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Quantitative estimations of spatiotemporal complexity of cortical activity patterns are used in the clinic as a measure of con-
sciousness levels, but the cortical mechanisms involved are not fully understood. We used a version of the perturbational
complexity index (PCI) adapted to multisite recordings from the ferret (either sex) cerebral cortex in vitro (sPCI) to investi-
gate the role of GABAergic inhibition in cortical complexity. We studied two dynamical states: slow-wave activity (synchro-
nous state) and desynchronized activity, that express low and high causal complexity respectively. Progressive blockade of
GABAergic inhibition during both regimes revealed its impact on the emergent cortical activity and on sPCI. Gradual GABAA

receptor blockade resulted in higher synchronization, being able to drive the network from a desynchronized to a synchro-
nous state, with a progressive decrease of complexity (sPCI). Blocking GABAB receptors also resulted in a reduced sPCI, in
particular when in a synchronous, slow wave state. Our findings demonstrate that physiological levels of inhibition contribute
to the generation of dynamical richness and spatiotemporal complexity. However, if inhibition is diminished or enhanced,
cortical complexity decreases. Using a computational model, we explored a larger parameter space in this relationship and
demonstrate a link between excitatory/inhibitory balance and the complexity expressed by the cortical network.
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Significance Statement

The spatiotemporal complexity of the activity expressed by the cerebral cortex is a highly revealing feature of the underlying
network’s state. Complexity varies with physiological brain states: it is higher during awake than during sleep states. But it
also informs about pathologic states: in disorders of consciousness, complexity is lower in an unresponsive wakefulness syn-
drome than in a minimally conscious state. What are the network parameters that modulate complexity? Here we investigate
how inhibition, mediated by either GABAA or GABAA receptors, influences cortical complexity. And we do this departing
from two extreme functional states: a highly synchronous, slow-wave state, and a desynchronized one that mimics wakeful-
ness. We find that there is an optimal level of inhibition in which complexity is highest.

Introduction
Brain dynamics vary according to the brain state, each one
expressing in different spontaneous spatiotemporal patterns of
activity, functional connectivity, responsiveness to stimuli,
behavior, and cognition. These states can be physiological (e.g.,
awake, slow wave sleep, REM), drug-induced (e.g., anesthesia),
or even different attentional states or variations within the awake
state (McCormick et al., 2020). Pathologic brain states can be
those associated with disorders of consciousness that can follow
traumatic brain injury or stroke (Giacino et al., 2014). Different
brain states are also associated with different consciousness lev-
els. For example, slow wave sleep, deep anesthesia, and comatose
states are associated with unconsciousness, while the awake state
is a conscious state. Having measures that capture consciousness
levels, or rather the associated brain state, is particularly relevant
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in the clinical realm: if an unresponsive patient would be found
to be conscious, for example, it is critical to provide tools for
communication. It is also important to be able to ascertain
whether an anesthetized patient is unconscious as well as unre-
sponsive. One of the parameters that has been proposed as a sig-
nature of the level of consciousness is brain complexity (Tononi
and Edelman, 1998).

Network complexity represents the relationship between dif-
ferent components of the system, and its study is an active field
across many disciplines. When applied to the brain, different
measures try to capture brain complexity, either temporal, topo-
logical, or spatiotemporal complexity of spontaneous activity in
either brain imaging or electrophysiology (Tononi et al., 1994;
Tononi and Edelman, 1998; Bullmore and Sporns, 2009;
Bettinardi et al., 2015). Another approach to quantifying cortical
complexity is to induce a perturbation of the system to investi-
gate the causal interactions that follow. The perturbational com-
plexity index (PCI; Casali et al., 2013; Comolatti et al., 2019), in
which neural activity is exogenously perturbed by means of stim-
ulation (transcranial magnetic stimulation or electrical stimula-
tion) has been proposed as one such measure. This method has
been validated for different instances such as physiological brain
states (Casali et al., 2013), anesthesia levels (Sarasso et al., 2015;
Arena et al., 2020; Dasilva et al., 2021), and disorders of con-
sciousness (Casarotto et al., 2016).

The use of PCI in humans shows that cortical bistability,
which is typical of a highly synchronized state such as slow wave
sleep, is a regime of low complexity. At the other extreme, the
awake, conscious state, is one of high complexity. In order to
explore the underlying cellular and network mechanisms behind
cortical complexity, D’Andola et al. (2017) adapted the PCI mea-
sure to in vitro slice experiments, known as slice PCI (sPCI).
They showed that when the local network switched from a slow
oscillatory state to a desynchronized state induced by norepi-
nephrine (NE) and carbachol (CCh), the bistability of Up/Down
states was reduced and there was an increase in sPCI. In this
way, the isolated cortical network in vitro was validated as a sys-
tem which cannot only spontaneously generate slow oscillations
(SOs; Sanchez-Vives and McCormick, 2000) and mimic other
brain states (Mattia and Sanchez-Vives, 2012; Markram et al.,
2015), but can also be used to investigate the cellular mechanisms
of cortical complexity (D’Andola et al., 2017). In such local net-
works, one can specifically activate or inactivate ion/metabo-
tropic receptors to induce changes in the spontaneous or evoked
activity (sPCI) and provide insights about the underlying mecha-
nisms controlling the transition across cortical states and poten-
tial associated changes in network complexity.

A fundamental property of cortical processing is the co-
occurrence of excitation and inhibition not only in response to
sensory stimulation but also during spontaneous cortical activity
(Isaacson and Scanziani, 2011). To shed light on the role of inhi-
bition in cortical complexity, here we combined electrophysio-
logical recordings and computational simulations to investigate
the relevance of fast inhibition, mediated by GABAA receptors
(GABAA-Rs), and slow inhibition, mediated by GABAB recep-
tors (GABAB-Rs). We first investigated the transformation of
spontaneous activity patterns while gradually blocking each of
these receptors. Next, we tested the ability of the cortical network
to engage in complex patterns of causal interactions. To obtain a
better understanding, we did this under two different dynamical
patterns corresponding to synchronized and desynchronized
states: (1) during a bistable state, characterized by the presence of
SOs, and (2) during a desynchronized state, in which neuronal

bistability was reduced. We found that blockade of both
GABAA-Rs and GABAB-Rs in cortical slices reduced cortical
complexity. Finally, we reproduced the experimental observa-
tions in a computational model and demonstrated dependence
of complexity on the excitatory/inhibitory balance. Interestingly,
physiological levels of inhibition are optimal for reaching maxi-
mum complexity, while an excess or lack of inhibition results in
a decreased sPCI.

Materials and Methods
Slice preparation
Ferrets were treated in accordance with the European Union guidelines
on protection of vertebrates used for experimentation (Directive 2010/
63/EU of the European Parliament and of the council of September 22,
2010). All experiments were approved by the local ethics committee.
Ferrets (4–10 months, either sex) were deeply anesthetized with isoflur-
ane and sodium pentobarbital (40mg/kg) before decapitation. The brain
was quickly removed and placed in an ice-cold sucrose solution contain-
ing the following: 213 mM sucrose, 2.5 mM KCl, 1 mM NaH2PO4, 26 mM

NaHCO3, 1 mM CaCl2, 3 mM MgSO4 and 10 mM glucose. Acute coronal
slices (400-mm-thick) of the occipital cortex containing visual cortical
areas 17, 18, and 19 from both hemispheres were cut with a Microm
HM 650V vibratome (Thermo Scientific).

Slices were placed in an interface-style recording chamber (Fine
Science Tools) and superfused with an equal mixture of the above-men-
tioned sucrose solution and artificial CSF (ACSF) containing the follow-
ing: 126 mM NaCl, 2.5 mM KCl, 1 mM NaH2PO4, 26 mM NaHCO3, 2 mM

CaCl2, 2 mM MgSO4 and 10 mM glucose. Next, slices were bathed with
ACSF for 1–2 h to allow for recovery. For the slow oscillatory activity to
spontaneously emerge, slices were superfused for at least 30min before
experiments with ACSF containing the following: 126 mM NaCl, 4 mM

KCl, 1 mM NaH2PO4, 26 mM NaHCO3, 1 mM CaCl2, 1 mM MgSO4 and
10 mM glucose. All solutions were saturated with carbogen (95% O2/5%
CO2) to a final pH of 7.4 at 34°C.

In addition to the SO condition, we used two more experimental
conditions that were achieved as follows. (1) Cholinergic and noradren-
ergic agonists (“NE1CCh”), by bath-applying a mixture of modulators
such as CCh (0.5 mM) and NE (50 mM). This solution blocks the genera-
tion of SO (D’Andola et al., 2017) but induces a synchronization at a
higher frequency of ;2Hz (see below; see also Compte et al., 2008). (2)
Desynchronized activity: to achieve a larger degree of asynchrony that
better mimics the awake state, we used the same neuromodulators, CCh
(0.5 mM) and NE (50 mM), but additionally we decreased the temperature
to 32°C. Reig et al. (2010) found that decreasing the temperature to 32°
induced a desynchronization of the network, which abandoned the bista-
ble Up and Down states regime. Further, we followed Markram et al.
(2015) who reduced extracellular calcium to switch from synchronous to
desynchronized dynamics. To achieve this, we reduced calcium in the
bath from 1–1.2 mM to 0.8–0.9 mM.

Electrophysiological recordings
We recorded the extracellular local field potential (LFP) using a 16-chan-
nel SU-8-based flexible microarray (Illa et al., 2015; Capone et al., 2019).
Care was taken to distribute the recording electrodes in supra and infra-
granular layers as shown in Figure 1A. Signals were amplified by 100
using a PGA16 Multichannel System (Multichannel Systems MCS
GmbH-Harvard Bioscience Inc). LFPs were digitized with a Power 1401
or 1401 mkII CED interface (Cambridge Electronic Design) at a sam-
pling rate of 5 or 10 kHz and acquired with Spike2 software (Cambridge
Electronic Design).

Pharmacological agents
CCh and NE were obtained from Sigma-Aldrich. For the blockade of
GABAA-Rs we used bicuculline methiodide (BMI: 0.2, 0.4, 0.6, 0.8, and
1 mM), obtained from Tocris Bioscience; and SR-95531 hydrobromide
[gabazine (GBZ) 50, 100, 150, and 200 nM], obtained from Sigma-
Aldrich. We also progressively blocked slow inhibition (GABAB-Rs) by
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means of CGP 55845 (CGP 100 nM, 200 nM, 500 nM, and 1mM), obtained
from Tocris Bioscience.

Network dynamics analysis during spontaneous activity
For every condition tested, we analyzed 300 s of spontaneous activity
(no electrical stimulation pulses). We first estimated multiunit activity
(MUA) from LFP recordings and detected Up and Down states as previ-
ously described (Reig et al., 2010; Ruiz-Mejias et al., 2016; D’Andola et
al., 2017). Briefly, the MUA signal was calculated as the average power of
the normalized spectra at a high-frequency band (200–1500Hz), since
power variations in the Fourier components at high frequencies of LFP
provide a reliable estimate of the population firing rate (Mattia and Del
Giudice, 2002). The MUA signal was then logarithmically scaled to bal-
ance large fluctuations of nearby spikes. We detected Up and Down
states setting duration and amplitude thresholds in the log(MUA) signal.
In this way, we could compute different parameters that characterize SO,
such as oscillation frequency or Up and Down state durations. The firing
rate was calculated as the peak log(MUA) value during Up states nor-
malized by the log(MUA) during Down states.

The complexity of the log(MUA) time series was obtained by com-
puting Sample Entropy (SampEn). SampEn provides an estimation of
the probability that two sequences (in our case of MUA) remain similar.
A lower value of SampEn indicates more self-similarity in the time series
and thus, lower complexity. Briefly, SampEn is defined as the negative
natural logarithm of the probability that two sequences that are similar
form points will remain similar for m1 1 points excluding self-matches
(Richman and Moorman, 2000).

SampEnðm; r;NÞ ¼ �log
A
B
;

where m is the length of sequences to be compared, r is the tolerance for
accepting matches and N is the length of the time series. Given a time se-
ries of length N {x1, ... xN} we define a template of length m=2, Xm(1) =

{j , ... j1m-1} and the distance function d[Xm(1),
Xm(j)] with j= i. So, A is the number of pairs having
d[Xm11(1), Xm11(j)], r and B is the number of pairs
having d[Xm(1), Xm(j)] , r. For further details on the
method, see Richman and Moorman (2000). We have
usedm= 2 and r= 0.25 following most SampEn analy-
sis of biomedical signals that have used 0.1 , r, 0.50
(Takahashi et al., 2010; Sokunbi et al., 2013).

PCI for in vitro recordings (sPCI)
In order to estimate perturbational complexity in brain
slices, we used an adaptation of the PCI used in
humans (Casali et al., 2013), named sPCI (D’Andola et
al., 2017). The stimulation electrode was placed in
infragranular layers (Fig. 1A). Pulses had a duration of
0.1ms, an intensity of 150–200mA, and were applied
every 10 s, with a random jitter from 0.5-1.5 s to avoid
activity entrainment to the specific frequency of stimu-
lation. A binary spatiotemporal distribution of signifi-
cant activity was calculated in the MUA signal: we
assessed the statistical differences between the network
activity baseline and its response to the electrical stim-
ulation using a bootstrap procedure as in D’Andola et
al. (2017; Fig. 1B). The significance threshold was esti-
mated as the one-tail (1–a) 99th percentile of the
bootstrap distribution. Also, we first low-pass filtered
(,10Hz) the trial average computed on the MUA sig-
nal, and considered significant only the periods in
which the activity of each channel lay above the signif-
icance threshold for .50ms (Fig. 1B). The sPCI was
then defined as the normalized Lempel–Ziv complex-
ity of the binary matrix of significant evoked MUA
spatiotemporal patterns (D’Andola et al., 2017; Fig.
1B). Furthermore, we computed the temporal evolu-
tion of the sPCI, the sPCI(t), performing the calcula-

tion of the index in temporal windows of increasing duration after the
stimulation (D’Andola et al., 2017).

Experimental design and statistical analysis
Data are reported as mean 6 SEM. Statistical significance was assessed
using one-way repeated-measures ANOVA with post hoc Tukey’s test to
identify significant interactions. Exact p values are reported throughout
the text and in graphs are represented with *p, 0.05 and **p, 0.01.
Mauchly’s test was used to assess the sphericity assumption in ANOVA.
In datasets containing relative firing rate measurements, the Greenhouse–
Geisser procedure was applied to correct for violations of sphericity. All
data analyses were performed using either MATLAB (MathWorks) or
Origin 8 Pro (OriginLab Corportation).

Computational modeling
The model consists of a two-dimensional 50� 50 squared network of
pyramidal cells (80%) and interneurons (20%), randomly distributed
and interconnected through biologically plausible synaptic dynamics.
Each cell is sparsely and locally connected to its neighbors within a
square of size L� L centered around it, where Lpyramidal = 7 and
Linterneuron = 5. The fraction of synaptic connections (outgoing synapses)
is set at 50% of the total number of neurons within the local range for
pyramidal cells and 90% for interneurons, thus imposing local connec-
tions for interneurons and more sparse connections for pyramidal cells.
The network structure is similar to that used in previous studies of oscil-
latory neuronal networks (Bazhenov et al., 2008; Poil et al., 2012; Dalla
Porta and Copelli, 2019). The neuron model and its ion channel dynam-
ics are borrowed with maximal conductance adjustment from Compte
et al. (2003; this model is currently available in NEST by Maksimov et
al., 2016). Our detailed ionic channel dynamics and parameters are given
in Extended Data Figure 7-1. Additionally, the model accounts for the
potassium leak current IKL, which is modulated by acetylcholine (ACh)
and NE (Bazhenov et al., 2002; Li et al., 2017) and by GABAB inhibitory

Figure 1. Experimental set up. A, top, We recorded activity with 16-channel multielectrode array (MEA) from
neocortical slices. Single pulses of electrical stimulation were applied to the infragranular layers (red arrow). Bottom,
Representative LFP traces. B, To calculate the network complexity (PCI in slice, sPCI), we converted the raw LFP
traces (top) obtained from MEA recordings to logMUA signals (middle) and computed the binary matrices of signifi-
cant activity (bottom). We then compressed the spatiotemporal binary matrices of significant sources with a
Lempel–Ziv algorithm and normalized them by the source entropy to finally obtain the sPCI. C, Summary plot of
the sPCI calculated in control slices by applying different pulse amplitudes to the slices (n = 9). D, Population aver-
age of the sPCI calculated in control slices with a varying number of stimulation pulses. Blue range was used during
complexity protocols (n = 9; ns: not significant, *p, 0.05).
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synapses (see Extended Data Fig. 7-1). Briefly, the pyramidal cells, con-
sisting in a somatic and a dendritic compartment, are modeled as:

CmAs
dVs

dt
¼ �AsðIL 1 IKL 1 INa 1 IK 1 IA 1 IKS 1 IKNaÞ � Isyn;i

�gsdðVs � VdÞ; (1)

and,

CmAd
dVd

dt
¼ �AdðIL 1 Ica 1 IKca 1 INaP 1 IARÞ � Isyn;E

�gsdðVd � VsÞ; (2)

where Vs and Vd represent the soma and dendrite voltage, respectively.
Cm is the specific membrane capacitance, gsd (1.756 0.1 mS) is the con-
ductance of the coupling between soma and dendrite, and As,d are the
membrane areas of soma and dendrite, respectively. Isyn,i and Isyn,E
accounts for inhibitory and excitatory synaptic currents, respectively. As
in Compte et al. (2003), in our simulations, all excitatory synapses target
the dendritic compartment and all inhibitory synapses are localized on
the somatic compartment of postsynaptic pyramidal neurons.

The soma includes the following channels and respective maximal
conductances (g): leakage current (IL, gL = 0.06676 0.0067 mS/cm2), po-
tassium leakage current (IKL, gKL = 1.86 mS/cm2), sodium current (INa,
gNa = 50 mS/cm2), potassium current (IK, gK = 10.5 mS/cm2), A-type K1

current (IA, gA = 0.95 mS/cm2), non-inactivating slow K1 current (IKS,
gKS = 0.5472 mS/cm2) and the Na1-dependent K1 current (IKNa, gKNa =
0.65835 mS/cm2). The dendrite includes: leakage current (IL, gL =
0.06676 0.0067 mS/cm2), high-threshold Ca21 channel (ICa, gCa = 0.43
mS/cm2), Ca21-dependent K1 current (IKCa, gKCa = 0.5415 mS/cm2),
persistent Na1 channel (INaP, gNaP = 0.05145 mS/cm2) and the anoma-
lous rectifier K1 channel (IAR, gAR = 0.0257 mS/cm2). Isyn,I and Isyn,E are
the inhibitory and excitatory synaptic currents, respectively. The inter-
neurons, consisting in only one compartment, are simply modeled as:

CmAI
dvs
dt

¼ �AiðIL 1 INa 1 IKÞ � Isyn; (3)

where Ai is the total membrane area and Isyn accounts for both the inhib-
itory and excitatory synaptic currents. All the details of the implementa-
tion of these currents are described by Compte et al. (2003), except for
IKL and GABAB, which are described below. The GABAB current
(IGABAB) is modeled as (Destexhe et al., 1996; Liu et al., 2019), where r
and s represent the GABAB-R and the gating variable, respectively. The
transmitter concentration T is modeled as a square pulse of 0.5 mM dur-
ing 3ms. IKL is modeled as in Li et al. (2017) where IKL = gKL(V – VK),
with VK = –100mV (potassium reversal potential). The synaptic maxi-
mal conductances (gx

jk, where x stands for AMPA, NDMA, GABAA, and
GABAB, and j and k stand for the presynaptic and postsynaptic neuron,
respectively) are set for values detailed in Extended Data Fig. 7-1.
Excitatory synapses are mediated by AMPA and NMDA, while inhibi-
tory synapses by GABAA and GABAB. Additionally, all neurons receive
a heterogeneous Poisson train of excitatory, AMPA and NMDA, presyn-
aptic potentials with a rate of 0.5 kHz (Dayan and Abbott, 2001). The
Poisson synaptic inputs are modeled as excitatory AMPA and NMDA
currents where the probability of a spike at one time-step is given by: 1 –
exp (–R * dt), where dt is the time step of simulation, and R the Poisson
rate. All the channels and synapse kinetics as well as parameters are
described in detail in Extended Data Fig. 7-1.

In order to simulate the experimental effects of GABAA,B-Rs block-
ade, we progressively reduced the GABAA,B conductance (which will be
referred to as simple concentration) in inhibitory synapses to both neu-
rons, pyramidal and interneurons, from 5% to 90%. We proceeded in
the same way to progressively increase the GABAA channel conductance
in Figure 8B, increasing it from 5% to 90%.

For the model network to switch from synchronized to desynchron-
ized state, we completely blocked the potassium leak current, mimicking

an action of ACh and NE (McCormick, 1992). This strategy has been
used in cortical (Bazhenov et al., 2002) and thalamic models (Li et al.,
2017) to induce the transition from synchronized to desynchronized
states. For the stimulation procedure, we depolarized all the neurons by
a brief (40ms) external stimulation current of 0.5 nA with an interval of
stimulation of 56 1 s (mean6 SD given).

The simulated population membrane potential (sLFP) was computed
as the sum of the absolute values of the excitatory and inhibitory synap-
tic currents acting on the excitatory neurons (Sancristóbal et al., 2016).
We virtually created 20 electrodes in the model, arranged as a 5� 4 ma-
trix. Each electrode covered an area of 49 neurons and were horizontally
and vertically spaced by a distance of 10 neurons, thus ensuring no over-
lapping between electrodes. The neurons on the border were not consid-
ered. The model was implemented in a C code and simulated using a
fourth-order Runge–Kutta method with a time step of 0.06ms during
210 s. To compute the mean response of the membrane potential, we
averaged over 10 realizations of the external noise, network connectivity
and neuron parameters.

Results
Synchronous versus desynchronized states in the cortical
network: spontaneous activity and perturbational complexity
In vitro extracellular 16-channel LFPs were recorded from ferret
primary visual cortex (V1) coronal slices (n= 58) during two dif-
ferent regimes of spontaneous activity: (1) synchronous activity
consisting in spontaneous Up and Down states organized in SOs
(Figs. 1A, 2A–C); and (2) desynchronized activity (Fig. 2A–C).

In our experimental paradigm, cortical slices displayed spon-
taneous SO similar to the ones occurring in vivo during slow
wave sleep (Sanchez-Vives and McCormick, 2000). Oscillatory
frequencies in the different slices ranged from 0.2 to 0.92Hz
(mean 0.476 0.02Hz, n= 58). While the synchronous slow
oscillatory state replicates the dynamics of slow wave sleep,
desynchronized activity in the slice can mimic that of awake
states. In cortical slices, desynchronized states can be mimicked
by adding neurotransmitters, through bath application of NE
and ACh, present in awake states (McCormick, 1992; Brumberg
et al., 2000; Jones, 2005; D’Andola et al., 2017). Even when cho-
linergic and noradrenergic agonists are reported to block SO
through the blockade of afterhyperpolarizations (Steriade et al.,
1993b), we still observe synchronization at a frequency higher
than spontaneous SO, at ;2.4Hz (see Fig. 2A,B). In order to
obtain a more desynchronized activity, we used additional strat-
egies based on previous studies, recording at 32°C (Reig et al.,
2010) and lowering calcium in the bath from 1–1.2 mM to 0.8–
0.9 mM (Markram et al., 2015) to enhance excitability (see
Materials and Methods; Fig. 2A–C). Using a measure of com-
plexity of time series called SampEn (see Materials and
Methods), we quantified the level of regularity of the signal dur-
ing three different types of spontaneous activity or conditions
that we will used throughout the study: (1) SO; (2) NE1CCh to
refer to the presence of cholinergic (CCh) and noradrenergic
(NE) agonists in the bath; and (3) desynchronized activity, mim-
icking awake states (for details, see Materials and Methods). The
mean SampEn was SO: 0.7516 0.027; NE1CCh: 0.8686 0.033;
desynchronized: 0.9066 0.035; F(2,38) = 13.087, p= 4.742� 10�5,
n= 20. In particular, SampEn measured during NE1CCh and
desynchronized activity was significantly higher than during SO
(NE1CCh: t(38) = 5.218, p=0.002; desynchronized: t(38) = 6.95,
p= 5.07� 10�5, n=20), as we would expect given that SO are
more synchronized states.

In order to quantify the complexity of network responses to
single-pulse electrical stimulation, we used an adapted version of
the PCI (Casali et al., 2013) for slice recordings (sPCI; Fig. 1B;
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see Materials and Methods; D’Andola et al., 2017). During
ongoing SO, electrical stimulation evoked a response followed by
a sudden decrease in activity, Down state (Fig. 1B) or what, in
humans, has been referred to as “off-periods” (Rosanova et al.,
2018), resembling reported findings for LFP recordings in
humans (Pigorini et al., 2015; Rosanova et al., 2018). According
to the sPCI algorithm by (D’Andola et al., 2017) and to quantify
the spatiotemporal patterns of response to electrical stimulation,
we converted the raw LFP traces obtained from multielectrode
array recordings to firing rate signals (specifically to logMUA,
see Materials and Methods; Fig. 1B) and computed the binary
matrices of significant activity (Fig. 1B; for details, see Materials
and Methods). We then compressed the spatiotemporal binary
matrices of significant sources with a Lempel–Ziv algorithm and
normalized them by the source entropy to finally obtain the
sPCI. Under synchronous, slow oscillatory activity, the sPCI was
0.16 0.002 (range 0.07–0.14, n=58), similar to what has been
previously reported (D’Andola et al., 2017; Dasilva et al., 2021).

We tested the reliability of the sPCI in a subset of slices by (1)
applying different stimulation intensities (Fig. 1C); and (2)
increasing the number of stimuli repetitions (Fig. 1D). The popu-
lation sPCI did not vary significantly when different stimulation
intensities were applied within the range of 50–300mA (n= 9;
Fig. 1C). However, the sPCI was slightly dependent on the

number of stimulation trials. For 15 repetitions this was
0.0926 0.004, 0.0836 0.004 for 30 repetitions, 0.0856 0.003 for
60 repetitions, and 0.0846 0.004 for 100 repetitions (F(3,24) =
4.44, p=0.012, n= 9; Fig. 1D). The sPCI significantly decreased
above 15 repetitions but remained stable for 30, 60, and 100 repe-
titions (15 vs 30 rep.: t(24) = 2.66, p=0.261; 15 vs 60 rep.: t(24) =
4.34, p=0.025; 15 vs 100 rep.: t(24) = 4.57, p=0.017; 30 vs 60 rep.:
t(24) = 1.67, p=0.644; 30 vs 100 rep.: t(24) = 1.91, p= 0.541; 60 vs
100 rep.: t(24) = 0.24, p=0.998; n = 9; Fig. 1D). Therefore, in the
rest of the study we consistently calculated PCI with 40 as the
number of stimuli.

sPCI in different dynamic regimes of cortical activity
We next calculated sPCI in the three described conditions: (1)
SO; (2) NE1CCh; and (3) desynchronized state (Fig. 2). As said
above, following the bath application of NE1CCh, the regime of
Up/Down states was transformed (Fig. 2A–C), the network went
on to generate a higher frequency (;2.4Hz) of smaller ampli-
tude, with an increased SampEn. The sPCI following the electri-
cal stimulation revealed a significant increase of the sPCI with
respect to that in SO (Fig. 2D), similar to what was reported pre-
viously (D’Andola et al., 2017). In the desynchronized state, the
mean sPCI was also significantly larger than that in SO, but not
higher than in NE1CCh, despite being more desynchronized

Figure 2. Network complexity increased from spontaneous synchronous SO to desynchronized activity. A, Raw LFP (top) and MUA (bottom) recordings of 5 s of spontaneous SO (left),
NE1CCh (middle), and desynchronized activity (right). B, Representative autocorrelograms showing the lack of slow oscillatory activity during desynchronized activity (right). C, Spectrograms
of spontaneous activity from LFP recordings shown in A. D, left, Averaged LFP (top) and MUA (bottom) responses to electrical stimulation during spontaneous SO (left), NE1CCh (middle), and
desynchronized activity (right). Binary matrices of significant sources of activity [SS(x,t)] following electrical stimulation delivered to neocortical slices (bottom). Right, Population sPCI (n = 20)
measured during control SO, NE1CCh, and desynchronized activity (**p, 0.01).
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(SO: 0.1036 0.004; desynchronized: 0.1416 0.005, t(38) = 8.599,
p=1.301� 10�6, n=20; Fig. 2D). When cortical complexity was
calculated by means of sPCI, there was a significant increase in
complexity following the blockade of network Up/Down state
bistability, which is a highly synchronous state. However, the
more subtle change in dynamics taking place between NE1CCh
and desynchronized conditions did not convey a complexity
increase as detected by sPCI. From this point on in the study, we
used two departing points or baselines that we compared: (1) the
slow oscillatory, synchronous state; and (2) the desynchronized
state. These two extremes of the dynamics mimic awake versus
slow wave sleep, or awake versus deep anesthesia, respectively.

Role of GABAA-Rs in the modulation of cortical dynamics
and complexity: blocking of GABAA-Rs in the
desynchronized state
To investigate the GABAergic role in cortical complexity we
explored how a progressive blockade of inhibition affected sPCI
while departing from two different dynamic states, either (1) the

desynchronized state or (2) the synchronous, slow oscillatory
state. We first induced the desynchronized state (Fig. 3A,B)
as described in Materials and Methods, and next we blocked
fast inhibition by application of the selective GABAA-R
blocker GBZ (Fig. 3; 50–200 nM). When GABAA-Rs were
blocked, desynchronized dynamics progressively shifted to-
ward pre-epileptiform dynamics (Fig. 3A,B) as described in
Sanchez-Vives et al. (2010; Fig. 6D). We illustrate how this
effect was expressed in the raw traces (Fig. 3A) and in the
spectrogram of the activity (Fig. 3B). Such modification of
spontaneous dynamics was also reflected in the spatiotempo-
ral pattern of responses to perturbation (Fig. 3C), that were
used for the calculation of sPCI (Fig. 3C–E). As shown above,
from slow oscillatory regime to desynchronized regime, there
was an increase in sPCI. However, following the maximum
sPCI reached in the desynchronized state, the progressive
blockade of GABAA-Rs resulted in a progressive decline of
sPCI (n = 10; Fig. 3D,E). Interestingly, whereas the sPCI was
significantly reduced compared with the desynchronized

Figure 3. Progressive blockade of GABAA-Rs reduces sPCI during desynchronized activity recovering bistability. A, Raw LFP recordings of spontaneous activity in neocortical slices, during SO,
desynchronized activity and blockade of GABAA-Rs by bath application of increasing concentrations of GBZ demonstrated progressively shifted toward preepileptiform dynamics. B,
Spectrograms of spontaneous activity from LFP recordings shown in A. C, Averaged LFP (top) and MUA (middle) to electrical stimulation during distinct regimes of activity. Binary matrices of
significant sources of activity [SS(x,t)] following electrical stimulation delivered to neocortical slices (bottom). D, Time evolution of sPCI in the three experimental conditions E, Population sPCI
(n = 10) demonstrated that presence of large Down-states breaks the causal interactions and decreased the complexity of the responses (*p, 0.05, **p, 0.01).
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state for concentrations above 50 nM GBZ (GBZ 100 nM: t(45)
= 5.56, p = 0.003; GBZ 150 nM: t(45) = 6.979, p = 1.588� 10�4;
GBZ 200 nM: t(45) = 10.485, p = 4.128� 10�8; n = 10; Fig. 3E),
it was only at the highest concentration of GBZ that the sPCI
significantly decayed below control levels (t(45) = 6.294,
p = 7.525� 10�4, n = 10; Fig. 3E). The trend shown in Figure
3E was in agreement with the temporal evolution of the sPCI
(Fig. 3D) that showed a faster increase in the desynchronized
state with respect to the other two conditions in which the
increase of sPCI reached a plateau around 0.6 s after the
stimulation. In summary, these results indicate that blockade
of GABAA-Rs in the desynchronized state decreases pertur-
bational complexity in cortical slices, or conversely, physio-
logical GABAA-mediated inhibition contributes to cortical
complexity during desynchronized dynamics. Further, highly
synchronous epileptiform discharges (in 200 nM GBZ) dis-
play decreased complexity. A decreased information content
and complexity in synchronous, epileptic discharges has also
been described in both animal models and humans (Lehnertz
and Elger, 1995; Artinian et al., 2011; Trevelyan et al., 2013).

Role of GABAA-Rs in the modulation of cortical dynamics
and complexity: blocking of GABAA-Rs in the slow
oscillatory state
We next investigated the effect of GABAA-R blockade on
complexity but departing from SO. We bath-applied increas-
ing concentrations of BMI (0.2, 0.4, 0.6, 0.8, and 1 mM) and
recorded network responses to electrical stimulation. Raising
BMI concentrations induced a gradual shortening of evoked
Up states and augmented Up-state amplitude, as previously
described (Sanchez-Vives et al., 2010). Such an increase in
Up-state amplitude corresponded to a linear increase in the
firing rate during Up states with the removal of inhibition
because of an enhanced excitatory reverberation. The
increase in firing rate was significant for all conditions com-
pared with SO (n = 9; BMI 0.2 mM: t(40) = 5.25, p = 0.008; BMI
0.4 mM: t(40) = 9.96, p = 2.87� 10�7; BMI 0.6 mM: t(40) = 14.98,
p = 2.21� 10�10; BMI 0.8 mM: t(40) = 18.15, p, 0.001; BMI
1 mM: t(40) = 19.83, p, 0.001). Up states of larger amplitude
resulted in binary matrices with shorter significant periods
of activity. In particular, bath-application of BMI reduced
the sPCI with respect to SO (n = 9). Post hoc analysis revealed
that the trend of decay of sPCI with the removal of fast inhi-
bition became significantly reduced at 1 mM BMI with respect
to SO (t(40) = 4.93, p = 0.014, n = 9; data not shown).

BMI is known to block additional targets such as the small con-
ductance calcium-activated potassium (SK) channels (Khawaled et
al., 1999). To avoid potential confounding effects in our experi-
ments, we next bath-applied increasing concentrations of GBZ, a
specific blocker of GABAA that lacks the effect on SK channels.
Blockade of GABAA-Rs by increasing concentrations of GBZ also
induced shortening of evoked Up states (Fig. 4A,B), as previously
shown (Sanchez-Vives et al., 2010). As occurred after application
of BMI, the firing rate during Up states also gradually increased,
eventually leading to epileptiform discharges in some cases (n=9;
Fig. 4B). Although the firing rate increase showed a clear trend for
all GBZ concentrations, this increase was significant above 50 nM
(GBZ 50 nM: t(32) = 1.43, p=0.85; GBZ 100 nM: t(32) = 5.07,
p=0.009; GBZ 150 nM: t(32) = 10.17, p=3.43� 10�7; GBZ 200 nM:
t(32) = 10.01, p=4.7� 10�7; n=9; Fig. 4C).

The change in sPCI induced by the removal of fast inhibition
with GBZ was largely similar to the one induced by BMI.
Overall, the sPCI significantly decreased with increasing GBZ

concentrations (n=9; Fig. 4D–F). In particular, the sPCI reduc-
tion with respect to the SO condition was significant above 100
nM GBZ (GBZ 150 nM: t(32) = 7.04, p=1.94� 10�4; GBZ 200 nM:
t(32) = 7.22, p=1.36� 10�4; n= 9).

Thus, these results indicate that removal of fast inhibition
reduces perturbational complexity in cortical slices. Enhanced
excitability during Up states because of excitatory recurrency in
cortical circuits induced stereotypical responses to stimulation
that resulted in lower sPCI values. Balanced GABAA-R-mediated
inhibition in cortical activity provides richness in the emergent
patterns, contributing to the complexity of causal interactions.
Later, in our computer model, we explored the limits of the rela-
tionship between inhibition and complexity, in a range that is
unattainable experimentally.

Role of GABAB-Rs in the modulation of cortical dynamics
and complexity: blocking of GABAB-Rs in the
desynchronized state
Next, we followed a similar approach to investigate the effects of
progressive GABAB-R blockade during desynchronized activity
in cortical slices (Fig. 5). Departing from slow oscillatory sponta-
neous activity, we induced desynchronized activity. The transfor-
mation of the activity is illustrated in the raw recordings (Fig.
5A) and in the spectrogram (Fig. 5B). We then bath-applied
increasing concentrations of CGP55845, a specific antagonist of
GABAB-Rs. Such application had a progressive effect enhancing
the synchronization in the network (Fig. 5A,B) although it did
not turn activity into epileptiform activity as GABAA-R blockade
did (Fig. 3A,B). We computed the sPCI for each condition (Fig.
5C–E) and significant differences were found (F(5,30) = 2.921,
p= 0.029; n= 7). Although sPCI significantly increased during
desynchronized condition compared with SO (t(30) = 4.75,
p= 0.024, n=7; Fig. 5E), post hoc tests did not reveal significant
differences, neither between control versus CGP conditions
(CGP 100 nM: t(30) = 2.87, p=0.348; CGP 200 nM: t(30) = 1.68,
p= 0.837; CGP 500 nM: t(30) = 1.29, p=0.941; CGP 1 mM: t(30) =
0.69, p=0.996; n=7; Fig. 5E) nor desynchronized versus CGP
groups (CGP 100 nM: t(30) = 1.88, p= 0.768; CGP 200 nM: t(30) =
3.07, p=0.281; CGP 500 nM: t(30) = 3.47, p=0.171; CGP 1 mM:
t(30) = 4.07, p= 0.072; n=7; Fig. 5E). The temporal evolution of
sPCI (Fig. 5D) also revealed an increase in the desynchronized
condition, but a similar evolution in SO and under GABAB-R
blockade, conditions with an increased synchronization and thus
lesser spatiotemporal richness in the patterns. In summary, these
results indicate that blockade of GABAB-Rs during desynchron-
ized activity showed a trend toward a decreased sPCI but did not
reach significance. Thus, the contribution of GABAB-mediated
inhibition to causal complexity in the awake state is less relevant
than that of GABAA-mediated inhibition.

Role of GABAB-Rs in the modulation of cortical dynamics
and complexity: blocking of GABAB-Rs in the slow
oscillatory state
During SO, GABAB-Rs have been found to play a role in Up-
state termination since their blockade results in longer persistent
activity (Mann et al., 2009; Perez-Zabalza et al., 2020; Sanchez-
Vives et al., 2021). In order to further investigate the role of
GABAB-R-mediated inhibition in emergent activity and cortical
complexity, we gradually blocked GABAB-Rs while departing
from slow oscillatory activity. Progressive blockade of GABAB-
Rs induced Up states of longer duration followed by prominent
Down states that decreased the frequency of Up states and
increased their regularity, as described in (Perez-Zabalza et al.,
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2020; Fig. 6A,B). The spectrograms illustrate the enhanced syn-
chronization (Fig. 6B). The sPCI decreased following GABAB-R
blockade (F(4,40) = 9.351, p= 1.97� 10�5; n= 11; Fig. 6D–F). The
time evolution of sPCI (Fig. 6E) also decreased with GABAB-R
blockade. Significant sPCI reductions were confirmed by post
hoc analysis for the three tested conditions (CGP 200 nM: t(40) =
5.38, p= 0.004; CGP 500 nM: t(40) = 5.87, p=0.002; CGP 1 mM:
t(40) = 7.98, p= 1.45� 10�5; n= 11). Interestingly, the removal of
slow `inhibition by bath-application of increasing concentrations
of CGP55845 significantly increased the firing rate during Up
states (F(1.84,18.42) = 4.481, p=0.028; n=11; Fig. 6C), although to a
lesser extent than GABAA-R blockade did. Only bath-application
of 1 mM CGP55845 resulted in a significant increase of firing rate
(t(40) = 4.996, p=0.009, n=11). Finally, we showed that blockade
of GABAB-Rs, while in SO, reduced perturbational complexity,
confirming that GABAB-R-mediated inhibition contributes to the
richness of activity patterns, spatiotemporal variability, and corti-
cal complexity during the slow oscillatory regime.

The role of cortical GABAA-Rs and GABAB-Rs in the
modulation of cortical complexity in a cortical network
model
In order to further investigate the cellular and network mecha-
nisms involved in the spatiotemporal dynamics of spontaneous

and induced cortical complexity, we implemented a modified
version of a biophysically detailed neuronal model (Compte et
al., 2003) in a two-dimensional network. The model consists of
pyramidal and inhibitory conductance-based neurons synapti-
cally connected within a local range. Pyramidal cells have a larger
range of connectivity than inhibitory neurons, which are more
locally connected (Fig. 7A; for details, see Materials and
Methods). Our neuronal model includes GABAA as in Compte
et al. (2003) and additionally accounts for GABAB inhibitory
synapses, as well as potassium leakage current which is modu-
lated by ACh and NE (Bazhenov et al., 2002; Li et al., 2017).
Equations and parameters of the model can be found in
Extended Data Fig. 7-1. In this model, we simulated population
LFPs (sLFP), and recorded from 20 different locations organized
in a matrix (see Materials and Methods).

The sLFP signal was analyzed with exactly the same techni-
ques as the ones experimentally recorded in the cortical slices.
The model is able to reproduce slow oscillatory dynamics and
desynchronized activity as observed in vitro, as well as the corti-
cal activity under blockade of GABAA-Rs and GABAB-Rs (Fig.
7B; see Movie 1). The transition from synchronized toward
desynchronized activity was modeled by blocking the potassium
leak current, mimicking the action of ACh and NE (McCormick,

Figure 4. Progressive blockade of GABAA-Rs reduces sPCI during SWA. A, Raw LFP recordings of spontaneous activity in neocortical slices, control SOs and blockade of GABAA-Rs by bath
application of increasing concentrations of GBZ induced shortening of evoked Up states. B, Spectrograms of the spontaneous activity shown in A. C, Population FRs for increasing GBZ concentra-
tions. D, Averaged LFP (top) and MUA (middle) responses to electrical stimulation during distinct regimes of activity. Binary matrices of significant sources of activity [SS(x,t)] following electrical
stimulation delivered to neocortical slices (bottom). E, Time evolution of sPCI in the three experimental conditions. F, Population sPCI (n = 9) demonstrated that presence of large Down states
breaks the causal interactions and correlates with low complexity states (**p, 0.01).
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1992), a strategy that has been used in thalamocortical models to
this end (Bazhenov et al., 2002; Li et al., 2017; see Materials and
Methods). We then evaluated the perturbational complexity in
the cortical network model. For SO and desynchronized activity,
the sPCI showed similar values to those observed in vitro:
0.086 0.01 and 0.146 0.01, respectively. We next tested the
effects of the progressive blockade of GABAA and GABAB during
both different dynamics corresponding to the conditions of SO
and desynchronized states. The maximal effect of GABAA block-
ade on the sPCI during SO occurred by reducing the receptor
availability by 20%, when we obtained values of sPCI 0.056 0.01
that remained unchanged for lower availability (Fig. 7C, top
left). On the other hand, the sPCI during desynchronized dy-
namics progressively decreased with the GABAA-R blockade,
reaching a plateau for blockade of .80% of receptors,
0.086 0.01 (Fig. 7C, top right). Interestingly, for large GABAA

blockade during desynchronized activity, the sPCI values
approach those observed during SO, as observed experimentally.
For the GABAB -Rs blockade, we observed a progressive slow
decay of the sPCI values from SO conditions (Fig. 7C, bottom
left), while for desynchronized dynamics we did not observe any
trend in sPCI (Fig. 7C, bottom right). To a lesser extent, the

GABAB effects were also similar to those observed experimen-
tally. Since GABAA modulation presented a stronger effect on
the perturbational complexity in both conditions (i.e., SO and
desynchronized dynamics), we next proceeded to evaluate the
network dynamics in two scenarios: (1) in a disinhibited network
and (2) in an inhibited network. As observed experimentally dur-
ing SO, when we blocked GABAA (i.e., disinhibited the net-
work) the spontaneous activity presented a shorter Up state
with higher firing rate (Fig. 7B, compare top left and top mid-
dle left). In the model, we observed that the dynamics of spon-
taneous activity in a disinhibited network during SO is fully
integrated, while weakly segregated, giving rise to activation
waves that rapidly span the whole network (Fig. 8A, right; see
Movie 1). Conversely, when the network is inhibited, the
spontaneous activity is highly segregated and weakly inte-
grated, and the activation waves propagate more locally and
do not span over the whole network (Fig. 8A, left; Movie 1).
Nonetheless, when there is a balance between integration and
segregation, the activation waves span over the whole network
recruiting their nearest neighbors (Fig. 8A, middle; Movie 1).
Finally, we evaluated the perturbational complexity networks
where the inhibition was not only decreased (as in the

Figure 5. Progressive blockade of GABAB-Rs did not significantly reduce the sPCI during desynchronized activity. A, Raw LFP recordings of spontaneous activity in neocortical slices SOs,
desynchronized activity and blockade of GABAB-Rs by bath application of increasing concentrations of CGP, which enhanced the synchronization in the network. B, Spectrograms of spontaneous
activity from LFP recordings shown in A. C, Averaged LFP (top) and MUA (middle) to electrical stimulation during distinct regimes of activity. Binary matrices of significant sources of activity
[SS(x,t)] following electrical stimulation delivered to neocortical slices (bottom). D, Time evolution of sPCI in the three experimental conditions. E, Population sPCI (n = 7) demonstrated that
higher synchronization reduces cortical complexity (*p, 0.05).
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experiments), but also increased. While departing from the
slow oscillatory regime, we found that increasing inhibition by
120% further increased sPCI (0.106 0.01), remaining high
during SO for highly inhibited networks (190%, 0.096 0.02;
Fig. 8B). The increment on the sPCI values for slightly more
inhibited networks may be because of the fact that the neurons
on the network fired less during the Up states, and therefore
had less hyperpolarization at the beginning of Down states
(Fig. 8C), shortening the Down states and allowing a less
synchronized and bistable network. These results suggest that
there is a close link between integration and segregation with
E/I balance, and that higher/lower sPCI values are not the
consequence of merely increasing/decreasing excitability.

Discussion
In this study we have investigated the role of GABAA-R-medi-
ated and GABAB-R-mediated inhibition on cortical emergent ac-
tivity and complexity, in particular on complexity measured by
means of perturbing the network with stimulation. By doing this

we have attempted to bridge a macroscale clinical measure
(PCI), with the synaptic and cellular components of the local
cortical circuits. We found that during physiological activity,
both types of inhibition, fast and slow, contribute to the gener-
ation of richness of spatiotemporal activity patterns and corti-
cal complexity, and the progressive blockade of fast or slow
inhibition results in enhanced synchronization and break-
down of complexity. However, the contribution of GABAA-R-
mediated and GABAB-R-mediated inhibition is different in
the desynchronized and in the slow oscillatory regimes, and
this is discussed below. In our computational model, we
explore areas of the parameter space that cannot be reached
experimentally, exploring more extensively the relationship
between excitatory and inhibitory balance, network dynamics,
and cortical complexity.

The PCI (Casali et al., 2013; Comolatti et al., 2019) is a mea-
sure of cortical complexity that has been used to quantify con-
sciousness levels, in awake/sleep, in anesthesia (Hudetz, 2012;
Sarasso et al., 2015) and in patients with disorders of conscious-
ness (Rosanova et al., 2012; Casarotto et al., 2016). This measure

Figure 6. Progressive blockade of GABAB-Rs reduces sPCI during SO leading stereotypical activity. A, Raw LFP recordings of spontaneous activity in neocortical slices, control SOs and blocking
GABAB-Rs by bath application of increasing concentrations of CGP, which induced Up states of longer duration followed by prominent Down states, decreasing the Up-state frequency and
increasing the regularity. B, Spectrograms of spontaneous activity from LFP recordings shown in A. C, Population of relative FRs of increasing concentrations of CGP. D, Averaged LFP (top) and
MUA (middle) to electrical stimulation during distinct regimes of activity. Binary matrices of significant sources of activity [SS(x,t)] following electrical stimulation delivered to neocortical slices
(bottom). E, Time evolution of sPCI in the three experimental conditions. F, Population sPCI (n = 11; **p, 0.01).
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consists in the perturbation of the brain network by means of
cortical stimulation to engage the corticothalamocortical circuit
in causal interactions, and then capturing the spatiotemporal
properties of the response in an index that reflects cortical com-
plexity. It is based on the hypothesis that for consciousness to
occur, simultaneous integration and segregation of information
in the network are needed, resulting in high complexity in the
awake state (Tononi and Edelman, 1998). Network complexity
can be measured by different means in the spontaneous activity,
either electrophysiological or imaging signal. A variety of
such measures exist, including Lempel–Ziv compressibility

(Szczepa�nski et al., 2003; Hudetz et al., 2016), Shannon entropy
(Zhao et al., 2010), entropy of wave propagation (Barbero-
Castillo et al., 2019), and functional complexity (Zamora-López
et al., 2016), among others. However, a perturbational approach
presents advantages with respect to an observational one (based
on spontaneous activity) because it is less affected by noise or
isolated processes, and only assesses information generated
through deterministic interactions, which also gives advantages
that are useful clinically (Casali et al., 2013). Highly synchronized
states (slow wave sleep or anesthesia) display bistable responses
to stimulation, which prevents the cortical network engaging in a

Figure 7. A network cortical model to reproduce the sPCI measured during different regimes of network activity. A, The model consists of pyramidal (blue) and inhibitory neurons (red)
arranged in a 50� 50 square lattice. The excitatory neurons may connect locally to a 50% fraction of its neighbors (gray circles) within a 7� 7 square, while the inhibitory neurons to a 90%
fraction within a 5� 5 square (see Materials and Methods). All details of the model are in Extended Data Figure 7-1. B, The model reproduces similar spontaneous and evoked neuronal activ-
ity, as observed experimentally during (from left to right) SOs, SOs1 blocking GABAA (SO1 BLOCK GA), SOs1 blocking GABAB (SO1 BLOCK GB) and desynchronized activity. Single sponta-
neous sLFP (top), averaged sLFP (middle top), MUA (middle bottom), and binary matrices of significant sources of activity [SS(x,t)] following stimulation delivered in a cortical model. C,
Population sPCI for different cortical activity, SOs with GABAA (left-top) and GABAB (left-bottom) progressively blockade, the same for desynchronized activity (right column).
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chain of complex causal interactions that are typical of the awake
state (Massimini et al., 2005, 2007; Pigorini et al., 2015). In such
“bistable” states, the network falls into an off-period following
stimulation (Rosanova et al., 2018). While highly synchronized
states like slow wave sleep or deep anesthesia show low complex-
ity and the awake state, high complexity, in between there are in-
termediate brain states and intermediate complexity levels,
which can be investigated using various anesthetics (Sarasso et
al., 2015), at different levels of anesthesia (Dasilva et al., 2021) or
in different disorders of consciousness (Casarotto et al., 2016).
Given that there is accumulating evidence that brain complexity
is a relevant property that informs about the brain state and con-
sciousness levels, we want to link this measure to the properties
of cells and circuits, to understand how the different mechanisms
may sculpt the resulting complexity. This understanding is also
important to eventually devise strategies to recover complexity in
pathologic situations.

In order to investigate how inhibition contributes to
complexity, we resorted to the progressive blockade of
GABAergic receptors. However, network complexity in
humans has been found to be different in the synchronized,
slow oscillatory state (low complexity) and in the awake
state (high complexity; see above). For this reason, we con-
ducted the GABAergic blockade while departing from these
two extreme conditions, to understand the different role
GABAergic inhibition plays in both regimes. SO dynamics
is a multiscale phenomenon which emerges in cortical cir-
cuits whenever there is physical or functional disconnection
of the cortex, such as NREM sleep or anesthesia (Steriade et
al., 1993a; Sanchez-Vives and McCormick, 2000; Massimini
et al., 2004; Riedner et al., 2007; Alkire et al., 2008;
Chauvette et al., 2011). For this reason, SO has been sug-
gested to represent the “default” pattern of activity of the
cortical network (Sanchez-Vives and Mattia, 2014), which
emerges even in isolated cortical tissue in vitro (Sanchez-
Vives and McCormick, 2000). From synchronized regimes
of SO, neural activity can transition toward desynchronized
states leading to variable, irregular and spatiotemporally
complex cortical rhythms, in which neurons fire irregularly
and nearly independently during the awake state (Steriade
et al., 2001; Chen et al., 2009; Constantinople and Bruno,
2011; Duarte et al., 2017; Andalman et al., 2019; Poulet and
Crochet, 2019). The cellular substrate underlying the switch
between SO and desynchronized activity is provided,
among others, by ascending cholinergic and noradrenergic
neuromodulatory connections arising from subcortical

structures, such as the basal forebrain or locus coeruleus
(Hobson and Pace-Schott, 2002; Jones, 2005; Weber and
Dan, 2016; Scammell et al., 2017). Our preparation repro-
duced several features of these different dynamics. Bath-
application of NE1CCh shifted SO to low-frequency 1- to
5-Hz oscillations (Fig. 2A–C; as in D’Andola et al., 2017),
which in part resemble the cortical activity observed during
wakefulness. Further, we lowered the temperature by 2°C to
32°C, which we have demonstrated previously diminishes
cortical synchronization (Reig et al., 2010), and increases
excitability by increasing electrical compactness and synap-
tic summation (Trevelyan and Jack, 2002). Further, we low-
ered [Ca21]o levels to enhance excitability (0.8–0.9 mM;
Markram et al., 2015). Both manipulations resulted in
larger desynchronization as illustrated in the autocorrelo-
grams (Fig. 2B) and spectrograms (Fig. 2C). Both manipula-
tions led to higher sPCI values (Fig. 2D) as well as increased
SampEn with respect to the SO regime, which is consistent
with the idea of different cortical dynamics. Our experi-
mental model thus allows the study of transitions between
different cortical dynamics, SO to desynchronized states.

Departing from SO as well as from desynchronized activity,
GABAA-R blockade resulted in Up states of higher amplitude
and shorter duration than those observed in control conditions
(Fig. 4). This property has been described (Sanchez-Vives et al.,
2010), but only for the evolution of Up states in SO.
Interestingly, when departing from desynchronized activity, it is
also possible to induce rhythmicity in low frequencies by par-
tially blocking GABAA-Rs. It should be noticed that this is not
epileptiform activity, although progressive inhibition would
eventually lead to epileptiform discharges. Disinhibition causes
higher firing rates that induces a hypersynchronization of the
network, as we also find in our computer model simulations. In
the simulations, the activation of potassium channels is critical to
induction of the silent periods. Such hypersynchronization of the
network results in a decrease in complexity.

GABAB-R blockade during SOs increased Up-state duration
(Mann et al., 2009; Perez-Zabalza et al., 2020), resulting in highly
regular oscillatory patterns and prominent bistable responses to
electrical perturbation (Fig. 6). This finding is revealing of the
role of GABAB-Rs in increasing richness of activity patterns and
irregularity in the Up and Down states (Perez-Zabalza et al.,
2020). This is also translated in a consistently decreased sPCI
with GABAB-R blockade. A different situation takes place when
departing from the desynchronized state. In this situation, the
blockade of GABAB-Rs tends to induce, but does not fully
induce, a bistable oscillatory regime, nor significantly decreases
sPCI. These findings suggest that the role of GABAB-Rs in the
desynchronized state for introducing richness of activity patterns
and thus complexity, is not as relevant as it is for the SO regime.
It is probably the case that the intense firing of neurogliaform
neurons necessary for the activation of GABAB-Rs is more com-
monly achieved in synchronized than in desynchronized states
(for review, see Craig and McBain, 2014; Sanchez-Vives et al.,
2021).

Local network excitability, bistability, and the integration–
segregation balance in brain slices
A straightforward explanation of our observation of increased
sPCI during desynchronized states is that the sPCI merely
reflects network excitability. In other words, the sPCI scored
higher just because bath-application of modulators such as CCh

Movie 1. Spatiotemporal dynamics of the SO in a cortical network model under different
regimes of inhibition. The movie shows three different dynamical states as a function of inhi-
bition: GABAA is increased by 80% (inhibited state, left), control condition (balanced state,
center) and GABAA is decreased by 80% (disinhibited state, right). L indicates the size of the
squared network (here L = 50). The color code indicates the time since the last neuronal
spike (for details, see Materials and Methods). [View online]
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or NE increased the excitability of the slice. However, if that were
the case, any experimental manipulation increasing the excit-
ability of the slice would result in higher sPCI values
compared with those obtained under the SO regime
(Barbero-Castillo et al., 2019; D’Andola et al., 2017) already
demonstrated the opposite, showing that either bath-applica-
tion of a glutamate receptor agonist (kainate) or electric field

modulation (respectively) in cortical sli-
ces increased network excitability with-
out affecting sPCI. Finally, the authors
did not find a relationship between net-
work excitability and sPCI (D’Andola et
al., 2017). Here, we further explored the
relationship between excitability, inhi-
bition and connectivity in our experi-
ments and computer model and
provided a number of novel insights.
On one hand, the progressive reduction
of fast inhibition gradually increased
the firing rate as illustrated in the fig-
ures, even leading to epileptiform dis-
charges in some cases. We found that
excessive excitability can in fact reduce
the sPCI, and statistical analysis indi-
cated that following GABAA-R block-
ade, the sPCI was significantly reduced
while the relative firing rate increased.
On the other hand, GABAB-R blockade
also reduced the sPCI without signifi-
cantly increasing the firing rate, sup-
porting the idea of the independence
of firing rates or excitability and
complexity.

Finally, our computer model allowed
us to investigate areas of the parameter
space that were not visited experimen-
tally. The model that has been used for
these simulations, as described, is a bio-
logically inspired, Hodgkin and Huxley
model (Hodgkin and Huxley, 1952),
in which pyramidal neurons have two
compartments: somatic and dendritic
(see Materials and Methods), where
excitatory synapses target the dendritic
compartment and inhibitory synapses
are localized on the somatic compart-
ment of postsynaptic pyramidal neu-
rons (Compte et al., 2003). This
network model was originally tuned
based on experimental observations of
cortical SOs, and further studies have
validated that it reproduces diverse
features of excitability and oscillations
(Sancristóbal et al., 2016), and of corti-
cal emergent properties such as b and
g frequencies (Compte et al., 2008).
Activation of GABAergic receptors in the
soma compartment hyperpolarizes the
membrane potential and decreases the
input resistance, while those in dendrites
modulate NMDA potentials (Doron et al.,
2017), calcium spikes, block back-propa-
gation of action potentials and neuronal
bursting, all without modifying the mem-

brane potential in the soma (Larkum et al., 1999; Pouille and
Scanziani, 2004; Breton and Stuart, 2012; Palmer et al., 2012;
Pouille et al., 2013). In a previous study, we demonstrated that
this model could reproduce at the cellular and network level
the transformation of the SOs when GABAA-Rs were pro-
gressive blocked (Sanchez-Vives et al., 2010). In the current

Figure 8. sPCI for an inhibited and disinhibited cortical network model. A, Example snapshot of cortical net-
work activity for three networks with different inhibition (GABAA) concentration (E/I balance). The color scale
indicates the time since each neuron last spiked, thus illustrating the temporal dynamics of activity propagation.
Right, Networks with low inhibition blockade (�80%) show high integration, while with high inhibition block-
ade (180%) show high segregation (left). Middle, Networks with an intermediate segregation/integration bal-
ance. See the simulations in Movie 1. B, Population sPCI for inhibited and disinhibited cortical networks. The
shadow area represents the model predictions. C, Membrane potential traces for three neurons in the cortical
network model during SOs (CTRL), disinhibited (orange), slightly inhibited (red), and high inhibited (blue) corti-
cal network activity. Notice the increase and decrease afterhyperpolarization (AHP) following the up state for
slightly inhibited and high inhibited neurons, respectively.

Barbero-Castillo, Mateos-Aparicio et al. · Cortical Inhibition on Dynamics and Complexity J. Neurosci., June 9, 2021 • 41(23):5029–5044 • 5041

https://doi.org/10.1523/JNEUROSCI.1837-20.2021.video.1


study, we aimed to reproduce in our model population fea-
tures that we observed while blocking as well GABAB-R: an
elongation of the Up states (as in Mann et al., 2009; Perez-
Zabalza et al., 2020), and the spatiotemporal response to
stimulation (or perturbation), which results in a decrease in
the resulting PCI with GABAergic block. Somatic GABAergic
receptors located in the soma in our model were sufficient to
reproduce both spontaneous and evoked population
responses observed in cortical slices, although a further ex-
ploration of a more detailed somatic versus dendritic influ-
ence on network dynamics could be a valuable future
development. In the model we explored parametrically the
variation of GABAA-R blockade and found the rate of
decrease of sPCI reached a minimum for about a 25%
decrease in inhibition. Interestingly, we were also able to
enhance inhibition, and found that there is a window of
excitatory/inhibitory balance, around the physiological
values, in which complexity is maximal, but either enhanc-
ing or decreasing inhibitions diminishes complexity.
However, when we look at the spatial patterns (see Movie
1) we can see how the spatiotemporal pattern to reach
decreased complexity can be very different, from a highly
disaggregated activity in enhanced inhibition, to hyper-
synchronization in low inhibition. This finding bridges the
activity of receptors with the activation of the network at
the mesocortical level and connects circuit properties with
large-scale causal interactions in the cortical network.
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