testing. It calculates adjusted p-values for each
probe that accounts for the local correlation of that
probe with its neighbouring probes. Probe-level p-values
are then adjusted by using the Benjamini-Hochberg pro-
cedure, resulting in multiple testing corrected p-values
for probes that are independent of their neighbouring
CpGs. Next, Comb-p finds regions of differentially
methylated regions and calculates p-values for the re-
gions based on correlation (Stouffer-Liptak-Kechris
(SLK) p-value). DMR p-values are finally adjusted using
the Šidák correction based on the size of the region and
number of possible regions of that size. Because comb-p
combines p-values and does not consider effect sizes of
individual CpGs, we additionally removed DMRs if more
than half of the CpGs comprising that DMR had a re-
gression coefficient with an absolute effect size of less
than 0.01 (a 1% change in methylation per SD increase
in exposure). DMR analysis was performed on all EWAS
model results. A window size of 500 bases was used with
the minimum number of significant probes required to
start a DMR set to 2. We also excluded DMRs if they
were comprised of only 2 CpGs with one of the two
CpGs having an effect in the reverse direction to the
other. Šidák corrected p-values < 0.05 were considered
statistically significant.

Sensitivity analyses
Since only measures of total testosterone in males were
standardized for time-of-venipuncture, we performed a
sensitivity analysis adjusting for time-of-venipuncture as
a covariate in the EWAS of bioavailable testosterone in
order to determine the effects of circadian rhythm on
the results. In the first of two sensitivity analyses,
time-of-venipuncture was converted to a continuous
measure by dividing the minutes of the hour in to
100ths and adding them to the hour. However, as the
effects of time-of-venipuncture are unlikely to be linear,
we performed a second sensitivity analysis where we ad-
justed for time as a categorical measure. We split time
of day in to four approximately equal categories of 2-h
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increments; before (or at) 1000 h, 1000–1200 h, 1200–
0200 h, and any time after 0200 h. We compared results
of the EWAS sensitivity analyses with the main results.

Results
Sample characteristics
The distributions of SHBG, total testosterone, and bio-
available testosterone can be seen in Additional file 1:
Figures S1, S2 and S3 respectively. Distributions of con-
founder data can be seen in Table 1. Females with data
on SHBG and total testosterone in adolescence were
more likely to have a mother of low education level
(O-levels or lower) than males at the adolescent
time-points.

EWAS
There were no single-site associations for either SHBG,
total testosterone, or bioavailable testosterone in any of the
EWAS in males. None of the CpG sites survived FDR cor-
rection for multiple testing (FDR adjusted p-value< 0.05).
There were 3 CpGs associated with SHBG in females in
adolescence. These CpGs mapped to HTRA1 (cg01962937,
p = 1.18E-07), DET1 (cg08724901, p = 2.70E-07) and
EPHB3 (cg06577604, p = 4.36E-07) genes (Fig. 1). However,
effect sizes were small for all 3 CpGs (Additional file 2:
Table S6). There was little evidence of inflation in adjusted
models of total testosterone or bioavailable testosterone,
assessed using the lambda (λ) inflation statistic and
QQ-plots (Additional file 1: Figures S4, S5 and S6). Simi-
larly, for SHBG there was little evidence of inflation, except
for the female time-point at 15.5 years, where λ = 1.17 and
some inflation was visible in the QQ-plot.
In the EWAS of SHBG genotype, the number of indi-

viduals with available data was N = 409 for adolescent
males, N = 433 for adolescent females, N = 420 for male
children and N = 421 for female children. There were no

single site associations in any of the models for females
or males. There was little evidence for inflation in any of
the models, except for adolescent females where λ = 1.13
(Additional file 1: Figure S7).
Full results of each EWAS model are available in

Additional file 2.

DMRs
There was 1 DMR associated with SHBG in childhood
in males, annotated to the ZNF718 gene (Table 2).
There were no DMRs associated with SHBG in adoles-
cence in males. In females, there were 2 DMRs associ-
ated with SHBG in adolescence in females. There were
no DMRs associated with testosterone in adolescence
in females (Table 2).
In males, there were 3 DMRs associated with total tes-

tosterone in childhood and 3 DMRs associated with total
testosterone in adolescence (Šidák corrected p-value <
0.05), with one DMR in common between the two
time-points on chromosome 6, annotated to the KLHL31
gene (Fig. 2) where an increase in total testosterone was
associated with a decrease in DNA methylation at that
locus. There were 3 DMRs associated with bioavailable
testosterone in childhood and 1 DMR associated with bio-
available testosterone in adolescence. There was one DMR
in common between the two time-points on chromosome
5, annotated to the CMYA5 gene (Fig. 3). where an in-
crease in bioavailable testosterone was associated with a
decrease in DNA methylation at that locus. There was no
overlap between DMRs in males and females from the
bioavailable testosterone models, the total testosterone
models or the SHBG models.
There was one DMR in common between the models of

SHBG and bioavailable testosterone in childhood in males
annotated to the ZNF718 gene on chromosome 4. The ef-
fect sizes were reversed between models with a maximum

Table 1 Descriptive statistics of the different EWAS time-points with distributions of covariates

Agea (months) [sd] N Sex N Parity
(nulliparous) [%]

N Maternal smoking
(never) [%]

Maternal age
(years) [sd]

N Maternal education
(O-levels or lower) [%]

SHBG

117.8 [2.7] 113 Males 54 [47.8] 100 [88.5] 30.5 [4.2] 45 [39.8]

184.7 [3.4] 359 Females 179 [49.9] 314 [87.5] 29.6 [4.2] 180 [50.1]

211.8 [3.9] 114 Males 55 [48.2] 103 [90.4] 30.9 [4.4] 41 [36.0]

Total testosteroneb

117.8 [2.7] 113 Males 54 [47.8] 100 [88.5] 30.5 [4.2] 45 [39.8]

184.8 [3.4] 375 Females 182 [48.5] 329 [87.7] 29.6 [4.2] 191 [50.9]

211.8 [3.9] 113 Males 55 [48.7] 102 [90.3] 30.9 [4.4] 40 [35.4]

Bioavailable testosterone

117.8 [2.7] 113 Males 54 [47.8] 100 [88.5] 30.5 [4.2] 45 [39.8]

211.8 [3.9] 113 Males 55 [48.7] 102 [90.3] 30.9 [4.4] 40 [35.4]
aAge at time of hormone measurement
bTotal testosterone standardized for exact age and time-of-venipuncture in males but not in females
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0.018 increase in methylation beta per SD increase in
SHBG, and a maximum 0.019 decrease in methylation beta
per SD increase in bioavailable testosterone at CpGs com-
prising that DMR.
In the EWAS of SHBG genotype, there were 2 DMRs

associated with rs12150660 in childhood for females

annotated to the FZD7 and TMEM132D genes. There
was 1 DMR associated with rs12150660 in adolescent
females annotated to the ACY3 gene. The were no
DMRs associated with the genotype in males in either
childhood or adolescence (Table 3). None of the DMRs
overlapped between models and there was no overlap

Fig. 1 Manhattan plot of SHBG in females (adolescence)

Table 2 Differentially methylated regions (DMRs) associated with SHBG, total testosterone and bioavailable testosterone

Differentially methylated
region (DMR)

N CpGs Ŝidak p-value Gene Rangea

SHBG

Adolescence

Females Chr8:57350735–57351068 5 1.1E-04 – 0.014, 0.035

Females Chr16:53407594–53407809 3 3.8E-03 – 0.011, 0.031

Childhood

Males Chr4:124232–124623 3 9.9E-04 ZNF718 0.0053, 0.018

Total testosterone

Childhood

Males Chr3:126911727–126911954 4 8.4E-06 – − 0.038, − 0.015

Males Chr10:10337051–10337313 2 1.4E-04 – −0.034, − 0.02

Males Chr6:53530503–53530629 4 2.6E-04 KLHL31 −0.022, − 0.0091

Adolescence

Males Chr6:53530503–53530629 4 1.1E-05 KLHL31 −0.022, − 0.012

Males Chr4:57547347–57547700 2 9.5E-04 HOPX −0.035, − 0.027

Males Chr15:93580022–93580328 4 1.3E-03 – −0.055, − 0.013

Bioavailable testosterone

Childhood

Males Chr4:124232–124694 4 9.3E-09 ZNF718 −0.019, − 0.0064

Males Chr5:78985432–78985593 7 2.4E-04 CMYA5 −0.031, − 0.024

Males Chr15:26874098–26874364 3 8.0E-03 GABRB3 −0.037, − 0.024

Adolescence

Males Chr5:78985432–78985901 8 6.5E-05 CMYA5 −0.044, − 0.022
aRange of effect sizes observed across CpGs comprising that DMR reported to 2 significant figures, where estimates are change in methylation beta per SD
increase in SHBG or testosterone
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between DMRs from the EWAS of genotype and those
from the observational EWAS.
Full results for both the genetic and the observational

DMR analysis can be seen in Additional file 3.

Sensitivity analyses
In a series of sensitivity analyses exploring the effects of
circadian rhythm of testosterone on EWAS results we
determined that time-of-venipuncture did not have a
substantial effect on detected associations. Adjusting
EWAS models of bioavailable testosterone in males in
adolescence for time-of-venipuncture as a continuous
measure or as a categorical measure did not attenuate
the associations of the detected DMRs. Similarly, for
bioavailable testosterone in childhood all 3 DMRs
remained associated with the trait (Ŝidak p-value< 0.05)
following adjustment. We did not perform the same
sensitivity analysis for testosterone in females as we did
not detect any associations in the unadjusted models

and inflation was low (λ = 0.90) indicating little unex-
plained confounding.

Discussion
In this epigenome-wide association study, the first to
explore cross-sectional associations of SHBG and
testosterone with genome-wide DNA methylation, we
identified several single-sites and regions associated
with SHBG and testosterone. One region annotated
to the CMYA5 gene in males that appeared to be
differentially methylated in both childhood and ado-
lescence, with an increase in bioavailable testoster-
one associated with a decrease in methylation. We
also identified one region mapping to the KLHL31
gene, with an increase in total testosterone in males
in both childhood and adolescence associated with a
decrease in DNA methylation. The fact that DNA
methylation associations at these two regions persists
over time may indicate that the sites are influenced
by underlying genetics. However, neither of the two

Fig. 2 Comparison of Chr6[KLHL31] DMR associated with total testosterone in males in (a) childhood (at 7.5 years of age), (b) adolescence (at 16.5
years of age)
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genes have ever been identified in previous GWAS
of SHBG or testosterone.
We considered the study underpowered to attempt a lon-

gitudinal analysis at a genome-wide level using the current
dataset, as modelling change over time would most prob-
ably require far larger sample sizes. Attempting to identify
methylation signals in childhood that predict later hormone
levels would similarly require far larger numbers.

Notably, we did not detect any overlap between the
DMRs from the EWAS of SHBG genotype (rs12150660
variant) and those from the observational EWAS. This may
indicate that associations in the observational EWAS are
due to reverse causation (i.e. DNA methylation causing
changes in SHBG or testosterone) or due to unmeasured
confounding. Whereas the genetic variant may be expected
to proxy average lifetime exposure to SHBG up until the

Fig. 3 Comparison of Chr5[CMYA5] DMR associated with bioavailable testosterone in males in (a) childhood (at 7.5 years of age), (b) adolescence
(at 16.5 years of age)

Table 3 DMRs associated with the rs12150660 SHBG polymorphism

Differentially methylated region (DMR) N CpGs Ŝidak p-value Gene Rangea

SHBG genotype

Childhood

Females Chr2:202901045–202901471 5 1.9E-03 FZD7 0.026, 0.046

Females Chr12:130060028–130060081 2 9.9E-03 TMEM132D 0.009, 0.018

Adolescence

Females Chr11:67418045–67418406 10 7.8E-06 ACY3;SMAD3 −0.024, −0.0036
aRange of effect sizes observed across CpGs comprising that DMR, where estimates are change in methylation beta per copy of rs12150660 variant allele
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time of DNA methylation measurement (that includes in
utero effects), SHBG measured from peripheral blood may
capture a more temporal effect of SHBG on DNA methyla-
tion, potentially explaining the lack of overlap. There was
also no overlap between the two sexes, indicating that
SHBG and testosterone may have sex-specific effects on
DNA methylation.
We assessed the effects of circadian rhythm on bio-

available testosterone in males and found little evidence
of any confounding effects of time-of-day. Whether
SHBG is also subject to diurnal variation has not been
precisely determined [31]. In our sample, we assessed
the effects of diurnal variation on the testosterone-DNA
methylation associations and found little effect or
attenuation of signal following adjustments. We there-
fore considered any potential effect of diurnal variation
of SHBG (where previous evidence of variation is less
clear) to be relatively minor.
We observed consistently high inflation of p-values,

assessed using the inflation factor lambda, in the EWAS
of SHBG in females when compared to other models. In
both the EWAS of SHBG genotype and the EWAS of
serum SHBG, inflation lambda was greater than 1.13 in-
dicating residual confounding or unexplained variation.
Given the excess significance in models of SHBG in fe-
males, the single-site associations observed between
DNA methylation at 3 CpGs and SHBG in that model
may represent false positives. However, since high infla-
tion was not observed in other models, this observation
may be consistent with SHBG having multiple small
effects on DNA methylation throughout the epigenome
in post-pubertal females.

Functional significance
If SHBG and testosterone do causally influence blood
DNA methylation in the general population under
normal physiological conditions, perturbations in
DNA methylation and expression levels of the anno-
tated genes may indicate hypogonadism or hypergo-
nadism, as well as other diseases such as type-2
diabetes that SHBG has been previously causally
linked to [7]. Disruptions to these DNA methylation
patterns has also been suggested to be tied to the de-
velopment of other endocrine diseases [32] and may
also mark onset of diseases such as prostate cancer,
in which sex hormones such as testosterone have
been shown to be involved [33]. Further investigation
of the biological mechanism behind these associations
may provide important mechanistic understanding of
the regulatory processes of SHBG and testosterone.
Associations may also have important prognostic
value in the progression of diseases such as type-2
diabetes and prostate cancer.

We did not identify enough CpGs between the
single-site analysis and the analysis of DMRs to provide
sufficient statistical power to perform a functional ana-
lysis. We instead performed a literature search of the
two genes, CMYA5 and KLHL31, annotated to DMRs
intersecting the child and adolescence models. Both
genes were found to be involved in skeletal and/or
cardiac muscle regeneration. The CMYA5 gene encodes
myospryn, a protein expressed predominantly in car-
diac/skeletal muscle, with a suggested role in muscle re-
generation [34, 35]. Previous disease associated with
CMYA5 include Duchenne muscular dystrophy [36, 37]
and schizophrenia [38]. The KLHL31 gene encodes
kelch-like protein 31, a protein involved in skeletal
muscle myogenesis [39]. Polymorphisms in KLHL31
have previously been associated with loin muscle area in
porcine models [40]. This hypothetical biological path-
way requires further interrogation, but would be of
interest due to the anabolic insights it might uncover
and therefore potential mechanisms that might be rele-
vant to muscle wastage (cachexia).

Strengths and limitations
One of the major strengths of our study is the ability to
compare cross-sectional time-points of DNA methyla-
tion and hormone exposures, making pairwise compari-
sons of EWAS results between different measures in
both sexes. We have also strengthened our conclusions
by combining observational evidence from EWAS of
serum/plasma SHBG and testosterone with that using
SHBG genotype.
We were however restricted by a small sample size,

particularly in EWAS of male hormone measures. In fe-
male models, sample size was larger but EWAS may still
have suffered from low power, particularly if SHBG and
testosterone have only small effects on the epigenome.
Similarly, for the EWAS of SHBG genotype where the
genetic variant explains only a fraction of variation in
circulating SHBG, the analyses may have been under-
powered to detect small effects. We have not attempted
to replicate our results in a different collection of data as
we were restricted by the scarcity of cohorts with both
DNA methylation and sex hormone data. Future studies
should focus on attempting to confirm the current re-
sults in further datasets.
We were further limited by opportunistic availability

of the data, with total testosterone available only in stan-
dardized (for time-of-venipuncture and exact age) form
and bioavailable testosterone available only in raw un-
adjusted form. Furthermore, female measurements were
assayed from serum at a different time and using differ-
ent methods to the male data which was assayed from
plasma. Although we do not expect to see differences
between serum and plasma (serum is simply plasma that
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has clotted), the different methods used reduce our
ability for comparisons between the two sexes due to po-
tential batch effects.
The male measures of SHBG and testosterone used in

our analyses have been previously compared to pub-
lished reference datasets, with results indicating that the
values fall within the expected ranges [24]. However, 136
testosterone samples (26.5% of the total sample) from
the childhood time-point were set to the lowest assay
sensitivity cutoff as testosterone levels were below the
assay sensitivity threshold, potentially resulting in bias
towards the null. This is a common problem of assays of
testosterone in prepubertal males, where serum/plasma
testosterone levels are low. We were unable to assess the
effects of maternal sex hormones on the observed asso-
ciations. However, previous evidence has indicated that
effects of maternal exposures on the offspring epige-
nome attenuate after the early pre-natal period [41] and
are unlikely to impact our results substantially.
We could only assess associations for a fraction of

sites in the epigenome since the coverage of the array
used for measuring DNA methylation (HumanMethyla-
tion450 Beadchip array) is limited (70). Additionally,
DNA methylation was measured in peripheral blood
which may not be the most relevant tissue in which to
assess the effects of sex hormones. Cell type proportions
for the peripheral blood samples were estimated from
the DNA methylation data using an external reference.
This method of deriving cell counts has been previously
validated (71) and is commonly used, however, derived
cell counts but may be an imprecise estimation of true
cell type proportions.

Conclusion
We have identified several novel sites and genomic
regions where levels of SHBG, total testosterone and
bioavailable testosterone are associated with DNA
methylation. We also report several associations of a
polymorphism in the SHBG gene which leads to differ-
ential levels of SHBG in carriers with DNA methylation.
Findings have important implications in the understand-
ing of biological processes of SHBG and testosterone,
with the potential for future work to determine the mo-
lecular mechanisms that underpin these associations
that may be involved in endocrine disease processes.
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