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Abstract

Breast cancer is a complex molecular disease comprising several biological subtypes. However, daily routine diagnosis
is still based on a small set of well-characterized clinico-pathological variables. Here, we try to link the two worlds of
surgical pathology and multilayered molecular profiling by analyzing the relationships between clinico-pathological
phenotypes and mutational loads of breast cancer. We evaluated the number of mutated genes with somatic non-
silent mutations in different subgroups of breast cancer based on clinico-pathological, including immunohistochemi-
cal and tumour characteristics. The analysis was performed for a cohort of 687 primary breast cancer patients with
mutational profiling, gene expression and clinico-pathological data available from The Cancer Genome Atlas (TCGA)
project. The number of mutated genes was strongly positively associated with higher tumour grade (p 5 1.4e214)
and with the different immunohistochemical and PAM50 molecular subtypes of breast cancer (p 5 1.4e210 and
p 5 4.3e210, respectively). We observed significant associations (|R|> 0.4) between the abundance of mutated genes
and expression levels of genes related to proliferation in the overall cohort and hormone receptor positive cohort,
including the Recurrence Score gene signature (e.g., MYBL2 and BIRC5). Specific mutated genes (TP53, NCOR1, NF1,
PTPRD and RB1) were highly significantly associated with high loads of mutated genes. Multivariate analysis for over-
all survival (OS) revealed a worse survival for patients with high numbers of mutated genes (hazard ratio5 4.6, 95%
CI: 1.0 – 20.0, p5 0.044). Here, we report a strong association of the number of mutated genes with immunohisto-
chemical and PAM50 subtypes and tumour grade in breast cancer. We provide evidence that specific levels of the
mutational load underlie different morphological and biological phenotypes, which collectively constitute the current
basis of pathological diagnosis. Our study is a step towards genomics-informed breast pathology and will provide a
basis for future studies in this field bridging the gap between morphology, tumour biology and medical oncology.
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Introduction

Breast cancer is a complex molecular disease [1,2] and
the most common cancer in women worldwide with
each 8th to 9th woman affected during lifetime in the
United States and Western Europe. While mortality is
decreasing due to advances in both diagnostic and thera-
peutic approaches, breast cancer is still the second most
common cause of death from cancer in women [3].

As demonstrated by a multitude of high-throughput
molecular profiling studies [4–7] over the last 15
years spearheaded by the pioneering work of Perou
et al [4], breast cancer is a heterogeneous disease
comprising several biologically defined subtypes that
are associated with distinct clinical behaviour and
each require specific therapeutic strategies [8]. Cur-
rently, four subtypes (luminal A and luminal B,
HER2-enriched and basal like/triple negative) are
firmly established but more recent data even suggest
a finer molecular classification in ten subtypes [9]
whose clinical implications, however, still need to be
explored. Complementing these advances, several
multigene predictors have been developed to aid pre-
diction of response towards adjuvant therapy and risk
stratification of recurrence [10–12].

The current histomorphological typing system [13]
still plays a significant role in the detection of rare
subtypes but yields only limited clinically exploitable
information for the most prevalent histological breast
cancer type, invasive carcinoma of no special type
(NST). With a shift to smaller tumours due to screen-
ing programs, tumour staging per se has only limited
prognostic power [13,14] with recent studies suggest-
ing that a refinement of the current staging system
through inclusion of molecular profiles might prove
beneficial [15,16]. The Elston–Ellis modification
[17,18] of the Scarff–Bloom–Richardson grading sys-
tem [19] is widely used to estimate outcomes but the
semi-quantitative evaluation of morphological fea-
tures rather than quantitative assessment of genetic
parameters appears to introduce a considerable bias
leaving grading results alone with a comparably lim-
ited impact on clinical decision making [13,14,20].

These developments and subsequent implementa-
tion of molecular classifications into routine diagnos-
tics led to guidelines [21] which attribute a less
important prognostic and particularly predictive
power to classic morphology-based parameters, that
is, typing, grading and staging [13,14,20–22].

This being said, it should be noted that, in principle,
conventional morphology-based parameters, when
applied in combination and evaluated by trained
experts contribute to a reliable, valid and robust esti-

mation of the course of disease in many cancers includ-
ing breast cancer [20]. Very surprisingly, however,
studies investigating the actual genetic underpinnings
of phenotype-based prognosticators and comparing
these results with established molecular subtypes are
still rare. A landmark study by Sotiriou et al [23] dem-
onstrated histological grading to be associated with dif-
ferent gene expression signatures which also allowed
stratifying the large set of grade 2 tumours into sub-
groups with different clinical outcome.

Interestingly, recent genomic profiling studies
[24–31] suggested a substantial degree of intra- and
inter-tumour heterogeneity fuelling selection proc-
esses during evolution of breast cancer [32,33],
which may complicate prognostication as well as pre-
diction and impede cancer precision medicine
approaches [34]. In this context, it is worth recalling
that just as the molecular phenotype, the morphologi-
cal phenotype of the tumour, including tumour grade
and tumour size is essentially a result of accumulated
genetic aberrations over time, thereby reflecting
tumour evolution at the phenotypic level.

Availability of a large dataset from The Cancer
Genome Atlas (TCGA) enabled us to narrow in on
these associations. Specifically, here, we investigated
relations between the abundance of mutated genes
and the morphological as well as biological pheno-
type of breast cancers.

Material and methods

Dataset

The study cohort (for details, see Table 1) included 687
breast cancer patients with both tumour exome sequenc-
ing and tumour grade data available. The primary vari-
able under investigation was the number of mutated
genes defined as genes carrying at least one somatic
non-synonymous mutation in the coding region.

To obtain this quantity, we counted the number of
genes with simple somatic mutations (substitutions,
small insertions or deletions) in the coding region that
led to a change in the amino acid sequence. Mutation
data, clinico-pathological data and RNAseq data were
downloaded from TCGA at https://tcga-data.nci.nih.
gov/tcga/dataAccessMatrix.htm. Overall survival (OS)
data with a limited mean follow-up time of 3.0 years
and a limited median follow-up time of 2.0 years were
avaiable. Seventy-four (10.8%) out of the 687 patients
were followed until an event. Additionally, data on
tumour grading and on tumours size (in cm) that were
not available from TCGA were manually extracted
from the corresponding pathology reports.
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In the current study, we only used data sets that
were published previously and labelled ‘No restric-
tions; all data available without limitations’ according
to the TCGA publication guidelines (see http://can-
cergenome.nih.gov/publications/publicationguidelines,
for details). We also extracted the PAM50 data sup-
plied as supplementary data in [2].

With respect to the somatic mutation data, non-
synonymous mutations comprising insertions, dele-
tions and substitutions in the coding region of genes
were included. Structural rearrangements, aneuploidy,
translocations or duplications as well as silent muta-
tions were excluded from the analysis. For details
visit https://wiki.nci.nih.gov/display/TCGA/Mutation1

Annotation1Format.

Statistics

All statistical analyses and visualizations were per-
formed using the statistical environment R including
the R-packages clinfun, beeswarm, survival and
binom [35–39].

The number of mutated genes was correlated with
patient age and tumour size using Spearman correla-
tions, with tumour grade using the Jonckheere–Terpstra
test, with histopathological subtype, hormone receptor

(HR) status, HER2 status and molecular subtype using
the exact Fisher test. p-values< 0.05 were considered
statistically significant. Robust linear regression was
executed using Huber’s M-estimator as it is imple-
mented in the function rlm of the R package MASS
[40]. Correlations of the number of mutated genes with
the mutation status of 23 recurrently mutated breast
cancer genes [2] were investigated using Wilcoxon’s
rank test. p-values< 0.05 after Bonferroni-correction for
the 23 genes were considered statistically significant.

Genome-wide gene expression data (generated by
RNAseq) of breast cancer, HR1 breast cancer and
HR2 breast cancer were correlated with the number
of mutated genes using the Spearman correlation
coefficient. p-values< 0.05 after Bonferroni correla-
tion for the total number of 20 531 genes were con-
sidered statistical significant. For visualization, fold
changes (FC) between highly mutated tumours (22 or
more mutations) and lowly mutated tumours (21 or
less mutations) were calculated. Gene ontology (GO)
categories were obtained from GO2MSIG [41].

Univariate and multivariate survival analysis was
executed using the function coxph from the R pack-
age survival. p-values< 0.05 were considered signifi-
cant. Prognostic evaluation of cut-off points for the
number of mutated genes was executed as it is imple-
mented in the Cutoff Finder software [42]. The muta-
tion status of each of the 23 recurrently mutated
breast cancer genes was correlated with patient age
and tumour size using the Wilcoxon test, with
tumour grade using the chi-squared test for trends,
with histopathological subtype, HR status, HER2 sta-
tus and molecular subtype using the exact Fisher test.
p-values <0.05 after Bonferroni-correction for the 23
genes were considered statistically significant.

Results

We performed an integrated analysis of somatic
mutations data, clinico-pathological data and RNAseq
data that were publicly available from the TCGA
project. Characteristics of the cohort comprising 687
patients are provided in Table 1. The primary vari-
able under investigation was the number of genes
carrying at least one non-silent somatic mutation
(hereinafter simply termed ‘mutated genes’).

Associations of clinico-pathological parameters with muta-
tional load. First, we correlated the number of mutated
genes with the clinico-pathological characteristics
of the tumour (Table 2, Figure 1). The number of
mutated genes was strongly associated with tumour
grade increasing from a median of 23 mutated genes

Table 1. Clinico-pathological characteristics of the study cohort
including 687 primary breast cancer patients

Characteristics Group Number of patients

Total All patients 687 (100%)

Age Median (q1-q3) 59 (49–68)

Size Median (q1-q3) 2.5 (1.9–3.8)

N N0 324 (47.2%)

N1 351 (51.1%)

NA 12 (1.8%)

G G1 74 (10.8%)

G2 319 (46.4%)

G3 294 (42.8%)

Histopathology Lobular 107 (15.6%)

NST/other 579 (84.3%)

NA 1 (0.2%)

Hormone receptor HR2 148 (21.5%)

HR1 532 (77.4%)

NA 7 (1.0%)

HER2 HER22 517 (75.3%)

HER21 113 (16.5%)

NA 57 (8.3%)

Subtype HR1/HER22 405 (59.0%)

HR1/HER21 90 (13.1%)

HR2/HER22 111 (16.2%)

HR2/HER21 23 (3.4%)

NA 58 (8.4%)

TP53 Mut 207 (30.1%)

wt 480 (69.9%)

PIK3CA Mut 212 (30.9%)

wt 475 (69.1%)

q1 5 first quartile, q3 5 third quartile, NA 5 missing data
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in G1 tumors via 27 in G2 tumors to 43 in G3
tumours (p 5 1.4e214). When analysing the three
components of tumour grade, nuclear pleomorphism
(atypia) showed the strongest association with the
number of mutated genes (p 5 5.5e211), but mitotic
count and the degree of tubule formation also con-
tributed significantly (p 5 4.8e208 and p 5 1.4e203,
respectively). In addition, the number of mutated
genes was strongly associated with the molecular
subtype of breast cancer as determined by routine
immunohistochemistry and the PAM50 classifier
(p 5 1.4e210 and p 5 4.3e210, respectively). As
shown in Table 2 and Figure 1, HR2/HER2 breast
cancer and HR2/HER21 breast cancer harboured
much more mutated genes compared with HR1/
HER22 breast cancer. In contrast, we observed no
statistically significant differences between the muta-
tional loads of the two main histological subtypes,
invasive lobular carcinoma (ILC) and NST (27 versus
23 mutated genes (median), p 5 0.23). To narrow in
on relations between histological tumour types and
mutational load, we analyzed the abundance of
mutated genes in all ILC (of any grade) and com-
pared the results with the mutational load of NST
carcinomas stratified according to grade (supplemen-
tary material Figure S1). While ILC harboured a
mean of 27 mutated genes, G1–G3 NST displayed
23, 27 and 43 mutated genes, respectively (p 5 0.027,
p 5 0.66, p 5 0.0011). These data showed that ILC of
any grade are fairly comparable with G2 NST with
respect to their mutational load and ILC, G1 and G2
NST are in the lower range of mutational loads com-
pared with G3 NST (p 5 9.12e212). Interestingly,
ILC of any grade shared a high burden of mutated
PIK3CA with G1–G3 NST. Highly mutated genes in
ILC were PIK3CA (43.9%), CDH1 (56.1%), MLL3
(7.5%), FOXA1 and TP53 (6.5% each), as well as
MAP3K1 and GATA3 (4.7% each). 54.6% of NST

G1 showed mutated PIK3CA, followed by MAP3K1
(16.4%), GATA3 (14.6%), MAP2K4 (10.4%), and
FOXP1 and TP53 (3.6% each). With higher tumour
grades, NST tumours with mutated MAP2K4 (G2:
5.0%, G3:1.8%), MAP3K1 (G2: 10.5%, G3: 3.2%)
and GATA3 (G2: 14.2%, G3: 5.6%) decreased while
cases with TP53 mutations strongly increased (G2:
19.7%, G3: 52.6%).

Further, we detected significant associations of the
number of mutated genes with patient age
(p 5 0.0016), tumour size (p 5 0.00018), and nodal
stage (p 5 0.0048). The median number of mutated
genes in node positive (N1) tumours was 30 com-
pared with 34 in N0 tumours. To quantify the
strength of association with the continuous parame-
ters, we executed robust linear regression of the num-
ber of mutated genes against patient age and against
tumour size. Only 2.1 mutated genes were added per
10 years of the patient’s life (slope, p 5 0.0012),
while 26.0 mutated genes (intercept, p 5 4.2e209)
occurred independent of the age at diagnosis. Further,
only 1.6 mutated genes were added when the tumour’s
maximum dimension extended by 1 cm (slope,
p 5 0.0015), while 33.1 mutated genes (intercept,
p 5 5.8e244) occurred independent of the tumour size.

Finally, we executed the aforementioned analyses
separately in HR1 breast cancer (n 5 532) and in
HR2 breast cancer (n 5 148). The number of mutated
genes significantly correlated with tumour grade and
HER2 status in HR1 breast cancer (p 5 4.8e209 and
p 5 0.00039), but not in HR2 breast cancer. Interest-
ingly, the correlation with patient age was stronger in
HR1 breast cancer (R 5 0.2) compared with HR2

breast cancer (R 5 0.14). Using estimates from robust
linear regression, this corresponded to 3.4 mutated
genes per 10 years life time occurring in HR1 tumours
compared with 2.5 mutated genes per 10 years life
time occurring in HR2 tumours.

Table 2. Association of the number of mutated genes (non-silent somatic mutation) with clinico-pathological characteristics of breast
cancer

Variable Number of mutated genes (median) p-value

Age R 5 0.12, slope 5 2.1, intercept 5 26.0 0.0016

1. Tumour size R 5 0.17, slope 5 1.6 intercept 5 33.1 0.00018

2. Nodal status N0 5 34, N1 5 30 0.0048

3. Histopathology ILC 5 27, NST 5 33 0.23

4. Tumour grade G1 5 23, G2 5 27, G3 5 43 1.0e214

5. Hormone receptor (HR) HR1 5 28, HR2 5 46 1.0e210

6. HER2 HER22 5 31, HER21 5 40 0.0066

7. Subtype (based on IHC) HR1/HER22 5 27, HR1/Her21 5 40, HR2/HER22 5 49, HR2/HER21 5 41 1.0e210

8. Subtype (based on PAM50) Luminal A 5 27, Luminal B 5 39, Basal-like 5 46, HER2-enriched 5 50, Normal-like 5 70 4.3e210

The number of mutated genes correlated significantly with patient age, tumour size, nodal status, tumour grade, as well as immunohistochemical and PAM50
molecular subtypes. Associations with tumour grade, hormone receptor (HR) status and molecular subtype were much stronger compared with the associations
with the other clinico-pathological parameters. Associations with patient age and tumour size were quantified using Spearman correlations and robust linear
modelling. For patient age, the slope describes the increase in mutated genes per 10 years. For the tumour size, the slope describes the increase in mutated
genes per 1cm increase in the maximum tumour dimension
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Figure 1. Association of the number of mutated genes (non-silent somatic mutation) with clinico-pathological characteristics of
breast cancer. (A) In the beeswarm plot, each coloured dot represents a tumour. The bands indicate the first quartile, the median and
the third quartile (n 5 median of mutated genes). The number of mutated genes was strongly associated with tumour grade, molecu-
lar subtyping by immunohistochemistry and SISH for ER, PR and HER2 as well as molecular subtyping by PAM50. (B) Scatterplots
showing weak, but significant association of the number of mutations with patient age and tumour size in cm. The red curves repre-
sent the results of robust linear fitting. Not that the results of linear modeling appear as curves (not straight lines), because of the
logarithmic scale of the y-axis.
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Associations of recurrently mutated genes with
mutational load. Second, we correlated the number
of mutated genes with the mutation status of each of
the 23 genes that were reported by TCGA [2] as
recurrently mutated in breast cancer (Figure 2, sup-
plementary material Table S1). It turned out that the
number of mutated genes was strongly associated
with the mutation status of the tumour suppressor
gene TP53 (median of the number of mutated genes
47 in TP53-mutated tumours versus 27 in TP53
wild-type tumours; p 5 3.8e221), while it was not
associated with the mutation status of the oncogene
PIK3CA (p 5 0.36). Additionally, a significantly
enhanced number of mutated genes was observed in,
NCOR1-mutated, NF1-mutated, PTPRD-mutated and
RB1-mutated tumours (Figure 2). In addition, we
analyzed the correlation of the total mutational load
with the mutation status of BRCA1 and BRCA2.
Note that, in this analysis, only somatic mutations
were taken into account, as germline variant calling
is currently not available for the TCGA BRCA data
set. BRCA1 somatic mutated tumours tended
(p 5 0.058) to harbour an enhanced total number of
mutated genes (n 5 67) compared with tumours
without somatic BRCA1 mutations (n 5 32). BRCA2
somatic mutated tumours had a significantly
(p 5 0.0037) enhanced total number of mutated genes

(n 5 112) compared with tumours without somatic

BRCA2 mutations (n 5 32).

Associations of gene expression profiles with mutational
load. Third, we analyzed the correlation of the gene

expression landscape with the number of mutated

genes (Figure 3, supplementary material Table S3).

To this end, Spearman correlations were calculated

between RNAseq data and the number of mutated

genes. The number of genes whose expression

showed a strong positive or negative correlation with

the number of mutated genes (|R|> 0.4) was 44 in

breast cancer (all p< 8.8e228; Figure 4A), 11 in

HR1 breast cancer (all p< 4.7e222; Figure 4B) and

23 in HR2 breast cancer (all; p< 5.1e207; Figure

4D). In a functional analysis based on GO categories,
we found the cellular process ‘mitotic cell cycle

(GO:0000278)’ to be strongly and significantly

enriched in the gene lists for breast cancer (20 genes,

p 5 3.3e219) and for HR1 breast cancer (5 genes,

p 5 1.0e205). When relaxing the correlation thresh-

old to |R|> 0.3, larger numbers of 120 and 84 cell

cycle genes belonged to the gene lists (significance

of enrichment: p 5 2.6e256 and p 5 2.8e252,

respectively). Moreover, we observed similar results

for associations between the abundance of mutated

genes and the five proliferation-related genes from

Figure 2. Association of the number of mutated genes (non-silent somatic mutation) with mutation status of genes frequently
mutated in breast cancer. In the beeswarm plot, each coloured dot represents a tumour. The bands indicate the median including the
first and third quartile (n 5 median of mutated genes). The number of mutated genes was not associated with PIK3CA mutation sta-
tus, but strongly and highly significantly associated with mutated TP53. Moreover, the number of mutated genes was strongly and
significantly associated with mutated NCOR1, NF1, PTPRD and RB1.
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the Recurrence Score gene signature [11] in HR1

breast cancers (all correlation p< 2.4e222; Figure
4C, supplementary material Table S2). Taken
together, in the overall cohort as well as in HR1

-driven tumours, we found especially upregulated cell
cycle and proliferation-related genes to be associated
with higher numbers of mutated genes. Specifically,
CDC20, MYBL2 and BIRC5 (Survivin) as well as
MKI67, which is routinely used for diagnostic
work-up of breast cancers ranged among the top
genes. In the gene expression data of HR2 breast
cancer, functional analysis did not detect any
enriched GO category and all correlating genes were
downregulated.

Associations of recurrently mutated genes with clinico-
pathological parameters. Next, we correlated the muta-
tion status of the 23 genes that were described as recur-
rently mutated in breast cancer [2] with tumour grade,
molecular subtype and other clinico-pathological char-

acteristics of breast cancer (Figure 4). Mutation status

of PIK3CA, TP53, CDH1 and CDKN1B correlated sig-

nificantly with tumour grade. Mutation status of

PIK3CA, TP53, GATA3 and CDH1 correlated signifi-

cantly with the molecular subtype. Further, we found a

strong association between CDH1 mutation status and

the histopathological subtype, where 56.1% of the lobu-

lar cancers had CHD1 mutations (G1: 57.9%, G2:

56.3%, G3: 50.0%) compared with only 2.1% of NST/

other cancers (G1: 1.8%, G2: 2.1%, G3: 2.1%). Finally,

we detected a moderate, but significant association of

mutated MLL3 (p 5 0.00046) and FOXA1

(p 5 0.00097) with patient age. Median age of patients

harbouring these mutations was 63 and 67 compared

with a median age of 59 in patients without these

mutations.
Further, we investigated the correlation of somatic

BRCA1 and BRCA2 mutation status with the clinico-
pathological data. Mutations in BRCA1 were

Figure 3. Gene expression FCs with 95% CIs between tumours with a high number of mutated genes (22 or more) and a low number
of mutated genes (21 or less). Cell cycle genes [GO category 0000278: ‘mitotic cell cycle’; (40)] are colored in yellow. (A) Analysis of
breast cancer: FCs of 44 genes whose expression strongly correlated with the number of mutated genes (|Spearman-R|>0.4). (B)
Analysis of HR1breast cancer: FCs of 11 genes whose expression strongly correlated with the number of mutated genes (|Spearman-
R|>0.4). (C) Analysis of HR2breast cancer: FCs of 23 genes whose expression strongly correlated with the number of mutated genes
(|Spearman-R|>0.4). (D) Analysis of HR1breast cancer: FCs of the 16 cancer genes included in the Recurrence Score assay.
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detected only in the basal-like molecular subtype (in

3.9% of these tumours), but absent in all other

PAM50 subtypes (p 5 0.053). BRCA2 mutations

were found in the HER2-enriched subtype (8.3%) in

the basal subtype (3.9%) and in the luminal A sub-

type (1.2%), but absent in the other PAM50 subtypes

(p 5 0.032).

Associations of overall survival with mutational
load. Finally, we investigated the correlation of out-

come with the number of mutated genes (Figure 5).

In univariate analysis of overall survival, the number

of mutated genes was a negative prognostic marker

with a hazard ratio of 1.18 per 100 mutated genes

(p 5 0.00029). In a multivariate analysis including

correction for patient age, tumour size, nodal status,

histopathological type, tumour grade, HR status and
HER2 status, the number of mutated genes was no
longer significant. Next, we analyzed the prognostic
power of a dichotomized version of the number of
mutated genes. To this end, we made use of the Cut-
off Finder [40] to study the impact of the choice of
the cut-off point on differences in survival. In multi-
variate analysis, we detected a borderline-significant
impact of the number of mutated genes on survival
for cut-off points between 18.5 and 27.5 (Figure 4).
An optimal cut-off point occurred when classifying
tumours in those with 21 or less mutated genes and
those with 22 or more mutated genes. This classifica-
tion yielded a hazard ratio of 4.6 (95%CI: 1.0–20.0)
and significance of p 5 0.044 in multivariate analysis
of overall survival.

Figure 4. Association of the mutation status of specific genes with tumour grade and immunohistochemical as well as PAM50 sub-
types (mutation rates including 95% confidence intervals). Genes with significant association after Bonferroni correction are shown
(TP53, GATA3, CDKN1B, PIK3CA, CDH1, and MAP3K1). For example, the number of PIK3CA mutated tumours decreased from 54.3 via
36.7% to 18.7% with increasing tumour grade (G1, G2 and G3), while the number of TP53 mutated tumours increased from 5.4 via
15.4% to 52.4%. Mutation status of PIK3CA, TP53, GATA3, CDH1 and MAP3K1 correlated significantly with the molecular subtype.
PIK3CA mutations were much less frequent in triple-negative breast cancer (7.2%) compared with the other subtypes (all mutation
rates >17.4%). TP53 mutation rate was much higher in triple-negative (71.2%) and HR2/HER21(69.6%) breast cancer compared
with HR1/HER22(16.3%) and HR1/HER21(32.2%) breast cancer.
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Discussion

Here, we show that the number of mutated genes,
that is, the diversity of the gene pool putatively con-
tributing to tumour evolution [34] is strongly associ-
ated with both morphological and biological features
of breast cancer, which are commonly being used in
routine diagnostics to guide clinical management and
therapy worldwide. We also provide evidence for
associations between the number of mutated genes
and mutation status of specific genes as well as with
expression levels of genes routinely used to assess
the proliferative capacity of breast tumours (eg,
Ki67, [43]) and to predict therapy response (eg, cancer
gene signature of the Recurrence Score assay [11]).

Gene expression profiling studies combined with
survival analysis [4–8] revealed that hormone receptor
(HR)-positive (ie, luminal A and luminal B) and HR-
negative tumours (ie, HER2-enriched and basal-like)
are distinct diseases in both molecular and clinical
terms. The intrinsic molecular subtypes are largely dis-
tinguished by gene sets measuring epithelial and basal
differentiation as well as proliferation and the HER2
pathway. The robustness of the stratifying signatures
has been demonstrated across several platforms [2,6,7].
In daily pathological diagnostics, however, immunohis-
tochemistry is applied to facilitate approximation of
these subtypes [43] and to stratify breast cancer patients
into different risk groups and oncological therapies. A
more recent combined analysis of genetic and RNA
expression profiles of the largest breast cancer series to

date comprising 2000 patients profiles by the META-
BRIC study group [9], even revealed 10 different sub-
groups associated with different clinical outcomes;
however, this has not entered clinical decision making
yet.

In line with these findings, we observed significant
differences in the relative abundance of mutated
genes across molecular subtypes determined by
immunohistochemistry and the PAM50 classifier: the
median of mutated genes increased from 27 in HR1/
HER22 tumours to 40 in HR1/HER21 tumours, 41
in HR2/HER21 and 49 in HR2/HER22 tumours and
from 27 in Luminal A to 39 in Luminal B, 46.5 in
Basal-like, 50.5 in HER2-enriched and 70 in normal-
like tumours.

Recent large-scale molecular profiling studies [2,9]
revealed considerable divergence of the main breast
cancer subtypes on the genetic level. Interestingly, as
shown by TCGA [2], luminal breast cancers are the
most heterogeneous subtypes. Mutations frequently
affected transcription factors of the ER pathway
(GATA3, FOXA1 and RUNX1) and the PI3K cascade
with mutations in PIK3CA as the most frequent
genetic aberration followed by mutually exclusive
mutations in PIK3R1, AKT and PTEN. Other frequent
targets are the MAP-kinases MAP3K1 and MAP2K4
and epigenetic modulators, for example, genes
encoding methyltransferases (eg, MLL3), demethyl-
transferases (eg, KDM6A) as well as several adenine-
thymine-rich interactive domain-containing proteins
(ARID1A and others). TP53 mutations occurred in

Figure 5. Association of overall survival with the total number of mutated genes (non-silent somatic mutation) in breast cancer. Haz-
ard ratios (haz. rat.) are shown for a dichotomized version of the number of mutated genes that was varied along the x-axis. (A) In
univariate analysis, no cut-off point between 10 and 180 yielded a significant association with survival. (B) In multivariate analysis
including correction for patient age, tumour size, nodal status, histopathological type, tumour grade, hormone receptor status and
HER2 status, a high number of mutations were borderline-significant associated with shorter survival for cut-off points between 18.5
and 27.5. The most significant association was obtained for a cut-off point of 21.5 with hazard ratio 5 4.6 (1.0–10.0) and p 5 0.044.
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approx. 25.8% of luminal B and 8.8% of luminal A
tumours. In contrast, basal-like breast cancer appears
to harbour the most unique and distinctive genomic
profile. They are primarily characterized by genomic
instability that is putatively caused by the loss of
function of three tumour suppressor genes and cell-
cycle regulators by mutations or deletions: TP53
(75%), RB1 (4%), and BRCA1/2 (7.9%). Similar to
basal-like breast cancers, HER2-enriched subtypes
showing a certain relation to luminal subtypes also
harbour a high frequency of TP53 (63.9%) that is
accompanied by PIK3CA mutations (38.9%).

In accord with these observations, extended analy-
sis of the whole cohort showed a significantly high
prevalence of mutated TP53 in TNBC and HER2-
enriched breast cancer, while mutated CDH1 and
GATA3 occur significantly more frequently in the
HR1 subtype and the HR1/HER22 subtype, respec-
tively. We also noted that while PIK3CA and CDH1
mutations were significantly enriched in tumours
with lower tumour grades, TP53 and CDKN1B were
significantly associated with higher tumour grades.
However, when analyzing CDH1 status within histo-
logical subtypes, we did not observe any significant
correlations with tumour grade. As already reported
by other investigators [2,44,45], mutated CDH1
occured almost exclusively in lobular breast cancer.

Interestingly, we did not observed significant asso-
ciations between the abundance of mutated genes and
several of the frequently mutated breast-cancer
related genes briefly summarized above. However,
we identified five mutated genes (TP53, NCOR1,
PTRD, NF1 and RB1), which showed strong associa-
tions to high numbers of mutated genes independent
of the tumour subtype. As expected, non-silent muta-
tions in TP53 and RB1, which have been causally
linked to genomic instability of tumours [46,47], are
strongly correlated with the number of mutated genes
in breast cancer. Moreover, our data show that high
numbers of mutated genes are strongly associated
with mutant NCOR1, which is mutated in �4% of
breast cancer cases [2]. Although we cannot provide
evidence for a causal relationship, it is of note that
NCOR1 is a gene encoding a transcriptional co-
regulator serving as a linker for transcription factors
and chromatin-modifying enzymes and has been
implicated in maintaining genomic stability via
HDAC3 [48]. Pointing towards a similar direction,
the mutant variant of PTPRD (genetic aberrations in
�7% of breast cancers [2]) encoding the protein tyro-
sine phosphatase receptor type delta was also
strongly associated with high numbers of mutated
genes in breast cancer. PTPRD has been shown to
act as tumour suppressor [49] and impairs function of

Aurora A [50], a protein that has been shown to
modulate genomic stability [51]. Last but not least,
the mutated variant of the putative breast cancer
oncogene NF1 (genetic alterations in �5% of breast
cancers [2]) correlated with a high abundance of
mutated genes in our study. Neurofibromin1 acts as a
negative regulator of RAS by stimulating GTPase
activity of RAS [52] and impaired NF1 function has
been linked to increased mutations frequencies in
mice [53]. Taken together, our observational data
indicate that it may be worthwhile to investigate the
specific functional relevance of these five genes in
breast cancer biology and maintenance of genome
integrity in future studies.

In addition, we sought to identify differentially
expressed genes that are associated with the number
of mutated genes in breast cancer. Interestingly, we
found many upregulated cell cycle-related proteins to
be related to high numbers of mutated genes in the
overall cohort. Among the top upregulated genes
were MYBL2, BIRC5 and AURKA, which are also
part of the cancer genes interrogated by the Recur-
rence Score assay [11]. Narrowing in on this, we
observed that particularly the proliferation gene sig-
nature of the Recurrence score shows a strong corre-
lation with the mutation rate in HR1 breast cancer
subtypes. A broader analysis of the HR1 cancers
corroborated MYBL2 and identified other upregulated
cell-cycle associated genes, such as PLK1 and
CDC20. These data suggest that the link between
proliferation and abundant mutations is largely
restricted to HR1 tumours and does not pertain to
HR2 tumours. It is tempting to speculate that this
proliferation signature indicates that increased tumour
cell replication and associated stochastically higher
mutation rate in luminal tumours fuels the pool of
mutated genes thereby advancing tumour heterogene-
ity and evolutionary selection processes [34].

Remarkably, we found that tumour grade, that is,
phenotypes indicating the degree of cellular differen-
tiation, but not the two main breast cancer types, that
is, NST and ILC, are strongly associated with differ-
ent numbers of mutated genes. Additionally, we iden-
tified a significant but comparably weaker correlation
of the mutational load with two other measures
reflecting the temporal development of the tumour,
that is, age at diagnosis and tumour size. Specifically,
the expected number of acquired mutated genes was
estimated as 2.1 per 10 years and 1.6 per 1 cm,
respectively. Hypothesizing that the abundance of
mutated genes is a measure of genetic heterogeneity
of the tumour [34], we here provide evidence that
particularly pathological grading of breast cancer is
in fact a microscopic read-out of tumour
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heterogeneity, which indicates different biological
and clinical behaviour of the tumour. Several studies
either sequencing tumour bulks or single tumour cells
have demonstrated that breast cancer subtypes exhibit
considerable spatial and temporal heterogeneity on
the genetic level within the primary, during meta-
static progression and in patient-derived xenografts
[24–31]. This genomic diversity within breast cancers
is a result of but also facilitates cellular evolution
[34] allowing the tumour to dynamically adapt to
external or internal stimuli as originally conceptual-
ized by Nowell in 1976 [54].

While we and others [31,33,34,54] hypothesize
that this diverse gene pool may confer survival
advantage to the tumour, to our surprise and counter-
intuitive, local spread to lymph nodes was associated
with slightly but significantly lower numbers of
mutated genes compared with node negative
tumours. Currently, we are unable explain these
results satisfactorily and future studies are needed to
investigate these relations further. Although data on
follow-up times of the cohort are rather short and
limited, and hence, limit analysis as well as data
interpretation, our survival data analysis indicates
that increasing numbers of mutated genes per se are
significantly associated with increased hazard ratios
independently of other clinico-pathological parame-
ters. Hence, our data may suggest that the abundance
of mutated genes has a certain relation with meta-
static progression ultimately leading to tumour-
related death [55–57]. Further studies are warranted
to substantiate our findings and conclusions.

To sum up, we here provide evidence for signifi-
cant associations between the genotype and morpho-
logical as well biological phenotypes of breast
cancer. Specifically, while histological subtypes do
not display specific numbers of non-synonymous
somatic mutations, immunohistochemically defined
subtypes of breast cancer are associated with differ-
ent amounts of mutated genes increasing from HR1/
HER22 to HR1/HER21, HR2/HER21 and HR2/
HER22 breast cancers. Moreover, we observed sig-
nificant correlations with the expression level of
genes involved in cellular proliferation as well as
with specific breast-cancer related genes. Interest-
ingly, the increasing abundance of mutated genes dis-
played strong correlations with increasing tumour
grades and also with tumour size and age at diagno-
sis albeit to a lower degree. The three main implica-
tions of these observations are: 1) a critical
reappraisal of tumour grading that warrants further
investigation as the tumour grade assessed by con-
ventional light-microscopy for prognostication of the
course of disease may reflect genetic tumour hetero-

geneity and in turn possibly the evolutionary poten-

tial of tumour cells, 2) different molecular subtypes

of breast cancer may harbour a different capacity for

tumour evolution due to different abundances of

mutated genes and 3) we provide evidence for a

strong relation between the proliferative capacity as

well as specific mutated genes and the number of
genes harbouring somatic non-silent mutations in

breast cancer.
In conclusion, we believe that our study is a step

further towards genomics-informed breast pathology

and will provide a basis for future studies in this

field bridging the gap between morphology, tumour

biology and medical oncology.

List of abbreviations

AFF2 AF4/FMR2 family member 2
ARID1A AT-rich interactive domain-containing

protein 1A
AURKA/STK15 Aurora A kinase
BIRC5 Survivin
CBFB Core-binding factor subunit beta
CDH1 Cadherin-1
CDC20 cell-division cycle protein 20
CTCF CCCTC-binding factor
ER Estrogen receptor
FC Fold change
GATA3 Transacting T-cell-specific tran-

scription factor 3
HER2 Human epidermal growth factor

receptor 2
HR Hormone receptor
ILC Invasive lobular carcinoma
MAP3K1 Mitogen-activated protein kinase

kinase kinase 1
MAP2K4 mitogen-activated protein kinase

kinase 4
MLL3 Histone-lysine N-methyltransferase 3
MYBL2 Myb-related protein B
NCOR1 Nuclear receptor corepressor 1
NF1 Neurofibromin 1
NST Invasive carcinoma of no special

type
TNBC Triple negative breast cancer
PIK3CA phosphatidylinositol-4,5-bisphosphate

3-kinase, catalytic subunit alpha
PLK1 Polo-like kinase
PTEN Phosphatase and tensin homolog
PTPRD Receptor-type tyrosine-protein phos-

phatase delta
PR Progesteron receptor

Phenotype-genotype correlations in breast cancer 235

VC 2015 John Wiley and Sons Ltd and The Pathological Society of Great Britain and Ireland J Path: Clin Res October 2015; 1: 225–238



RB1 retinoblastoma 1
RUNX1 Runt-related transcription factor 1
SF3B1 Splicing factor 3B subunit 1
SPC24 kinetochore protein SPc 24
TBX3 T-box transcription factor
TP53 tumour suppressor 53
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SUPPLEMENTARY MATERIAL ON THE INTERNET

Additional Supporting Information may be found in the online version of this article.

Figure S1: Association of the number of mutated genes (non-silent somatic mutation) with histopathological subtypes of breast cancer (ILC all
grade, NST grade 1, NST grade 2, NST grade 3). In the beeswarm plot, each coloured dot represents a tumour. The bands indicate the first
quartile, the median and the third quartile (n 5 median of mutated genes). Mutational load of ILC was slightly, but significantly, higher than in
NST G1 tumours (p 5 0.027). Mutational load of ILC did not show a significant difference compared with NST G2 tumours (p 5 0.66). Muta-
tional load was considerably lower in ILC compared with G3 NST tumours (p 5 0.0011).

Table S1: Association of the number of somatically mutated genes (non-silent mutation) with mutation status of genes frequently mutated in
breast cancer. For comparison, the Wilcoxon test was applied and bold p-values indicate statistical significance after Bonferroni adjustment.
TSG: Tumour suppressor gene.

Table S2: Association of the number of somatically mutated genes (non-silent mutation, median) with the expression levels of the 16 cancer
genes from the OncotypeDX assay. * 5 p< 0.05, ** 5 p< 0.05 after Bonferroni-correction.

Table S3 (separate Excel file): Detailed overview of the statistical results of the genes whose expression levels were found to be significantly
associated with the abundance of mutated genes in all breast cancers, as well as in ER2 and ER1 subtypes.
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