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Introduction

The term autophagy (from ancient Greek, αυτο/auto = “self” + 
φαγos, φαγεĩν/phagein = “to eat”; i.e., self-eating) cumulatively 

refers to a group of catabolic mechanisms involved in the main-
tenance of cell and tissue homeostasis in all eukaryotes. Autoph-
agy plays an essential role in multiple physiological processes, 
including development, differentiation, normal growth and 
immunity.1-3 In line with this notion, defects in the executioner 
and regulatory mechanisms of autophagy have been involved in 
the etiology of a panel of clinically relevant disorders, including 
infectious, neurodegenerative and neoplastic diseases.1,4-6

Mammalian cells are endowed with at least 3 distinct autoph-
agic pathways: macroautophagy, microautophagy, and chaper-
one-mediated autophagy.7,8 Macroautophagy (herein referred to 
as autophagy, for the sake of simplicity) is a highly conserved 
mechanism responsible for lysosomal degradation of cytoplas-
mic components, including invading pathogens, cytotoxic pro-
tein aggregates and damaged organelles.2,8 Autophagy relies 
on a peculiar double-membraned vesicle commonly known as 
autophagosome.9 Autophagosomes are generated in the cyto-
plasm from precursor organelles known as phagophores, which 
progressively enwrap the material to be degraded and – upon clo-
sure – fuse with lysosomes.9-11 This activates H+ pumps to lower 
the pH of the lysosomal lumen and hence unleash the catabolic 
activity of lysosomal hydrolases. The products of the degrada-
tion of the autophagic cargo eventually reach the cytosol through 
lysosomal permeases, hence becoming available for reuse in bio-
synthetic metabolic circuitries.12 A detailed description of the 
autophagic machinery and its regulators goes largely beyond the 
scope of the present Trial Watch and can be found in references 
8, 9, and 13–18.

Although autophagosomes were initially believed to take 
up cytoplasmic material in a relatively non-selective fashion, a 
growing body of evidence has revealed the existence of highly 
specialized autophagic pathways that selectively recognize their 
substrates. As a standalone example, mitophagy has been shown 
to specifically eliminate superfluous or damaged mitochondria, 
hence operating as a key quality control mechanism.19-21
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Macroautophagy (herein referred to as autophagy) is a 
highly conserved mechanism for the lysosomal degradation of 
cytoplasmic components. Autophagy is critical for the mainte-
nance of intracellular homeostasis, both in baseline conditions 
and in the context of adaptive responses to stress. in line with 
this notion, defects in the autophagic machinery have been 
etiologically associated with various human disorders includ-
ing infectious, inflammatory and neoplastic conditions. Once 
tumors are established, however, autophagy sustains the sur-
vival of malignant cells, hence representing an appealing tar-
get for the design of novel anticancer regimens. Accordingly, 
inhibitors of autophagy including chloroquine and hydroxy-
chloroquine have been shown to mediate substantial antineo-
plastic effects in preclinical models, especially when combined 
with chemo- or radiotherapeutic interventions. The pharma-
cological profile of chloroquine and hydroxychloroquine, 
however, appear to involve mechanisms other than autophagy 
inhibition. Here, we discuss the dual role of autophagy in onco-
genesis and tumor progression, and summarize the results or 
design of clinical studies recently completed or initiated to 
evaluate the therapeutic activity of chloroquine derivatives in 
cancer patients.
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Beside operating to preserve cellular homeostasis in physi-
ological conditions, autophagy responds to a wide variety of 
perturbations including nutrient and growth factor deprivation, 
hypoxia, pathogen invasion, and exposure to cytotoxic agents.2,22 
In this setting, autophagy generally orchestrates a cell-wide adap-
tive response that aims at (1) physically removing the initiating 
stimulus (when possible), (2) coping with its cytotoxic effects, 
and (3) re-establishing cellular homeostasis. Thus, autophagy 
most often constitutes a cytoprotective response allowing cells to 
adapt to stressful conditions.23,24 However, in a limited number of 
scenarios, including the development of Caenorhabditis elegans25 
and Drosophila melanogaster cells,26-28 as well as the exposure of 
cancer cells to specific stimuli,29-32 autophagy appears to mediate 
(at least in part) cell death. Only in such settings, i.e., when the 
pharmacological or genetic inhibition of the autophagic machin-
ery delays (rather than accelerates) cell death, the term “autoph-
agic cell death” should be employed to indicate a specific cell 
death subroutine.24,33,34

Along the lines of the Trial Watch series published on a 
monthly basis in OncoImmunology,35-38 here we summarize the 
dual role of autophagy in oncogenesis and tumor progression and 
discuss recent clinical trials investigating the use of chloroquine 
(CQ), hydroxychloroquine (HCQ) in cancer patients. Impor-
tantly, although these agents were initially tested in oncological 
scenarios owing to their ability to inhibit autophagy, it is now 
clear that their therapeutic effects involve other mechanisms.39-41

Autophagy and Cancer

A large body of evidence suggests that the relationship 
between autophagy and cancer is complex.42,43 On the one hand, 
autophagy appears to inhibit malignant transformation, reflect-
ing its capability to limit the accumulation of potentially onco-
genic entities like depolarized mitochondria (which overproduce 
potentially genotoxic reactive oxygen species, ROS). On the other 
hand, autophagy supports the progression and metastatic dissem-
ination of established tumors, increasing the ability of malignant 
cells to cope with adverse microenvironmental conditions like 
nutrient deprivation and hypoxia (two common denominators of 
rapidly growing solid tumors).

Autophagy in oncogenesis
 Several distinct genetic manipulations that compromise (at 

least to some extent) the proficiency of the autophagic machin-
ery have been shown to increase the propensity of laboratory 
animals to develop neoplastic lesions, be them spontaneous, 
genetically driven or chemically induced. This applies to the 
monoallelic loss of Beclin 1 (Becn1), coding for a key subunit 
of the class III phosphoinositide-3-kinase (PI3K) complex that 
controls the formation and elongation of autophagosomes;44,45 
to the whole-body absence of autophagy related 4C, cysteine 
peptidase (Atg4c), encoding a protease involved in one of the 
conjugation systems required for autophagy;46 the whole-body 
or tissue-specific deletion of Atg5 and Atg7, coding for two of 
the components involved in the other of such conjugation sys-
tems;47-50 as well as to the whole-body ablation of sequestosome 

1 (SQSTM1), encoding an autophagic adaptor best known as 
p62.51 Apparently at odds with these data, the ablation of RB1-
inducible coiled-coil 1 (Rb1cc1), coding for a component of the 
autophagic machinery also known as FIP200, has been reported 
to inhibit the development of mammary carcinomas in mice 
expressing the polyoma middle T antigen under the control of 
the mouse mammary tumor virus long-terminal repeat.52 Along 
similar lines, the monoallelic loss of Becn1 has been shown to 
limit mammary tumorigenesis driven by partner and localizer 
of BRCA2 (PALB2).53 However, it remains to be determined 
whether such effects truly depend on autophagy rather than 
reflecting indirect alterations of the tumor protein p53 (TP53, 
best known as p53) system.54,55 FIP200 is indeed known to influ-
ence the stability of p53 and the oncogenic effects of the Becn1+/− 
were lost in a conditionally Trp53-null background.53,56,57

Further demonstrating the oncosuppressive functions of 
autophagy, the monoallelic deletion of BECN1 has been detected 
in a large fraction (more than 40%) of human breast, ovarian and 
prostate carcinomas,1,58,59 while mutations in ATG5 and ATG12 
have been documented in a proportion of colorectal neoplasms.60 
Along similar lines, the expression levels of ATG5 and BECN1 
are altered in various types of cancer,61-70 leading some to specu-
late that the proficiency of the autophagic machinery may predict 
the propensity of a specific tissue to undergo malignant transfor-
mation. However, unambiguous clinical data in support of this 
hypothesis are missing.

Of note, several bona fide oncosuppressor proteins like phos-
phatase and tensin homolog (PTEN) and serine/threonine 
kinase 11 (STK11, best known as LKB1) stimulate autophagy, 
while multiple oncogenic pathways inhibit it.43 For instance, this 
applies to the hyperactivation of the PI3K-AKT1 signal transduc-
tion cascade,71-75 to mutations that render the epidermal growth 
factor receptor (EGFR) constitutively active,76 as well as to the 
overexpression of anti-apoptotic Bcl-2 family members like B-cell 
CLL/lymphoma 2 (BCL2) itself and BCL2-like 1 (BCL2L1, best 
known as BCL-X

L
).43,77

The current hypothesis is that the suppression of autoph-
agy would promote oncogenesis by (1) altering bioenergetic 
metabolism and favoring the establishment of oxidative stress, 
two strictly interdependent processes resulting from impaired 
mitochondrial turnover;42,78-80 (2) fostering genomic instabil-
ity, at least in part as a consequence of oxidative stress;81-83) (3) 
impairing oncogene-induced senescence, a mechanism that per-
manently blocks the proliferation of malignant cells while allow-
ing for their elimination by the immune system;68,84-87 and (4) 
favoring the accumulation of p62-containing protein aggregates, 
which deliver oncogenic signals upon the activation of the tran-
scription factor nuclear factor, erythroid 2-like 2 (NFE2L2, best 
known as NRF2).88,89 Finally, autophagy appears to be critically 
involved in immunogenic cell death, a peculiar type of apopto-
sis that is associated with the elicitation of an adaptive immune 
response.37,90,91 Thus, autophagy-deficient malignant cells are less 
prone than their autophagy-competent counterparts to be recog-
nized and eliminated by the immune system,92 a situation that 
impacts both oncogenesis and tumor progression (see below). 
Along similar lines, recent data indicate that the ablation of Atg5 
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accelerates KRAS-driven oncogenesis while favoring tumor infil-
tration by immunosuppressive CD4+CD25+FOXP3+ regulatory 
T cells.48 Defects in the autophagic machinery might therefore 
promote oncogenesis not only by impairing the capacity of cells 
to cope with potentially tumorigenic stimuli, but also by compro-
mising oncosuppressive pathways that are mediated by the tumor 
microenvironment.

Autophagy in tumor progression
It is now clear that established neoplastic lesions benefit from 

the preservation (or reactivation) of autophagic functions. Even 
in the absence of therapy, indeed, hematological and (especially 
so) solid malignancies are exposed to unfavorable microenviron-
mental conditions, including a limited availability of nutrients 
and low oxygen concentrations. In line with this notion, cancer 
cells from poorly vascularized, hypoxic tumor regions contain 
elevated amounts of autophagosomes, allowing them to deal with 
limited oxygen supplies.93 Moreover, several cell lines obtained 
from established cancers not only are characterized by increased 
levels of autophagy in baseline conditions, but also appear to 
require an elevated autophagic flux for the maintenance of meta-
bolic functions and proliferation.80,94,95 These observations indi-
cate that cancer cells rely on autophagy (at least to some extent) 
for coping with the metabolic and oxidative load imposed by the 
malignant phenotype.

Accumulating evidence corroborates the notion that autoph-
agy promotes the progression of established cancers. First, the 
downregulation of Atg5 induces extensive central necrosis in 
Tsc2-/- xenografts, while the heterozygous loss of Becn1 limits 
the development of macroscopic renal tumors in Tsc2+/- mice.96 
Second, the tissue-specific deletion of Atg5 or Atg7 reportedly 
arrests the progression of benign hepatomas to hepatocellular 
carcinomas (HCCs),47 of KRASG12D-driven pancreatic lesions to 
overtly malignant pancreatic ductal adenocarcinomas,50 as well 
as of KRASG12D- or BRAFV600E-driven pulmonary adenomas to 
lung adenocarcinomas,48 sometimes diverting it to the forma-
tion of relatively benign oncocytomas.49,97 Apparently in con-
trast with these observations, a tyrosine phosphomimetic vari-
ant of BECN1 has been shown to favor the growth, progres-
sion and resistance to therapy of non-small cell lung carcinoma 
(NSCLC) xenografts expressing constitutively active EGFR, an 
effect that correlated with a decrease in autophagic flux.76 How-
ever, it is difficult to determine to which extent this stems from 
the inhibition of autophagy as opposed to the increased avail-
ability of antiapoptotic BCL2-like proteins caused by BECN1 
phosphorylation.75,98

The current view is that autophagy facilitates the progres-
sion of established neoplasms by (1) favoring their adaptation to 
adverse microenvironmental conditions, including limited nutri-
ent availability and hypoxia; (2) preserving mitochondrial func-
tions, both as it controls the quality of the mitochondrial network 
and as it provides metabolic substrates for mitochondrial metabo-
lism; and (3) limiting the accumulation of potentially cytotoxic 
entities, such as ROS, which is accrued in malignant cells owing 
to both intracellular and extracellular alterations.

CQ Derivatives in Cancer Therapy

Preclinical and clinical studies
The notion that neoplastic cells of diverse histological origin 

require a proficient autophagic machinery to actively prolifer-
ate53,80,97,99-101 in spite of adverse microenvironmental conditions, 
be them endogenous102,103 or elicited by therapy,74,104-116 has ren-
dered this catabolic pathway an attractive target for the devel-
opment of novel antineoplastic agents.42,117-119 Thus, throughout 
the past decade, distinct approaches based on the inhibition of 
autophagy have been conceived and evaluated (in vitro and in 
vivo) for their ability to (1) mediate therapeutic effects as stand-
alone interventions, or (2) boost the antineoplastic activity of 
conventional or targeted chemotherapeutics. In these studies, 
autophagy was disabled either genetically, through the knock-
out of autophagy-relevant genes or the knockdown of their prod-
ucts,93,106,120-126 or pharmacologically, by the administration of 
(1) lysosomotropic agents including CQ, HCQ, Lys0569 and 
monensin, all of which inhibit the fusion of autophagosomes with 
lysosomes and their degradation;74,112,115,120,127-132 (2) class III PI3K 
inhibitors, such as 3-methyladenine, wortmannin, LY294002 
and pyrvinium;109,122,126,130,133-137 (3) the V-type ATPase inhibi-
tor bafilomycin A1, which inhibits lysosomal acidification and 
hence the degradation of autophagosomes;121,125,138 (4) spautin-1, 
which promotes the ubiquitination-dependent degradation of 
BECN1.139-142 All these interventions have been shown to exert 
anticancer effects or to boost the activity of conventional anti-
neoplastic regimens. However, the antineoplastic effects of CQ 
and HCQ stem in large part from the modulation of pathways 
other than autophagy.39-41 These lysosomotropic agents are 
indeed very efficient at inducing lysosomal membrane permea-
bilization, hence initiating the mitochondrial pathway of apop-
tosis.39,143 Moreover, CQ has recently been show to target cancer 
stem cells by inhibiting Janus kinase 2 (JAK2) signaling.144 The 
precise reasons why neoplastic cells appear to be more sensitive to 
CQ and HCQ than their non-transformed counterparts, how-
ever, remain to be elucidated.

The therapeutic potential of CQ, which has been widely 
employed (and is currently approved by the US Food and Drug 
Administration, FDA) for the prophylactic treatment of malaria 
(source http://www.fda.gov), has been investigated in a double-
blinded clinical trial involving 30 patients with glioblastoma 
multiforme (NCT00224978).127 In this setting (a Phase III clini-
cal trial), eligible patients with surgically confirmed glioblas-
toma were randomized to receive conventional chemotherapy 
and radiotherapy plus placebo or 150 mg/d CQ per os. Of note, 
although the study was insufficiently powered to detect a statisti-
cal difference in the survival rate of the study arms, CQ-receiving 
patients exhibited an improved mid-term survival as compared 
with their control counterparts.127 CQ has also been evaluated 
for its ability to boost the therapeutic activity of whole-brain 
radiation therapy (WBRT) in 20 patients bearing intracranial 
metastases of various histological derivation (NCT01894633).145 
In the context of this single-cohort Phase II clinical study, CQ 
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Table 1. Clinical trials recently launched to evaluate the safety and efficacy of CQ derivatives in cancer patients* (continued)

Agent Indication(s) Status Phase Notes References

CQ

Brain metastases Recruiting ii
Combined with

 whole brain
NCT01727531

Breast carcinoma Recruiting
i Combined with microtubular poisons NCT01446016

i/ii As single agent NCT01023477

Multiple
myeloma

Recruiting ii
Combined with bortezomib

and cyclophosphamide
NCT01438177

Pancreatic carcinoma Recruiting i Combined with gemcitabine NCT01777477

SCLC
Recruiting i

Combined with RT,
cisplatin and etoposide

NCT00969306

Not yet recruiting i Combined with RT NCT01575782

Advanced solid 
tumors

Not yet recruiting i
Combined with carboplatin

and gemcitabine
NCT02071537

HCQ

Bone metastases Recruiting i Combined with RT NCT01417403

CML Unknown ii Combined with imatinib NCT01227135

Colorectal carcinoma Recruiting

i/ii
Combined with bevacizumab and
oxaliplatin-based chemotherapy

NCT01206530

ii
Combined with bevacizumab,
capecitabine and oxaliplatin

NCT01006369

GBM Unknown i/ii Combined with temozolomide and RT NCT00486603

Glioma Recruiting ii Combined with RT NCT01602588

HCC Recruiting i/ii Combined with TACe NCT02013778

Multiple
myeloma

Recruiting i
Combined with cyclophosphamide, 

dexamethasone and rapamycin
NCT01689987

Unknown i/ii Combined with bortezomib NCT00568880

NSCLC

Active,
not recruiting

i/ii
Combined with bevacizumab,

carboplatin and paclitaxel
NCT00933803

Active,
not recruiting

ii Combined with erlotinib NCT00977470

Recruiting

i/ii Combined with gefitinib NCT00809237

ii
Combined with bevacizumab,

carboplatin and paclitaxel
NCT01649947

Melanoma Recruiting i Combined with vemurafenib NCT01897116

Pancreatic carcinoma

Active, not 
recruiting

i/ii Combined with gemcitabine NCT01128296

Active, not 
recruiting

ii
Combined with abraxane

and gemcitabine
NCT01978184

Recruiting
i/ii Combined with gemcitabine NCT01506973

ii Combined with capecitabine and RT NCT01494155

Prostate
carcinoma

Active, not 
recruiting

ii As single agent NCT00726596

Recruiting ii Combined with abiraterone and ABT-263 NCT01828476

Renal cell
carcinoma

Recruiting

i As single agent NCT01144169

i/ii
Combined with everolimus NCT01510119

Combined with iL-2 NCT01550367

Soft tissue
sarcoma

Recruiting ii Combined with rapamycin NCT01842594

Abbreviations: CML, chronic myeloid leukemia; CQ, chloroquine; HCQ, hydroxychloroquine; GBM, glioblastoma multiforme; HCC, hepatocellular carcinoma; 
iL-2, interleukin-2; NSCLC, non-small cell lung carcinoma; RT, radiation therapy; SCLC, small cell lung carcinoma; TACe, transarterial chemoembolization. 
*between 2007, January 1st and the date of submission.
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therapy (250 mg/day per os) was initiated 1 we before WBRT, 
and the primary endpoint was radiologic response. Five months 
after WBRT, 16 patients were evaluable, of which: 2 manifested 
a complete response, 13 a partial response and 1 disease stabiliza-
tion. No treatment-related Grade 3/4 toxicities were recorded, 
and mean overall survival was 8.9 mo.145 As such a high intracra-
nial disease control warrants further investigation, this clinical 
paradigm remains under investigation (see below).

The safety and antineoplastic activity of HCQ, a CQ deriva-
tive approved by the US FDA as an antimalarial drug as well 
as for the management of (chronic, discoid or systemic) lupus 
erythematosus and acute or chronic rheumatoid arthritis (source 
http://www.fda.gov), has recently been evaluated in 20 patients 
with metastatic pancreatic cancer that failed to respond to con-
ventional treatments (NCT01273805).146 In this setting (a Phase 
II clinical trial), patients received 400 (n = 10) or 600 (n = 10) 
mg HCQ twice daily as a single therapeutic agent. Although 
this regimen was well tolerated (only 2 patients developed treat-
ment-related Grade 3/4 side effects), only 2 individuals (10%) 
did not exhibit disease progression 2 mo after the initiation of 
HCQ.146 HCQ has also been investigated as a means to boost 
the therapeutic profile of erlotinib (an FDA-approved chemical 
inhibitor of EGFR)147-150 in 27 subjects with advanced NSCLC 
(NCT01026844).114 In this 2-arms Phase I study, 8 patients were 
treated with HCQ only, while 19 received HCQ plus erlotinib. 
Only one patient experienced a partial response to erlotinib plus 
HCQ, but no dose-limiting toxicities related to HCQ were docu-
mented, and the authors recommended the use of 1000 mg/day 
HCQ in combination with 150 mg/day erlotinib for a subsequent 
Phase II study.114

Altogether, these preclinical and clinical observations suggest 
that CQ and HCQ may not mediate significant therapeutic ben-
efits as standalone interventions but may exacerbate the effects of 
conventional anticancer agents.

Ongoing clinical trials
When this Trial Watch was being redacted (May 2014), offi-

cial sources listed 39 ongoing clinical trials launched after 2007, 
January 1st to investigate the safety and therapeutic potential of 
CQ derivatives, either as a standalone therapeutic interventions 

or as part of combinatorial chemotherapeutic regimens, in can-
cer patients (http://www.clinicaltrials.gov/) (Table 1). Of these 
trials, 8 involve CQ and 31 HCQ. Of note, the latter is gener-
ally preferred to the former owing to its tolerability and toxicity 
profile.151,152

The safety and antineoplastic activity of CQ derivatives as 
standalone chemotherapeutic interventions are being assessed (1) 
in subjects with breast ductal carcinoma in situ, who receive CQ 
per os for 1 mo prior to surgical tumor excision (NCT01023477); 
(2) in prostate cancer patients, who are treated with HCQ upon 
raise in the circulating levels of prostate-specific antigen (PSA) 
(NCT00726596); and (3) in individuals with primary renal cell 
carcinoma (RCC), who receive HCQ orally for 14 d before sur-
gery (NCT01144169).

In a vast majority of ongoing clinical trials, CQ derivatives 
are given in combination with conventional chemo-, radio- or 
immunotherapeutic regimens. In particular, the safety and effi-
cacy of CQ are being tested: (1) in subjects with advanced or 
metastatic breast carcinoma resistant to anthracycline-based 
chemotherapy,37,90,91 who receive CQ in combination with 
microtubular poisons of the taxane or epothilone family153-155 
(NCT01446016); (2) in patients with Stage IV small cell lung 
carcinoma, who are treated with CQ in combination with con-
ventional radiotherapy156,157 (NCT01575782) and/or DNA-dam-
aging chemotherapeutic regimens including standard-dose cispl-
atin-etoposide158-161 (NCT0969306); (3) in subjects with multi-
ple myeloma, receiving CQ in combination with cyclophospha-
mide, an immunogenic alkylating agent,162,163 and bortezomib 
(NCT01438177); (4) in pancreatic cancer patients, who receive 
CQ in combination with the immunostimulatory chemothera-
peutic gemcitabine164,165 (NCT01777477); (5) in patients with 
advanced solid tumors, receiving CQ together with gemcitabine 
and carboplatin (a cisplatin-derived DNA-damaging agent)166 
(NCT02071537); and (6) in subjects bearing brain metastases 
from various neoplasms, who receive a short course of CQ in 
combination with WBRT (NCT01727531).

Moreover, HCQ is being investigated as means to improve 
the therapeutic profile of (1) neoadjuvant gemcitabine and/or 
paclitaxel protein-bound particles (Abraxane®), in individuals 

Table 1. Clinical trials recently launched to evaluate the safety and efficacy of CQ derivatives in cancer patients* (continued)

Agent Indication(s) Status Phase Notes References

Advanced solid 
tumors

Active, not 
recruiting

i Combined with sunitinib NCT00813423

Recruiting i

Combined with vorinostat NCT01023737

Combined with rapamycin or vorinostat NCT01266057

Combined with MK2206 NCT01480154

Combined with sorafenib NCT01634893

Unknown i
Combined with temozolomide NCT00714181

Combined with temsirolimus NCT00909831

Abbreviations: CML, chronic myeloid leukemia; CQ, chloroquine; HCQ, hydroxychloroquine; GBM, glioblastoma multiforme; HCC, hepatocellular carcinoma; 
iL-2, interleukin-2; NSCLC, non-small cell lung carcinoma; RT, radiation therapy; SCLC, small cell lung carcinoma; TACe, transarterial chemoembolization. 
*between 2007, January 1st and the date of submission.
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affected by advanced pancreatic carcinoma (NCT01506973; 
NCT01128296; NCT01978184); (2) the alkylating agent temo-
zolomide,167-169 in patients with metastatic or unresectable solid 
tumors (NCT00714181); (3) radiation therapy, in patients with 
high grade glioma (NCT01602588) or bearing bone metastases 
of diverse histological derivation (NCT01417403); (4) temozo-
molide and radiation therapy, in individuals with newly diagnosed 
glioblastoma multiforme (NCT00486603); (5) capecitabine 
(an antimetabolite currently employed for the treatment of 
several neoplasms)170 plus radiation therapy, in patients with 
resectable pancreatic cancer (NCT01494155); (6) capecitabine, 
oxaliplatin (an FDA-approved cisplatin derivative),171,172 and 
bevacizumab (a monoclonal antibody specific for vascular endo-
thelial growth factor, VEGF),38,173-175 in subjects with metastatic 
colorectal carcinoma (NCT01006369); (7) paclitaxel (an FDA-
approved microtubular poison of the taxane family), carbo-
platin and bevacizumab, in NSCLC patients (NCT00933803; 
NCT01649947), (8) an oxaliplatin-based chemotherapeutic 
regimen combined with bevacizumab, in individuals affected by 
colorectal carcinoma (NCT01206530); (9) transarterial chemo-
embolization (TACE),176,177 in patients with unresectable HCC 
(NCT02013778); (10) the AKT1 inhibitor MK2206,178 in patients 
affected by advanced solid malignancies (NCT01480154); (11) 
rapamycin and/or vorinostat, in subjects with refractory soft tissue 
sarcomas (NCT01842594) or other solid tumors (NCT01023737; 
NCT01266057); (12) temsirolimus (an FDA-approved rapamy-
cin derivative that also exerts antineoplastic effects by inhibiting 
mechanistic target of rapamycin, MTOR),179 in patients with met-
astatic solid tumors that failed to respond to conventional thera-
peutic regimens (NCT00909831); (13) everolimus (yet another 
rapamycin-like molecule licensed by the US FDA), in individuals 
with advanced RCC (NCT01510119); (14) sirolimus, cyclophos-
phamide and dexamethasone, in patients with relapsed or refrac-
tory multiple myeloma (NCT01689987); (15) erlotinib or gefi-
tinib (a chemical inhibitor of EGFR currently licensed by the US 
FDA),148,180 in NSCLC patients (NCT00809237; NCT00977470); 
(16) imatinib (an FDA-approved inhibitor or BCR-ABL, KIT and 
platelet-derived growth factor receptor β),181,182 in individuals with 
chronic myeloid leukemia (NCT01227135); (17) sorafenib or 
sunitinib (two multi-kinase inhibitor nowadays approved by the 
US FDA for the treatment of various solid tumors),183-188 in patients 
with refractory and/or relapsed solid tumors (NCT00813423; 
NCT01634893); (18) bortezomib, in subjects with refractory and/
or relapsed multiple myeloma (NCT00568880); (19) vemurafenib 
(an FDA-approved inhibitor of mutant BRAF),189 in melanoma 
patients (NCT01897116); (20) ABT-263 (an experimental inhibi-
tor of anti-apoptotic Bcl-2 family members)143,190,191 and abiraterone 
(an FDA-approved antiandrogen),192 in individuals with metastatic 
castration-resistant prostate cancer (NCT01828476); and (21) 
interleukin-2 (an immunostimulatory cytokine currently approved 
by the US FDA and other regulatory agencies for the treatment 
of metastatic forms of melanoma and RCC),193,194 in patients with 
metastatic RCC (NCT01550367).

Concluding Remarks

Accumulating evidence suggests that inhibiting autophagy 
may constitute an efficient means to improve the therapeutic 
profile of chemo-, radio- and immunotherapeutic anticancer 
regimens. However, autophagy not only sustains the survival 
of established neoplasm exposed to therapy, but also plays a key 
role in the maintenance of intracellular homeostasis in healthy 
tissues (de facto operating as an oncosuppressive mecha-
nism),42,43 and is required for the elicitation of innate and adap-
tive immune responses.195 This implies that the whole-body 
inhibition of autophagy may, at least theoretically, favor the 
insurgence of treatment-related neoplasms as well as of other 
disorders (e.g., infectious diseases, neurodegenerative condi-
tions) and promote some degree of immunosuppression. More-
over, the wide majority of autophagy inhibitors that have been 
investigated so far in clinical trials, in particular CQ and HCQ, 
influence lysosomal (and possibly non-lysosomal) processes 
other than autophagy.39-41 Indeed, the therapeutic activity of 
HQ and HCQ appears to stem mainly from the modulation 
of autophagy-unrelated mechanisms. Finally, autophagy seems 
to promote, rather than antagonize, the therapeutic activity of 
specific antineoplastic agents.76,196-200 Hence, the co-administra-
tion of autophagy inhibitors may decrease, rather than increase, 
the cytostatic/cytotoxic potential of a fraction of chemicals cur-
rently employed in anticancer therapy. Taken together, these 
notions suggest that modulating autophagy may constitute a 
powerful means to achieve superior antineoplastic effects, yet 
should be implemented with caution. Future studies will have 
to elucidate whether and how autophagy can be modulated in a 
tissue- or cell-restricted manner that is compatible with clinical 
applications, as well as if biomarkers that predict the propensity 
of specific cancer patient subsets to autophagy regulators exist. 
These discoveries as well as the identification of compounds 
that regulate autophagy in a highly specific manner will surely 
widen the clinical utility of this therapeutic paradigm.
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