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Background. Some villages, labeled “persistent hotspots (PHS),” fail to respond adequately in regard to prevalence and intensity 
of infection to mass drug administration (MDA) for schistosomiasis. Early identification of PHS, for example, before initiating or 
after 1 or 2 years of MDA could help guide programmatic decision making.

Methods. In a study with multiple rounds of MDA, data collected before the third MDA were used to predict PHS. We assessed 
6 predictive approaches using data from before MDA and after 2 rounds of annual MDA from Kenya and Tanzania.

Results. Generalized linear models with variable selection possessed relatively stable performance compared with tree-based 
methods. Models applied to Kenya data alone or combined data from Kenya and Tanzania could reach over 80% predictive accu-
racy, whereas predicting PHS for Tanzania was challenging. Models developed from one country and validated in another failed to 
achieve satisfactory performance. Several Year-3 variables were identified as key predictors. 

Conclusions. Statistical models applied to Year-3 data could help predict PHS and guide program decisions, with infection inten-
sity, prevalence of heavy infections (≥400 eggs/gram of feces), and total prevalence being particularly important factors. Additional 
studies including more variables and locations could help in developing generalizable models.
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Schistosomiasis, also known as bilharzia, is a parasitic dis-
ease caused by blood flukes of the genus Schistosoma. 
Schistosomiasis is most prevalent in tropical and subtrop-
ical areas and infects over 240 million people worldwide [1]. 
There are several strategies and treatments for controlling 
schistosomiasis, including preventive chemotherapy (PC) 
through mass drug administration (MDA) with praziquantel 
(PZQ), snail control with molluscicides, and access to safe 
water and sanitation [2]. Currently, the primary means of 
schistosomiasis control is PC through regular, periodic MDA 
with PZQ. The World Health Organization (WHO) recom-
mends PC in endemic areas, mainly targeting school-aged 
children (SAC) [3].

The Schistosomiasis Consortium for Operational Research 
and Evaluation ([SCORE] https://score.uga.edu/) was estab-
lished to conduct operational research to assist neglected trop-
ical diseases program managers in controlling and preventing 
schistosomiasis. A major effort of SCORE has been large field 
studies to evaluate the effect of timing and alternative ap-
proaches to MDA on changes in prevalence and intensity of 
schistosomiasis. These studies took place in 5 sub-Saharan 
African countries [4].

In each of these studies, MDA resulted in significant decreases 
in average prevalence and intensity of infection by Year 5, when 
final parasitologic data were collected. However, a subset of vil-
lages in each study and in each study arm did not demonstrate 
expected decreases in prevalence and/or intensity of infection 
despite 2 or 4 years of MDA [5–7]. These nonresponding vil-
lages have been referred to as persistent hotspots (PHS) [6]. 
Being able to predict PHS is potentially useful to schistosomi-
asis control programs, because it might allow less intensive ef-
forts in areas that are responding well to MDA and refocusing 
of resources on those that are not.

The objective of the analysis reported here is to evaluate 6 
statistical approaches that might be used to try to predict the 
presence of PHS at Year 5 using data from Year 1, Year 3, or 
both Year 1 and Year 3 from large, 5-year SCORE field studies 
of gaining control of schistosomiasis mansoni in Kenya and 
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Tanzania. The statistical approaches selected are among the 
most popular predictive models that are appropriate for our 
data. Through standardizing the coefficients of variables in the 
model and assessing their corresponding importance as inputs, 
we identified several crucial factors associated with the occur-
rence of PHS in the Kenya and Tanzania datasets.

METHODS

Study Design

Details of the SCORE multicenter studies of gaining and sus-
taining control of schistosomiasis have been previously pub-
lished [8–10]. The analyses presented here use data from 
studies that took place in 150 villages in Kenya and 148 villages 
in Tanzania in areas around Lake Victoria having ≥25% preva-
lence of Schistosoma mansoni infection among SAC.

In both the Kenya and Tanzania studies, villages were ran-
domized to 1 of 6 arms (Figure 1). Mass drug administration in 
these studies either involved school-based treatment (SBT) or 
community-wide treatment (CWT). In SBT, the protocol called 
for teachers to deliver PZQ to SAC and directly observe the stu-
dents swallowing the treatment. In CWT villages, treatment 
was provided to all eligible persons in the village. In Years 1 and 
2, CWT was conducted by community drug distributors, who 
distributed PZQ by going house-to-house. In Years 3 and 4, in 
addition to house-to-house distribution, in CWT villages PZQ 
was delivered in schools by teachers.

Parasitologic surveys were conducted annually, either shortly 
before or during MDA campaigns. The analyses in the current 

study use only the data from Arms 1, 2, and 4—those arms that 
received annual MDA with PZQ and had annual parasitologic 
surveys. The main study outcomes were prevalence and inten-
sity of S mansoni infection among 9- to 12-year-old children. 
Village-level treatment coverage was measured during or 
shortly after each MDA and was defined as the percentage of 
SAC in the village who had received MDA.

Persistent Hotspots

For our analyses, we defined a PHS as a village that failed to re-
duce its S mansoni prevalence among 9- to 12-year-old children 
by at least 35% and/or failed to reduce its mean intensity of 
infection among SAC by at least 50% from baseline to Year 
5. Maps of PHS in Kenya and Tanzania have been previously 
published in Figure 4 of Kittur et al [11].

Parasitological Data

During each parasitologic survey, up to 3 stool specimens 
were collected from 100 9- to 12-year-old children per vil-
lage. Schistosoma mansoni infection was diagnosed by mi-
croscopic examination of stool specimens using duplicate 
Kato-Katz thick smears. The prevalence of infection was de-
fined as the proportion of participants in each village who 
were egg-positive. A  study participant’s infection intensity 
was determined by averaging the numbers of eggs observed 
in each of their Kato-Katz slides (up to 6 slides per child). 
Actual egg counts were converted to eggs per gram (epg) 
by multiplying counts by 24 [12]. We used the actual epg 
in most analyses, as well as evaluating whether prevalence 
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Figure 1. Study arms and timeline for the studies of gaining control of schistosomiasis from SCORE.
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of infection intensity >200 epg and prevalence of heavy in-
fection (defined by WHO as ≥400 epg) [13] could serve as 
useful predictors.

Statistical Analysis

We applied 6 different predictive approaches covering 2 major 
categories: (1) the more conventional regression approaches 
including the traditional logistic regression (lgt) [14, 15] and 
its 2 extensions with variable selection procedures in elastic-
net logistic regression (logit) [16], and logistic regression with 
LASSO (LASSO) [17], and (2) the tree-based machine learning 
methods including gradient boosting machine (GBM) [18, 19], 
random forests (rf) [20], and single decision tree (tree) [21]. We 
then assessed their corresponding performances in terms of the 
accuracy of predicting PHS/non-PHS. Accuracy was defined as 
the percentage of Year 5 PHS and/or non-PHS that were pre-
dicted correctly, calculated as (1-missclassification error). R 
software version 3.5.1 [22] was used for statistical computing.

Five potential predictors were considered in the full models, 
including prevalence, intensity, coverage, and prevalence of in-
fections with epg ≥ 200 (gt200) and with epg ≥ 400 (gt400); each 
of these were evaluated using only Year 1 or Year 3 data and also 
using both years’ data together in models. Results are reported 
as (1) the mean value of prediction accuracies through repli-
cated splits of training and validation datasets or (2) a single 
prediction accuracy if both training and validation datasets 
were given and fixed. Most models included diagnostics to de-
tect variables that profoundly influenced the prediction proce-
dure, except for the traditional logistic and single decision tree 
approaches, where the prediction performances were consist-
ently outperformed by other methods. The variable importance 
in GBM and rf was determined by calculating the relative influ-
ence of each variable measured by the percentage of variance 
contribution [23]. Decisions about which features to split were 
based on which reduced a node’s squared error the most—spe-
cifically, how much the squared error over all trees is reduced 
as GBM/rf splits on that variable. Variable importance for the 
elastic-net logistic regression and the logistic regression model 
with LASSO was assessed by the magnitude of the standard co-
efficient for comparison purposes [16].

Three different scenarios were designed to evaluate the 
performances of the 6 statistical approaches (Table 1). In 
Scenario 1, 70% of the observations from a given country 
(Kenya or Tanzania) were randomly sampled to create a 
training dataset, and the other 30% of observations from the 
same country were used as a validation dataset. A random 
sample split with the same cross-validation mechanism was 
repeated 200 times to obtain a reliable mean value of accu-
racy. In Scenario 2, to explore the external validities of the 
predictive models across countries, we trained the models 
with 100% of the data from one country and validated it 
with 100% of the data from the other.

We also conducted a sensitivity analysis to see whether the 
proportion of PHS in the training dataset affects model per-
formance. We labeled all villages in the Tanzania and Kenya 
datasets as PHS or non-PHS according to our definition. To 
create a “high-PHS training dataset” for each country, we ran-
domly picked 70% of PHS villages and 30% of non-PHS villages 
and used the rest of the villages as validation datasets. For “low-
PHS training datasets”, we randomly picked 30% of PHS villages 
and 70% of non-PHS villages and left the rest of the villages in 
the validation dataset.

In Scenarios 3, we used 70% of the data from a pooled Kenya-
Tanzania dataset for training and 30% for validation, first 
without and then with a dummy variable included to provide 
a country label in the models. These scenarios were first imple-
mented using data from Year 1 from Kenya and Tanzania for 
prediction, then using combined Year 1 and Year 3 data, and 
then using Year 3 data alone.

Ethics Statement

The original study protocol that provided the data analyzed in 
this study was approved by institutional review panels in each 
African country and by their academic partners. The University 
of Georgia (UGA) Institutional Review Board conducted an ad-
ministrative review of each study to ensure that all individual 
panel reviews met UGA human subjects protection require-
ments. Parents of children participating in the study provided 
written informed consent, and assent was obtained from child 
participants.

RESULTS

Predictive Performance of Models

We obtained the descriptive statistics for the villages studied 
(Table 2). Over the 5 years of the study, prevalence, intensity, 
and prevalence of high-intensity infections decreased in both 
countries, with a larger decline in Kenya. Persistent hotspot 
prevalence at Year 5 was markedly different in the 2 countries: 
70% in Tanzania and 25% in Kenya.

In general, generalized linear models (GLMs) with variable 
selection procedures, including elastic-net and LASSO, pos-
sessed relatively stable performance compared with the tree-
based machine learning (tree/rf/GBM) methods. In terms of 
prediction with Kenya Year 1 data in Scenario 1, most methods 
possessed ~80% prediction accuracy for PHS at Year 5, except 
the single-tree method, which had an accuracy of only ~65%. 
By contrast, with Tanzania Year 1 data in Scenario 1, all mod-
eling methods performed similarly, at slightly over 70% predic-
tion accuracy (Supplementary Table S1). Other scenarios also 
suggest that using only Year 1 data did not lead to satisfactory 
prediction performances.

Predictive performances using both Year 1 and Year 3 data are 
evaluated (Table 3). In Scenario 1, which uses a single country’s 
data for both training and validation, the addition of data from 
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Year 3 improved most model performances to over 85% accu-
racy in Kenya, but it only slightly increased the prediction accu-
racy with Tanzania data. The traditional logistic regression was 
not the worst strategy in our examination; in fact, this conven-
tional method seemed to outperform the single-tree method. 
Generalized linear models generally performed well (85% and 
above prediction accuracies) when validating with the Kenya 
dataset, but they only achieved ~70% accuracies when the vali-
dation dataset was from Tanzania.

Under Scenario 2, models trained from one country’s Year 
1 and Year 3 dataset to predict another country’s PHS villages 
were less effective. This was especially true with the tree-based 
machine learning approaches (tree/rf/GBM) (Table 3).

Given that Tanzania had 70% PHS, compared with 25% in 
Kenya, we investigated whether differences in PHS prevalence 
could have contributed to poor performance in Scenario 2. As 
an experiment, we conducted separate analyses for Kenya and 
Tanzania in which we split each country’s datasets to create 
“high-PHS” and “low-PHS” training datasets as described in 
the methods. Supplementary Table S2 shows that modifying 
the training and validation datasets this way does not lead to 
similar results as shown in Scenario 2, suggesting that factors 
besides the percentage of PHS may be important in developing 
models using data from one area or country to develop models 
for another.

In Scenario 3, we trained and validated with the combined 
Years 1 and 3 Kenya and Tanzania dataset. Prediction results 
were similar to that of the Scenario 1 Tanzania-only assess-
ment, except for the tree-based method, which performed 
worse. By adding a variable to adjust for the country factor, 
we improved prediction in all models. This suggests that the 
country label could be important when data from multiple 
countries or geographic areas are combined for training and 
prediction.

We also trained with the combined Kenya and Tanzania 
datasets and then validated first with the Kenya and then 
with the Tanzania datasets. As expected, all the machine 
learning-based approaches (tree/rf/GBM) achieved “per-
fect” accuracy under this situation (validating with a 
country’s own subset). On the other hand, even though 
GLMs performed well (over 90%) for validating with the 
unbalanced Kenya dataset, validation with the Tanzania 
dataset had only 70% accuracy using validation with the 
Tanzania dataset (Supplementary Table S3). In a separate 
analysis, using only Year 3 data for PHS prediction yields 
a similar pattern (Table 4) to that observed using Year 1 
and Year 3 data (Table 3). Some models even outperformed 
those trained from both Year 1 and Year 3 data, which sug-
gests that the Year 3 data could be influential in predicting 
the PHS villages at Year 5.

Table 1. Study Scenarios for Examining Accuracy of Model Prediction in SCORE Studies of Gaining Control of Schistosoma mansoni in Kenya and Tanzania

Dataset Training Validation

Scenario 1 70% of a single country’s dataset 30% of the same country’s dataset 

Scenario 2 100% of one country’s dataset 100% of the other country’s dataset

Scenario 3 70% of the combined Kenya and Tanzania dataset 30% of the combined Kenya and Tanzania dataset

Table 2. Means and 95% CIs for Key Predictors and PHS Percentages in SCORE Studies of Gaining Control of Shistosoma mansoni in Kenya and Tanzania

Country Measure Year 1 Year 3 Year 5

Kenya (75 villages) Prevalence 60% (55%–66%) 40% (34%–46%) 26% (20%–32%)

gt200a 14% (10%–18%) 9% (5%–12%) 4% (2%–6%)

gt400b 7% (4%–9%) 4% (2%–6%) 2% (1%–3%)

Intensity (eggs per gram) 87 (65–110) 54 (36–72) 30 (16–45)

Coveragec 84% (67%–101%) 90% (88%–92%)  

PHS prevalence   25% (19/75)

Tanzania (74 villages) Prevalence 56% (49%–63%) 38% (32%–44%) 43% (36%–50%)

gt200a 17% (13%–21%) 6% (4%–8%) 6% (4%–9%)

gt400b 9% (6%–12%) 2% (1%–3%) 3% (2%–4%)

Intensity (eggs per gram) 124 (92–156) 41 (31–51) 46 (33–59)

Coveragec 79% (76%–81%) 75% (73%–77%)  

PHS prevalence   70% (52/74)

Percentage of PHS villages in bold.

Abbreviations: CI, confidence interval; epg, eggs per gram; MDA, mass drug administration; PHS, persistent hotspots; SCORE, Schistosomiasis Consortium for Operational Research and 
Evaluation.
agt200: prevalence of intensity that was greater than 200 epg
bgt400: prevalence of intensity that was greater than 400 epg.
cCoverage: the percentage of school-aged children who received MDA. Note that there was no treatment in Year 5, and hence no coverage data for Year 5.

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiz529#supplementary-data
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Variable Importance

To better understand the pivotal factors in predicting PHS, the 
variables used in our models were further evaluated for their 
relative utility for PHS prediction. In this substudy, we focused 
on the 4 predictive approaches that performed best in the pre-
ceding analyses: GBM, rf, GLMs with elastic-net, and LASSO. 
We checked the rank of variable importance in models using 
datasets that included Year 1 and Year 3 data, then models in-
cluding only Year 3 data. Important variables as measured by 
their corresponding variance contributions across various 
models and datasets are listed in Table 5.

Using Kenya’s Year 1 and Year 3 data, Year 3 infection inten-
sity and Year 3 gt400 (prevalence of heavy infections) were the 
prominent variables in both GBM and rf approaches. These 2 
variables had close to 80% overall influence in the GBM’s split-
ting decision and close to 50% overall influence in the rf. They 
were also the common variables in the GLMs with elastic-net 
and LASSO. The standardized coefficients of Year 3 intensity 
and Year 3 gt400 exhibited strong positive associations with 
PHS status (Supplementary Tables S4 and S5). With Kenya’s 
Year 3 data only, Year 3 gt400 in Year 3 dominated, with over 
80% overall influence in the GBM. Year 3 infection intensity 
and Year 3 gt400 each contribute 31% overall influence (a com-
bined total of 62%) in the rf. Meanwhile, Year 3 gt200 and Year 
3 gt400 were important predictors in both GLMs with elastic-
net and LASSO, but the Year 3 intensity was also positively as-
sociated with PHS status in the elastic-net logistic regression 
(Supplementary Tables S6 and S7).

 For the Tanzania dataset including Year 1 and Year 3 data, 
Year 3 intensity, Year 1 coverage, and Year 1 gt400 were the 
major influences in both GBM and rf approaches. The 3 vari-
ables combined had close to 60% overall influence in the GBM’s 
splitting decision and in the rf. Meanwhile, Year 1 coverage 
and Year 3 prevalence were the common variables selected 
from the elastic-net logistic regression and logistic regres-
sion with LASSO to be positively associated with PHS status 
(Supplementary Tables S8 and S9). With Tanzania’s Year 3 data 
only, intensity and prevalence were the vital variables in both 
GBM and rf approaches; 75% and 60% of combined influence 

in the GBM and rf approaches were attributed to these 2 factors, 
respectively. Besides Year 3 prevalence, Year 3 gt400 was also 
selected as an important predictor from both elastic-net logistic 
regression and logistic regression with LASSO (Supplementary 
Tables S10 and S11).

 In addition, we studied whether the identified important 
variables would be different among models with the combined 
data from Kenya and Tanzania. When adding a country label 
into the models using Years 1 and 3 data pooled together, the 
results of GBM showed that Year 3 intensity and the country 
factor possessed over 50% of overall influence. In rf, 2 additional 
variables—Year 3 coverage and Year 1 intensity—were needed 
to achieve over 50% total importance. For GLMs, the country 
factor, Year 3 intensity, and Year 3 gt400 were strongly associ-
ated with PHS status (Supplementary Tables S12 and S13). In 
contrast, when we excluded the country factor from the models, 
Year 3 coverage, Year 3 intensity, Year 1 intensity, and Year 3 
gt400 were among the most important factors in GBM and rf. 
Similar influential predictors were identified in models that did 
not contain the country factor, with Year 1 intensity increasing 
in influence (Supplementary Tables S16 and S17).

When using only the Year 3 data, the country factor seemed 
not as influential. Gradient boosting machine with the country 
label showed that Year 3 intensity contributed almost 50% of 
overall influence among all considered variables. In the rf, 
Year 3 intensity and Year 3 gt200 controlled half of the impor-
tance within the model. Furthermore, Year 3 intensity, country 
factor, and Year 3 gt400 were selected as important predictors 
from the logistic regressions with elastic-net and with LASSO 
(Supplementary Tables S14 and S15). When the country label 
was excluded, Year 3 intensity and Year 3 gt400 had the most 
influence among GBM, rf, and GLMs (Supplementary Tables 
S18 and S19).

DISCUSSION

We applied 3 different approaches to predicting PHS using 
Year 1 and 3 data from Kenya and Tanzania collected through 
the 5-year SCORE studies for gaining control of schistosomi-
asis mansoni. Overall, GBM, rf, elastic-net logistic regression, 

Table 3. Mean Prediction Accuracy Among 6 Models, by Scenario, Using Year 1 and Year 3 Data

Comparison GBM rf tree logit LASSO lgt

Scenario 1       

 Kenya data only 0.90 0.91 0.79 0.90 0.90 0.86

 Tanzania data only 0.75 0.76 0.71 0.72 0.72 0.72

Scenario 2       

 Training with Kenya, predicting Tanzania 0.70 0.70 0.70 0.73 0.72 0.72

 Training with Tanzania, predicting Kenya 0.51 0.59 0.48 0.89 0.89 0.81

Scenario 3       

 Without country label 0.76 0.77 0.61 0.73 0.73 0.72

 With country label 0.79 0.80 0.65 0.80 0.81 0.78

Abbreviations: GBM, gradient boosting machine; LASSO, logistic regression with LASSO; lgt, traditional logistic regression; logit, elastic-net logistic regression; rf, random forests; tree, 
single decision tree
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and logistic regression with LASSO outperformed single deci-
sion tree and traditional logistic regression. Generalized linear 
models with variable selections possessed relatively stable per-
formances in predicting PHS, regardless of how we designed 
training and validation datasets. Under each of the scenarios, 
GLMs methods had prediction accuracy over 70%. The accu-
racy of tree-based approaches can decline sharply if the training 
and validation datasets are not from the same country.

For all of the approaches, models using Year 1 (baseline) data 
alone had some success in predicting PHS. Year 2 data alone, 
or adding Year 2 data to the Year 1 and Year 3 dataset, did not 
improve prediction (data not shown). Addition of data col-
lected after 2 rounds of MDA (Year 3 data) greatly improved 

predictions; however, use of Year 3 data alone may be adequate 
for prediction in many settings.

The variable importance assessment suggested that infection 
intensity at Year 3 was a key factor, because it was highly associated 
with Year 5 village PHS status. In addition, prevalence of heavy 
infections (≥400 epg) at Year 3 and total prevalence in Year 3 were 
frequently influential predictors. Although these variables are 
not completely independent, for purposes of prediction it is ap-
propriate to consider them as distinct inputs. Future field studies 
should evaluate the utility of these factors for predicting PHS, per-
haps as early as in Year 3, after 2 rounds of annual MDA [24, 25].

When the training and validating sources were from dif-
ferent countries (Scenario 2), the advantages of GLMs were clear. 

Table 4. Mean Prediction Accuracy Among 6 Models, by Scenario, Using Year 3 Data Alone

Comparison GBM rf tree logit LASSO lgt

Scenario 1       

 Kenya data only 0.89 0.89 0.77 0.91 0.91 0.89

 Tanzania data only 0.74 0.75 0.72 0.74 0.74 0.72

Scenario 2       

 Training with Kenya, predicting Tanzania 0.72 0.70 0.70 0.72 0.74 0.70

 Training with Tanzania, predicting Kenya 0.53 0.64 0.35 0.92 0.92 0.92

Scenario 3       

 Without country label 0.73 0.72 0.59 0.71 0.71 0.71

 With country label 0.79 0.78 0.65 0.81 0.82 0.81

Abbreviations: GBM, gradient boosting machine; LASSO, logistic regression with LASSO; lgt, traditional logistic regression; logit, elastic-net logistic regression; rf, random forests; tree, 
single decision tree.

Table 5. Variables Demonstrated to Be Important Across Various Models and Datasets

Models

Datasets Years from which predictors were used GBM Random Forests GLMs (Elastic-net and LASSO)

Kenya Y1 and Y3 • Y3 Intensity • Y3 Intensity • Y3 Intensity

• Y3 gt400 • Y3 gt400 • Y3 gt400

Y3 • Y3 gt400 • Y3 Intensity • Y3 gt200

• Y3 gt400 • Y3 gt400

Tanzania Y1 and Y3 • Y3 Intensity • Y3 Intensity • Y3 Intensity

• Y1 Coverage • Y1 Coverage • Y1 Coverage

• Y1 gt400 • Y1 gt400 • Y3 Prevalence

Y3 • Y3 Intensity • Y3 Intensity • Y3 Prevalence 

• Y3 Prevalence • Y3 Prevalence • Y3 gt400

Kenya and Tanzania (without country label) Y1 and Y3 • Y3 Intensity • Y3 Coverage • Y3 Intensity

• Y3 Coverage • Y1 Intensity • Y1 Intensity

• Y1 Intensity • Y3 gt400 • Y3 gt400

Y3 • Y3 Coverage • Y3 Coverage • Y3 Intensity

• Y3 Intensity • Y3 Intensity • Y3 gt400

• Y3 gt400 • Y3 gt400

Kenya and Tanzania (with country label) Y1 and Y3 • Y3 Intensity • Y3 Intensity • Y3 Intensity

• Country • Country • Country

• Y3 gt400

Y3 • Y3 Intensity • Y3 Intensity • Y3 Intensity

• Country • Country • Country

• Y3 gt200 • Y3 gt400

Abbreviations: GBM, gradient boosting machine; GLM, generalized linear model; LASSO, logistic regression with LASSO; Y, year.
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However, as shown in Supplementary Table S2, differences in 
PHS prevalence alone did not explain the observed discrepan-
cies in prediction accuracies. With split training and validation 
datasets at different levels of PHS prevalence, the GLMs had com-
parable performances to the tree-based approaches in Kenya but 
were outperformed by tree-based models in Tanzania, suggesting 
heterogeneities at the country level. It is also likely that the GLMs 
were able to retain stable performances by tuning the F1 optimal 
thresholds, which could have helped to avoid misclassifications, 
whereas the tree-based methods seemed to lack a mechanism 
to handle heterogeneities between the training and validation 
datasets. As a result, the tree/rf/GBM methods obtained relatively 
poor performances in Scenario 2.

 The Kenya and Tanzania studies were carried out in discrete but 
sizable areas around Lake Victoria. Our work demonstrates that it 
may be possible to develop good models for predicting PHS in a 
large area in a single country. However, using data from one country 
to predict PHS in another may be more challenging. Models in-
cluding the country factor (whether in the tree-based methods or 
GLMs) revealed that close to 20% of total influence is attributable 
to the difference in study settings, suggesting a significant level of 
heterogeneity between these settings in these countries.

Our study is limited by the relatively few variables with 
which we could explore such heterogeneity and by being 
limited to datasets from only 1 area in each of 2 countries. 
It would be useful to have similar data from additional 
countries or areas of Kenya and Tanzania, to assess whether 
countries “lump” into categories that allow for better 
multisite prediction. Future studies that include data on 
village-level behavioral or environmental risk factors and 
data from additional areas may lead to more generalizable 
models.

An interesting finding from our analyses was that models using 
full or partial Tanzania data for validation almost always underper-
formed those using Kenya data. Even when the training and vali-
dation datasets were both from Tanzania, prediction accuracy was 
significantly lower than in models validated by Kenya data. In Year 
5 of the SCORE study, many villages in Tanzania experienced an 
increase in prevalence compared with Year 4, reversing the pattern 
seen in all previous years [26]. An anomalous year or other un-
measured factors, such as the distance between villages and closest 
water resources or population shifts, were not considered in the 
descriptive models described in this paper. 

CONCLUSIONS

Our analysis of multiple models demonstrates the fea-
sibility of developing prediction algorithms for PHS that 
could potentially help program managers adjust multiyear 
MDAs after as little as 2 years of implementation, to max-
imize impact.

Supplementary Data

Supplementary materials are available at The Journal of 
Infectious Diseases online. Consisting of data provided by 
the authors to benefit the reader, the posted materials are not 
copyedited and are the sole responsibility of the authors, so 
questions or comments should be addressed to the corre-
sponding author.

Table S1. Mean prediction accuracy among 6 models, by 
Scenario, using Year 1 data.

Table S2. Examination of mean accuracy, using different pro-
portions of PHS in training and validation datasets with Kenya 
and Tanzania data.

Table S3. Examination of mean accuracy, using multicountry 
data as training and one of countries as validation.

Table S4. Variable importance of GBM and rf with Kenya 
Year 1 and Year 3 data.

Table S5. Standardized coefficients of GLMs with Kenya Year 
1 and Year 3 data.

Table S6. Variable importance of GBM and rf with Kenya 
Year 3 data.

Table S7. Standardized coefficients of GLMs with Kenya Year 
3 data.

Table S8. Variable importance of GBM and rf with Tanzania 
Year 1 and Year 3 data.

Table S9. Standardized coefficients of GLMs with Tanzania 
Year 1 and Year 3 data.

Table S10. Variable importance of GBM and rf with Tanzania 
Year 3 data.

Table S12. Variable importance of GBM and rf with Kenya 
and Tanzania Year 1 and Year 3 data (with Country label).

Table S13. Standardized coefficients of GLMs with Kenya 
and Tanzania Year 1 and Year 3 data (with Country label).

Table S14. Variable importance of GBM and rf with Kenya 
and Tanzania Year 3 data (with Country label).

Table S15. Standardized coefficients of GLMs with Kenya 
and Tanzania Year 3 data (with Country label).

Table S16. Variable importance of GBM and rf with Kenya 
and Tanzania Year 1 and Year 3 data.

Table S17. Standardized coefficients of GLMs with Kenya 
and Tanzania Year 1 and Year 3 data.

Table S18. Variable importance of GBM and rf with Kenya 
and Tanzania Year 3 data.

Table S19. Standardized coefficients of GLMs with Kenya 
and Tanzania Year 3 data.
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