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Abstract

Background: GLT-1 is a glial glutamate transporter which maintains low synaptic concentrations of the excitatory
neurotransmitter enabling efficient synaptic transmission. Based on the crystal structure of the bacterial homologue GltPh, it
has been proposed that the reentrant loop HP2, which connects transmembrane domains (TM) 7 and 8, moves to open and
close access to the binding pocket from the extracellular medium. However the conformation change between TM5 and
TM8 during the transport cycle is not clear yet. We used paired cysteine mutagenesis in conjunction with treatments with
Copper(II)(1,10-Phenanthroline)3 (CuPh), to verify the predicted proximity of residues located at these structural elements of
GLT-1.

Methodology/Principal Findings: To assess the proximity of transmembrane domain (TM) 5 relative to TM8 during
transport by the glial glutamate transporter GLT-1/EAAT2, cysteine pairs were introduced at the extracellular ends of these
structural elements. A complete inhibition of transport by Copper(II)(1,10-Phenanthroline)3 is observed in the double
mutants I295C/I463C and G297C/I463C, but not in the corresponding single mutants. Glutamate and potassium, both
expected to increase the proportion of inward-facing transporters, significantly protected against the inhibition of transport
activity of I295C/I463C and G297C/I463C by CuPh. Transport by the double mutants I295C/I463C and G297C/I463C also was
inhibited by Cd2+.

Conclusions/Significance: Our results suggest that TM5 (Ile-295, Gly-297) is in close proximity to TM8 (Ile-463) in the
mammalian transporter, and that the spatial relationship between these domains is altered during the transport cycle.
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Introduction

Sodium-coupled neurotransmitter transporters are located in the

plasma membranes of neurons and glia, where they are present at

high density in those areas of the cell membrane that face the

synapse. They serve to keep the extracellular neurotransmitter

concentrations sufficiently low, so that the postsynaptic receptors

are able to detect signaling by the presynaptic nerve cell in the form

of exocytotically released transmitters. Thus, neurotransmitter

transporters are key elements in the termination of the synaptic

actions of neurotransmitters. Moreover, they serve to keep the

extracellular transmitter concentrations below neurotoxic levels.

Termination of synaptic transmission by transporters takes place

with most neurotransmitters, including L-glutamate, c-aminobuty-

ric acid (GABA), glycine, dopamine, serotonin, and norepinephrine.

Glutamate transporters have a non-conventional topology

(Fig. 1A) containing eight transmembrane segments, two reentrant

helical hairpins, first between TM6 and TM7 and the second

between TM7 and TM8 [1–3]. Moreover, the two reentrant loops

are in close proximity [4]. The crystallized GltPh transporter has

37% sequence identity with human glial glutamate transporter

type one (GLT-l) (also known as excitatory amino acid transporter

2, EAAT2) and the structure was solved at a resolution 3.8 Å [5].

The GltPh structure revealed a bowl-shaped structure, formed by a

trimer of the transporter, with a solvent-filled extracellular basin

extending halfway across the membrane bilayer [5]. At the bottom

of the basin three independent binding sites were observed, one in

each transporter monomer, suggesting that the monomer is the

functional unit. Support for the idea that each monomer functions

independently comes from studies with the bacterial glutamate

transporter GltT [6] and the neuronal glutamate transporter

EAAC1/EAAT3 [7–10].

Glutamate transport is an electrogenic process [11–13],

consisting of two distinct half cycles. First, glutamate is co-

transported with three sodium ions and one proton [14,15] and

subsequently the transporter countertransports one potassium ion

[16-18] (Fig. 1B). Under physiological conditions, the transporter

pumps the transmitter into the cell against its concentration

gradient [11,14,15], but elevated external potassium level causes

reverse transport [16,19]. Thus, in the presence of either high
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extracellular potassium or L-glutamate, the proportion of

transporters in the inward facing conformation will be increased.

In this status the binding site is exposed to the cytoplasm. On the

other hand, addition of the glutamate’s inhibitor, non-transport-

able glutamate analogues such as D,L-threo-b-benzyloxyaspartate

(TBOA) is expected to stabilize an outward-facing conformation of

the transporter. In the outward-facing conformation the binding

site is exposed to the extracellular medium.

The transmembrane segments TM7 and TM8, together with

hairpins HP1 and HP2 have been shown to enclose non protein

density which presumbly correspond to glutamate [5]. The GltPh

structure represents a static picture of a substrate-occluded

conformation of the transporter [5]. The TBOA-bound structure

[20], where the proposed extracellular gate, HP2, has moved

toward the extracellular space, resembles the outward-facing

conformation of the transporter. However, during a translocation

cycle, the transporter transits through many other conformations.

To assess the proximity and functional significance of residues in

TM5 and TM8 of the cysteine-less version of GLT-1 (CL-GLT-1,

in which the endogenous cysteines were replaced by serine, so that

the interaction between the induced and endogenous cysteines is

abolished), we engineered pairs of cysteine residues (I295C/I463C

and G297C/I463C) into TM5, TM8 and examined the impact of

disulfide cross-linking with Copper(II)(1,10-Phenanthroline)3 on

transport activity (Fig. 1A). Such cross-linking often results in the

inhibition of transport [4,21,22]. The inhibition may be due to

restrictions imposed by the disulfide cross-link on the conforma-

tional changes, which the transporter undergoes during a transport

cycle or may be the result of a steric barrier or another distortion

introduced by the crosslink. In this study, we have used two types

of functional assays to infer proximity of engineered cysteine pairs.

The double mutants were subjected to conditions of oxidative

cross-linking in the presence and absence of transporter ligands.

We report here the identification of two cysteine pairs, I295C/

I463C and G297C/I463C, which behave as if they are close

together. The data provides evidence that TM5 and TM8 are

spatially close to one another, and that the spatial relationship

between these domains is altered during the transport cycle.

Results

Effects of thiol cross-linking and Cd2+ on transport
To identify positions in TM5 and TM8, which are potentially

close to each other, we constructed 11 double cysteine transporters

for this cross-linking study. To determine whether the cysteine pair

introduced into each transporter is capable of forming a disulfide

bond, we expressed each transporter in HeLa cells and then

measured the accumulation of radiolabeled D-aspartate before

and after exposure to the cross-linking reagent CuPh. From this

assay, we identified two double cysteine transporters, I295CC/

I463C and G297C/I463C (Fig. 2A and B), that exhibit a dramatic

decrease in transport activity following exposure to CuPh. The

Figure 1. Topology model and transport cycle of GLT-1. (A) Topology model of GLT-1 by analogy to that of GltPh shown with black dots
denotes the approximate locations of the following three cysteine substitutions: I295C, G297C, and I463C. TM helices 1– 8 and hairpins (HP1 and HP2)
are labeled. (B) Transport cycle of GLT-1. After binding of sodium, glutamate, and a proton from the extracellular medium (up), the outward-facing
substrate-loaded translocation complex is formed. After the external gate closes, the internal gate opens and the substrate and cotransported ions
dissociate into the cytoplasm (bottom). Subsequently, intracellular potassium enters the binding pocket. After the internal gate closes, the external
gate opens and potassium is released into the extracellular medium.
doi:10.1371/journal.pone.0021288.g001
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other transporter mutants showed either impaired transport

activity in the absence of 200 mM CuPh (L294C/L465C,

L294C/L466C, I295C/L466C) or no change in transport activity

after exposure to CuPh (L294C/I463C, I295C/E461C, I295C/

L465C, G297C/L465C, G297C/L466C, K298C/E461C) (data

not shown).

When HeLa cells, expressing I295C/I463C or G297C/I463C,

were preincubated with the oxidizing agent CuPh (200 mM), a

significant inhibition of transport was observed (Fig. 2A and B).

This inhibition was not seen with cells expressing either CL-GLT-

1 or the single cysteine mutants I295C, G297C and I463C (Fig. 2A

and B), indicating that the inhibition of transport by oxidative

cross-linking required a cysteine at both positions. The inhibition

by CuPh was only observed when the cysteines at positions 295

and 463 or 297 and 463 were present on the same polypeptide, but

not when the two cysteines resided on two different polypeptides.

This was demonstrated by the lack of inhibition by CuPh of

transport in cells cotransfected with I295C and I463C or G297C

and I463C (Fig. 2A and B). This suggests that the cysteines at

positions 295 and 463 or 297 and 463 come into close proximity

within the transporter monomer, but not at the interface of the two

transporter monomers. To better characterize the effect of CuPh

on the I295C/I463C and G297C/I463C transporters, we

measured D-[3H] aspartate transport activity as a function of

CuPh concentration. For both transporters, we observed that

increasing concentrations of the cross-linking agent (10–600 mM)

lead to a greater reduction in D-aspartate transport (data not

shown). At the 600 mM of CuPh, the transport activity was almost

abolished. The inhibition of transport of I295C/I463C and

G297C/I463C by CuPh could be reversed by a subsequent

incubation with 20 mM dithiothreitol (DTT) (data not shown). In

rare instances CuPh can lead to the formation of covalent links

between cysteine and other residues and thus the reversibility in

the presence of DTT confirms the formation of a disulfide bond.

Although the strongest inhibition of transport by CuPh was

observed in the I295C/I463C and G297C/I463C double

mutants, we looked for additional evidence that these two

positions could be close in space and examined the ability of the

I295C/I463C and G297C/I463C double mutants to form a high

affinity Cd2+ binding site. This divalent cation interacts with

cysteinyl side chains [23,24], and the affinity of the interaction is

dramatically increased when the Cd2+ can be coordinated by two

cysteines [25]. Exposure of the single mutants I295C, G297C and

I463C to up to 500 mM Cd2+ had very little effect on D-[3H]

aspartate uptake (Fig. 3A and B). In contrast to these controls, an

inhibition of ,85% is observed on uptake by the I295C/I463C

and G297C/I463C mutants (Fig. 3A and B). The inhibition by

Cd2+ was only observed when the cysteine pairs were introduced

in the same polypeptide (Fig. 3A and B) but not when the single

mutants were coexpressed. This suggests that the cysteines

introduced at positions 295 and 463 or 297 and 463 come in

close proximity within the transporter monomer but not at the

interface of two transporter monomers. Our observations from

cross-linking and the effects of Cadmium Ions thus far suggest that

Ile-295 and Gly-297 in TM5 is indeed in close proximity to Ile-463

in TM8.

Effect of Glutamate and TBOA on cross-linking in double
cysteine transporters

The reaction with CuPh and cysteines results in the formation

of a covalent bond, so it is possible to determine the effect of the

external medium on the cross-linking during the pretreatment of

the cells with CuPh. When during pretreatment of cells expressing

I295C/I463C and G297C/I463C sodium was replaced by

choline, there was not much change in the extent of inhibition

by CuPh (Fig. 4A and B). When the sodium-containing medium

was either supplemented with glutamate or replaced by potassium,

conditions that promote the formation of the inward-facing

conformation, a marked reduction in the degree of inhibition by

CuPh was observed (Fig. 4A and B). This suggests that the cysteine

residues are far apart in the inward-facing conformation. The

protection by L-glutamate was not seen in the absence of sodium

(choline replacement; Fig. 4A and B) and was not observed with

GABA or glycine, which are not substrates of GLT-1 (Fig. 4A and

B). The non-transportable substrate analogue TBOA is expected

to increase the proportion of outward-facing transporters, while it

had no significant effect on this inhibition (Fig. 4A and B).

In principle, the modulation of the inhibition by CuPh could be

a result of changes in accessibility of the engineered cysteine

residues, rather than in their distance. As a measure of their

aqueous accessibility, we determined the effect of MTS reagents

Figure 2. Effect of CuPh on the activity of cysteine mutants.
HeLa cells expressing double cysteine mutants or the indicated control
mutants, all in the background of CL-GLT-1, were preincubated in NaCl-
containing medium with 200 mM CuPh for 5 min at room temperature,
washed twice with choline chloride-containing solution, and subse-
quently D-[3H]aspartate transport was assayed. Co-expression of two
single cysteine mutants in HeLa cells is marked by ‘‘co’’. The values
shown represent the percentage of activity after treatment with 200 mM
CuPh relative to that obtained after preincubation in the absence of
CuPh. Values represent the mean 6 S.E. of at least three separate
experiments each done in triplicate. (A) I295C/I463C double cysteine
mutants and its control mutants. (B) G297C/I463C double cysteine
mutants and its control mutants.
doi:10.1371/journal.pone.0021288.g002

Proximity of TM5 and TM8 of the Transporter GLT-1

PLoS ONE | www.plosone.org 3 June 2011 | Volume 6 | Issue 6 | e21288



on transport by the single cysteine mutants. Preincubation of

I295C with the membrane-impermeable sulfhydryl reagent

MTSET [(2-trimethylammonium) methanethiosulfonate] resulted

in inhibition of transport. Glutamate and external potassium,

which protected against cross-linking of the cysteine pairs (Fig. 4A),

did not modulate the inhibition of I295C by MTSET, and this was

also true for TBOA (Fig. 5A). Preincubation of G297C with

MTSET also resulted in inhibition of transport, which was

potentiated by TBOA (Fig. 5B). However, Glutamate and external

potassium, which protected against cross-linking of the cysteine

pairs (Fig. 4B), did not modulate the inhibition of G297C by

MTSET (Fig. 5B). Previously, L-glutamate and TBOA were also

shown to protect against the inhibition of transport of I463C by

MTSET [26]. With the higher concentration of MTSET, a similar

protective effect was also observed with glutamate and TBOA

(Fig. 5C), which again is different from the cross-linking results.

Thus, while the accessibility of the introduced cysteines to

MTSET appears to be dependent on the conformational state of

the transporter, the effects of substrates and substrate analogues on

cross-linking cannot be explained merely in terms of such changes

in accessibility.

Discussion

Glutamate transporters play an important role in the uptake of

the neurotransmitter. The study of glutamate transporters has

extremely important significance for the medical field. Glutamate

possesses a dual function. As the main internal excitory

neurotransmitter, it is also a potential endogenous neurotoxin.

Under normal biological conditions, the glutamate transporters,

which are located on neurons and glial cells, rapidly uptake

glutamate, effectively decreasing glutamate accumulation in the

synapse. While in a certain pathological environment, if the

glutamate transporter’s activity decreases, or if the direction of

glutamate transporter uptake is reversed, the result will be that the

concentration of glutamate will increase in the synapse, and

glutamate will excite glutamate receptors and trigger a wave of

excitotoxicity. Glutamate transporters are one of the subjects

under investigation for the treatment of degenerative diseases of

the central nervous system. Consequently, by making progress in

the study of glutamate transporters, the mechanism of the

degenerative diseases can be better understood, and we will be

able to find some clues for the treatment of degenerative diseases

of the central nervous system.

From our experiments it was discovered that CuPh and Cd2+

could inhibit the transport activity of the I295C/I463C and

G297C/I463C double cysteine mutants (Figs. 2 and 3). This can

be explained by what was observed during the transport. The

positions of Ile-295, Gly-297 and Ile-463 became so close, that in

the presence of CuPh, a disulfide bond was formed between I295C

and I463C as well as between G297C and I463C. Once the

disulfide bond was formed, the structure of the transporter was

locked and couldn’t change anymore. The other outcome was the

two cysteines, closely positioned to each other, interacted with

Cd2+, which also led to the locking of the transporter’s structure.

During the transport the transporter’s molecular structure is

constantly undergoing change [27], if the structure is locked; the

activity of transporter will be severely inhibited.

During the substrate uptake process, the structure of the

transporter is changing constantly, thus resulting in the distances

among the different segments also constantly changing. If

substrates or potassium are added to the outside of cell, the

transporter will open up to the cytoplasm. If the substrate’s

inhibitor is added to the outside of the cell, the transporter will

open up to the outside of the cell. We performed different tests

with substrates, potassium, and the substrate’s inhibitor for their

impact on the CuPh inhibition effect. From these experiments we

tried to determine the different distances between Ile-294 and Ile-

463 as well as Gly-297 and Ile-463 during different transport

phases. Substrates, potassium, and the substrate’s inhibitor may

also have an impact on the inhibition by impermeant sulfhydryl

reagent MTSET of the single cysteine mutant. We also tested this

type of impact in order to explore the single cysteine mutants’

accessibility during the transport substrate process. For the I295C/

I463C and G297C/I463C double cysteine mutants, comparing

with sodium, glutamate and potassium had protective effect on the

inhibition by CuPh (Fig. 4A and B). TBOA had no significant

effect on this inhibition (Fig. 4A and B). While comparing to the

effects on the cross-linking, TBOA and glutamate had different

effects on the inhibition of transport of single cysteine mutants by

MTSET. TBOA increased the inhibition of transport of G297C

by MTSET (Fig. 5B), and decreased the inhibition of transport of

Figure 3. Inhibition of transport of cysteine mutants by Cd2+.
HeLa cells expressing the indicated mutants were washed once with
choline chloride-containing solution and assayed for transport in the
presence or absence of 500 mM cadmium chloride. Values shown are
the percentage activity in the presence of 500 mM cadmium chloride
relative to that in its absence. Values represent the mean 6 S.E. of at
least three separate experiments each done in triplicate. (A) I295C/
I463C double cysteine mutants and its control mutants. (B) G297C/
I463C double cysteine mutants and its control mutants.
doi:10.1371/journal.pone.0021288.g003
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I463C by MTSET (Fig. 5C). Glutamate has no effect on the

inhibition of transport of I295C and G297C by MTSET (Fig. 5A

and B). From these results we can conclude that in addition to an

effect on accessibility, glutamate can cause a relative movement

between TM5 and TM8. Because the trimeric interface involving

TMs 2, 4, and 5 is known to be unchanged during transport [6],

we assume that this conformational change would most likely

involve TM8. In the inward-facing conformation of the glutamate

transporters, after binding with the substrate, the protein core

consisting of HP1, TM7, HP2, and TM8 moves inward relative to

the rest of the protein to form a cytoplasmfacing conformation

[28]. On the other hand, TM8 also moves back so that the 295,

297 and 463 positions get far away. The findings of these studies

confirm that TM5 (Ile-295, Gly-297) is in close proximity to TM8

Figure 4. Effect of the composition of the external medium on
the inhibition of double cysteine mutants by CuPh. HeLa cells
expressing double cysteine mutants were preincubated for 5 min in the
presence and absence of 200 mM CuPh. The indicated preincubation
solutions contained NaCl, NaCl +1 mM L-glutamate, ChCl +1 mM L-
glutamate, NaCl +1 mM GABA, NaCl +1 mM glycine, NaCl +20 mM
TBOA, KCl, choline chloride. Values are given as percent of control
(preincubation without CuPh) and represent the mean 6 S.E. of at least
three different experiments done in triplicate. (A) I295C/I463C double
cysteine mutants. (B) G297C/I463C double cysteine mutants.
doi:10.1371/journal.pone.0021288.g004

Figure 5. Effect of the composition of the external medium on
the inhibition of single cysteine mutants by MTSET. Cells
expressing the single cysteine mutants I295C (A), G297C (B) or I463C (C),
were preincubated for 5 min in the presence or absence of 1.0 (A), 0.6
(B) or 0.03 (C) mM MTSET. The indicated preincubation solutions
contained NaCl, NaCl +1 mM L-glutamate, NaCl +20 mM TBOA, KCl,
choline chloride. Values are given as percent of control (preincubation
without MTSET) and represent the mean 6 S.E. of at least three
different experiments done in triplicate.
doi:10.1371/journal.pone.0021288.g005
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(Ile-463) in the mammalian transporter, and that these residues are

repositioned with respect to each other at different steps in the

transport cycle.

The observation that position 295 and 297 at the end of TM5 is

close to position 463 (Figs. 2, 3, and 4), located at the top of TM8,

enables us to refine the topological model of GLT-1. Proximity of

transmembrane segments 5 and 8 of the glutamate transporter

GLT-1 is different from the situation in GltPh, where at these pairs

positions the distance are .20 Å apart in the crystal structures of

GltPh [5]. The two transporters are different in this regard.

Comparing GltPh, the eukaryotic glutamate transporters have an

additional extracellular domain, which contains the N-linked

glycosylation sites. Obviously, its structure and its relationship with

the rest of the transporter are as yet unknown.

The substrate analogue TBOA, expected to cause an increase of

the proportion of outward-facing transporters, increased the

inhibition by MTSET in TM5 mutants with

cysteine introduced at position 297 (Fig. 5B). In the TBOA-

bound GltPh structure, HP2 has moved toward the extracellular

side, away from the binding pocket [20]. Some other part of the

transporter has moved together with HP2. All these changes lead

to the increase of the accessibility of Gly-297 (Fig. 5B).

Materials and Methods

Generation and Subcloning of Mutants
The CL-GLT-1 in the vector pBluescript SK(–) (Stratagene) will

be used as a parent for site-directed mutagenesis as described

previously [29,30]. Briefly the parent DNA was used to transform

Escherichia coli CJ236 (dut–, ung–). From one of the transfor-

mants, single-stranded uracil-containing DNA was isolated upon

growth in uridine-containing medium according to the standard

protocol from Stratagene using helper phage R408. This yields the

sense strand, and consequently mutagenic primers were designed

to be antisense. The mutants were subcloned into constructs

containing CL-GLT-1 in the vector pBluescript SK(–), using the

unique restriction enzymes EcoRI and BsrGI or BsgI and XbaI.

The coding and non-coding strands were sequenced between the

above restriction sites.

Cell Growth and Expression
HeLa cancer cell line was purchased from ATCC (Manassas,

VA). HeLa cells were cultured in Dulbecco’s modified Eagle’s

medium (DMEM) supplemented with 10% fetal calf serum (FCS),

200 units/ml penicillin, 200 mg/ml streptomycin, and 2 mM

glutamine. Heterologous expression of the wild type and mutant

transporters was done as follows: HeLa cells plated on 24-well

plates were infected with recombinant vaccinia/T7 virus vTF [31]

by application of 150 mL of the virus/DMEM mix (lacking FCS)

and incubation at 37uC for approximately 30 min prior to

transfection with DNA (pBluescript SK with the wild type or

mutant transporter inserted downstream to the T7 promoter)

using the transfection reagent DOTAP. Transfection was carried

out by applying 200 mL of the DNA/DOTAP/DMEM mix

(lacking FCS) as described [32]. Cells were incubated at 37uC until

transport assay.

Transport
Uptake of D-[3H]-aspartate into whole cells was assayed 18–

20 h post transfection. The wells were washed twice with the

choline solution (150 mM choline chloride, 5 mM KPi, pH 7.4,

0.5 mM MgSO4, and 0.3 mM CaCl2). Each well was then

incubated with 200 mL transport medium (150 mM NaCl, 5 mM

KPi, pH 7.4, 0.5 mM MgSO4, and 0.3 mM CaCl2) supplemented

with 0.4 mCi of the tritium-labeled substrates and incubated for

10 min at room temperature, followed by washing, solubilization

of the cells with SDS, and scintillation counting.

Inhibition Studies with Sulfhydryl Reagents
Before the transport measurements, the cells adhering to 24-well

plates were washed with the choline solution. Each well was then

incubated at room temperature with 200 mL of the preincubation

medium (the different compositions are indicated in the figure

legends). After 5 min, the medium was aspirated, and the cells

were washed twice with 1 ml of the choline solution. Subsequently,

they were assayed for D-[3H]-aspartate transport at room

temperature. Each experiment was performed at least three times.

MTSET were purchased from Anatrace, Inc. The concentration

of MTSET chosen in the different experiments was optimized

according to the mutants used.

Inhibition of transport by Copper(II)
(1,10-Phenanthroline)3

HeLa cells transfected with the indicated constructs were

washed once with choline solution and preincubated with the

indicated concentration of Copper(II)(1,10-Phenanthroline)3
(CuPh). After 5 min, the medium was aspirated, and the cells

were washed twice with 1 ml of the choline solution followed by

the transport assay using 200 mL transport medium supplemented

with 0.4 mCi of the radiolabeled amino acid for each well. Each

experiment was performed at least three times. Again, the optimal

concentration of CuPh for each double mutant was determined by

preliminary titration experiments. The CuPh stock solution was

prepared for each experiment by mixing 0.4 ml of 1.25 M 1,

10-phenanthroline in water:ethanol (1:1) and 0.6 ml of 250 mM

CuSO4.

Inhibition of transport by Cd2+

HeLa cells transfected with the indicated construct were washed

once with choline solution and preincubated with the indicated

concentrations of cadmium chloride in transport solution

(150 mM NaCl, 5 mM KPi, pH 7.4, 0.5 mM MgSO4, and

0.3 mM CaCl2) with radiolabelled D-aspartic acid for 10 min at

room temperature.
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